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SU(mn) D SU(m) x SU(n) isoscalar factors and S(/, + ) D S(f,)XS( %)
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A simple relation is found between the isoscalar factor (ISF) of the unitary group and those of the
permutation group, i.e. the SU(mn)CSU(m) x SU(n)ISF is equal to the S(f; + /5) CS(f1) XS(f>)

ISF. Since the values of S ( £, + /5) CS( f1) X S (f>)ISF areindependent of m and n, one arrives at an
important conclusion that the values of SU(mn) CSU{m) X SU(n) ISF are also independent of m
and n. Therefore they can be calculated for all m and »n by a single stroke instead of one m and one
n atatime. An eigenfunction metho for evaluating the SU(mn) C SU(m) X SU(n)ISF is given which

can be easily translated into a computer program.
PACS numbers: 02.20.Qs

1. INTRODUCTION

With the development of the particle physics and
hyper-nuclear physics, one has to extend the Wigner super-
multiplet theory of SU(4) D SU(2) x SU(2) to the more gener-
al case of SU(mn) D SU(m) X SU(n) and face the problem of
evaluating the SU{mn) D SU(m) X SU(n) isoscalar factor
(ISF) with m and/or n larger than two. Up to now, only some
results of the SU(6) D SU(3) X SU(2) ISF can be found in Refs.
1-3. It is currently believed that there are at least five and
probably six flavor quarks, therefore, one needs SU(10)D
SU(5)x SU(2) or SU(12) DSU(6) X SU(2) ISF. However, in
the methods'~ traditionally used for calculating the
SU(mn) D SU(m) X SU(n) ISF, the labor involved in such cal-
culation increases drastically as m or n increases. From our
earlier work* it is known that the SU(n) DSU(n — 1) ISF are
independent of n. Any SU(n) DSU(n — 1) ISF belongs either
to the derivable type [i.e. it is equal to SU(n — 1)DSU(n — 2)
ISF] or the underivable type (i.e. it must be calculated direct-
ly). Therefore the calculation of any SU(n) DSU(n — 1) ISFis
reduced to the calculation of a few underivable ones. In this
paper, we want to generalize this result. We identify thé
SU(mn) DSU(m) X SU(n) ISFwith S (f, + ) DS (fI)XSf2)
ISF [S( f)) etc. stand for the permutation groups], therefore
the values of the SU(mn) D SU(m) X SU(n) ISF are indepen-
dent of m and n.

In a series of papers,”™ we proposed a new approach to
the group representation theory. Three kinds of complete
sets of commuting operators, denoted as CSCO-I, IT and ITI,
were introduced. The basic problems encountered in the
group representation theory such as the finding of (I) charac-
ters, (II) irreducible bases, the Clebsch—-Gordan coefficients
and (III) irreducible matrix elements, etc., are all simplified
to the solving of eigenequations of the CSCO-I, II, and III,
respectively. Therefore, we call it the Eigenfunction Meth-
od. The CSCO-1, denoted as C, of a group G is a set of opera-
tors which commutes with any element of G, and is a com-
plete set of commuting operators in the class space of the
group G. For finite groups, CSCO-I consists of a few class
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operators of the group. The CSCO-I for commonly used fin-
ite groups are listed in Ref. 6. For the permutation group S( f)
the CSCO-1is Cyy,{f) for f<5 and f'= 7 or {Cy,( f), C3( S
for f= 6 and 8</< f<14, where C,( f) is the i-cycle class
operator of S{ f).

Suppose G DG (s)is a canonical subgroup chain of Gand
C (s) is a set of operators which consist of the CSCO-I of all
the subgroups contained in the subgroup chain G (s). Then
the set (C,C (s)) is called the CSCO-II of the group G. It was
proved that a necessary and sufficient condition for ¢ to
belong to the basis in the GD G (s) classification is that ¢! is
the eigenfunction of the CSCO-II of G, i.e.

(cc(s)) = (r:) v (1a)

It was proved® that ( f — 1) operators

(C Cls)) = (Cipy (f) Cipp (f = 1)so.., C)(2))s (1b)
constitute the CSCO-II of the permutation group S ( f),
whose simultaneous eigenfunctions give the Yamanouchi
bases.

Since the Eigenfunction Method proves to be very suc-
cessful for calculating the Clebsch-Gordan coefficients and
the outer-product reduction coefficients of the permutation
group,’ this method is now used to calculate the
S(f+ £5) DS(f1) X S( f>) ISF, namely the SU(mn) D SU{m)

X SU(n) ISF. The merit of this method is that it is indepen-
dent of m and n and can be easily implemented on a comput-
er. Expressions of SU(mn) D SU(m) X SU(n) ISF in terms of
the Clebsch—Gordan coefficients of the permutation group
and the transformation coefficients from the standard (i.e.
Yamanouchi) basis to the nonstandard basis of the permuta-
tion group are also given.

2.5(f)DS(f— 1)xS(1) ISF

Suppose the coordinate g of a particle is divided into
two parts, y and £, and ¢ = { y, & ). For example, y may re-
present the orbital coordinates and £ may represent the spin-
isospin coordinates, or y represents the isospin coordinate
and £ represents the spin coordinate. Thus for a system with
[fparticles we hae three realizations of the permutation group
S(f)i.e.SX(f),S* f)and S % ) which permute the indices of
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TABLE I. Notation for the irreducible bases of S ¥(/), S4(!)and Sl ), I =f, f— 1.

S SYf-1) SE(Sf) SEf=1) s4f) S/
[0]>= lo] ) [U']> [,u]>_ [1] > [/t']> IV]>_ v > [V']>
m [o']m; mj myl [ 1ms m; m/!  |[v]im m
v,;’s, &’s and g,’s respectively. Let us first introduce nota- wigm | 1O] (1]
tions. The labeling of the irreducible bases of the three = 2 C iy sioms (1 ml | [w1myl” ®)

groups and their subgroups is listed in Table I, where m,,
m7, m,, etc. may be understood as the indices specifying the
given Yamanouchi symbols with the convention in decreas-
ing page order.® Let Y'!7!, Y %! and Y "' be the Young tab-
leaux after dropping the last box (containing the number f)
on the Young tableaux ¥'7!, ¥ '#! and ¥ |} respectively. Ac-
cording to the branching law® of the permuation group one
has
[olm, = [o] [0'] m},

(elmy = [pllw'] m3, (2)
[vIim = [v][v']m'".
For example,
[42] 1356>‘_[42]>
9 > 124 T 3215/
Due to Racah’s factorization lemma®, the Clebsch—
Gordan coefficients of the permutation group S(f) can be

written

|v] Bom — V1B, (v1B' (o (V1B m'
Coimalsim, = BE Cootiar " Cloimi wt ms> (3)

where the first factor in the right-hand side is the
S(f)DS(f— 1)XS(1)ISF (orshortened as S (f) DS (f— 1)
ISF), the second one is the Clebsch-Gordan coefficient of the
group S (f— 1), and 3, B are the multiplicity labels. From
Eq. (3), the S(f)DS(f— 1) ISF can be expressed in terms of
the Clebsch~Gordan coefficients
CWBIvIB — 3 cC (v1B,m

o', i omy, pmy

v1B8'm'
clam . (4)
mim;

In the case when the multiplicity label 5’ is redundant, one
gets a simpler expression for S(f)DS(f— 1) ISF:

[vIBIv] — [v]B, vVim
Caa]’.,u[u’] - Caml:;n:mz Co’m;,p’ m3* (5)
The S (f)DS(f— 1) ISF satisfy the unitarity condition
[¥1B[v 1B VIBIvIB —

z Ca‘o]’,By[u' Cao’, u[y’] - 61/\7 (SB— ’ (68)

o u'B’
WBIVIB o ¥1BIVIB

Z“ c Al CHLVIP =6, 8:.055 (6b)

We now proceed to derive the eigenequations to be satisfied
by the S(f)DS(f— 1) ISF. From Egq. (3) one has

| 18 3 cune
)

i) )] =l ems)

m
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According to the definition, Eq. (7) is already the Yamanou-
chi basis [v']m' of the permutation group S (f — 1). The re-
quirement for Eq. (7) to be a Yamanouchi basis [v]m of S f)
is thus equivalent to the requirement that it must satisfy the

eigenequations
iy _ .,
€ (/) [v’]m’>_/1(f) [v']m’> ®)

from (1b), where the eigenvalue A " is related to the partition
[v] = [v,v,...] through®

AP =4 + %zvl(vl'—z”' (10)
1
Using the relation ;
C(z)(f) = C(z;(f“ 1) + _Zl (lf)’ (11)
Eq. (9) can be rewritten -
IS VIBY PNV
S| 012) = ap-apa| S0).

ThustogetS(f)DS(f— 1)ISFoneonlyneedstodiagonalize
the operator /_ | (if) in the basis |(o’s’) B') of Eq. (8), i.e.,
== == ’0 ’
S S @@ Bl o) B
guf’ i=1
SR =AY s Brba)
X C BB =, (13)

oo’
With the help of Eq. (8), the matrix element in the above
equation can be expressed in terms of the Clebsch-Gordan
coefficients and the irreducible matrix elements of the per-
mutation group S{ f),

(@ @) B )ler)B"
v18'.m
= __2 ,Ct[-fﬁfﬁﬁ;
XD (if) D&, (if ). (14)

If for a given eigenvalue A }”’, Eq. (13) has {ouv) independent
eigensolutions, it means (irreducible representation} irrep [v]
occurs (guv) times in the representation [o'] X [u] of the
permutation group. We can choose the eigensolutions in
suchaway that the S ( f) DS (f — 1) ISF satisfy the orthogon-
ality condition on index 3 [see Eq. (6b)]. If the Clebsch—
Gordan coefficients ofbothS ( f)and S ( f — 1)areknown, one
canget S (f)2S(f— 1) ISFby means of Eq. (4) or (5). If only
the Clebsch—Gordan coefficients of S ( f — 1) are known, one
cangetS (f) DS (f— 1)ISFbysolvingtheeigenequation (13).
For large f, it is preferable to use Eq. (13), since compared
with the eigenequation satisfied by the Clebsch-Gordan co-
efficients of S( f), it is a lower order eigenequation.

cwig.m

og'myu’ m;
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3.5(1)DS( /) xS( 1) ISF

Let.S( f,)and S ( f3) be the permutation groups for parti-
cles 1,2.., fiand f, + L, f; + 2...f; + /5, respectively, with
=1/ + /. Use the following notation to designate the irreps
of the nine groups S¥( f})...S % f)

o W v\ [SHA) SEHA) SYA)
o u" V] ISHA) SEHA) SUA)) (15)
A ) SES) SUS)

For example, [1"] and [o] are the irreps of S¥( £;) and $¥( f)
respectively. The irreducible bases classified according to

the irreps of the group chain S(£) DS (£1) XS (/) in the Y&
and g space are denoted by

[o] > (1] )
9{0"]?71{ [0'”] m;’ ’ ¢[ﬂ,1m5 [ﬂ"]mg 4
8=12,.[00"0), ¢=12..(wp"u}

(v] )

rvim (v im”[’

7= 12..{v'v'v}, (16)
where 0,4 and 7 are multiplicity labels, and the multiplicities
{g’g"a}, (i'u"u} and {v'v"v} are determined by the
Littlewood rule.® For example |4\ .,,..) belongs to the
irrep o] of S*( f) and at the same time it is the Yamanouchi
basis [0’ ]m} and [0 ]m} of the group S¥( f;) and SX( f3)
respectively.

The former two in Eq. (16) can be linearly combined
into the third one through the following two steps:

(1). Use the Clebsch-Gordan coefficient of S ( f}) and
S (f,) to combine them into irreducible basis [+']m’ and
[v"1m” of S*( f;) and S 9 f;) respectively,

lo'o")0 w'n")pB'B")

EH@ lal’c]rgcr"]> ¢ [#[f]‘zﬂ"]” [1;]'5‘ [V’:f"

— C[V]B',"l' C[V']B',m"
omi, pimy o m, pmy
mim;mym3;

y ’ o] ) (u) > (17a)
Olo'imilo"Im?[\¢ [ lm; (" 1m3 [
{2). UseS{ f)D(f,) XS f3) ISFtocombine Eq.{17a)into
a basis belonging to the irrep [v] of S f)

e )3

V1B, r[v1B'[v'IB”
lol8c’a”, [u)u'n”

v 1m' [v' 1m” ::::5,'
(o] (] ["']B'[V"]w_ (17b)
X['9[0’1[0”1>¢[u'][u”]> m m

The S(f)DS(fI)XS(f) ISF C )5 1718 1¥ 18" satisfy
the unitarity condition:

(P18, 7VIB(vIB" C(¥IB 7IVIB'(v]B" _ =
Y Cllisa i’ Clobo s’ =08, 8z 8gs,
B'ou'e
B ou"$
(18a)

(v B 7IVIB' (v 1 B" V1B, 7 [VIB VB _
zﬁ c [;]95’5", [ul¢m'a” C {ol6c'c”, lulepwp” 5'?"’ (18b)
v

5,7“255',3: 55~B~5¢7d5l7#r55~0~ 5‘7#. 6595$¢. (180)
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Corresponding to E. (9) has

[v] )_ " ) >
cif) v Im' [v'im" v Im'[v' Im"[~ (19)
It should be emphasized that there is a significant difference
between Eq. (9) and (19). C(f) here is the CSCO-I of S7( )
rather than the 2-cycle class operator Cy,( f) of S7(f).

The S(f)DS(f1) XS (f,) ISF satisfy the eigenequation
S (@8 (zameB'B"IC(f

70”68’
wuteB”
(0'0")0 (1'1")B'B " }-A " 85
XC b il =0, (20)

where the symbol 8, is the same as that in Eq. (18c). The
SY(F)DSX(f,)XSX(f,)and S¢(f)DS(f;)XS*( f,)basisin
Eq. (17a) can be transformed into the Yamanouchi basis of
SX(f)and S4(f), respectively, by means of the transforma-
tion coefficients of the permutation group.'?

For example

[0] o (lo] e[a’][u"]) o]
0[0’]m'[a"]mi’> _;(m ,[U]’ mimy ( m )
(21)

From Eq.(17a) and (21), one gets the expression for the ma-
trix element of any permutation P in the g-space between
states (17a):

(FG"8 (" \0B'B" |PI(0'a")0 " \8B'B")

=YD, (P) DY, (P)CLirm CLLE

oy

o
’

m
" m

X C vigm' (v ]B"m"

omii'm; 7 o"m{.u"my
(0] é[é’][é"])(m 1 141)
(lor” e ) Gl
0 ! ”
x(Tot i, e
(] [#/][ﬂ”] 22
x(“1)iu1s 1) 22)

where the sum is over /| i, m;mym, m;,m;m;mm,m,
and m,.

With the help of Eq. (22}, one can calculate the matrix
elements of the CSCO-I of the permutation groups .59 f).
Therefore from the Clebsch—Gordan coefficients of S( f})
and S ( f,) and the transformation coefficients of Eq. (21)
which can also be evaluated by the Eigenfunction Method,
one obtains the matrix elements occurring in Eq. {20). Solv-
ing the eigenequation (20), one gets the S () DS (f1) XS (L)
ISF. Again, if the eigenvalue A ™ is degenerate [the degener-
acy equals to N = {v'v"v} X (ouv)], through a proper choice
of the NV linearly independent eigensolutions belonging to the
same A ), one can make the S(f) DS (f;) XS (f;,) ISF to be
orthogonal on indices 8 and 7 [see Eq. (18a)].

A computer program has already been set up ’ for cal-
culating the Clebsch—Gordan coefficients of the permuta-
tion group by the Eigenfunction Method. It is straightfor-
ward to transplant this program to the case of eigenequation
(20) for the S(f) DS (f1) XS (/) ISF.

Jin-Quan Chen 3



4. SU(mn) D {m) x SU(n) ISF

In analogy to Eq. (15), we introduce the following sym-
bols to denote the irreps of SU(m), SU(n) and SU(mn)

g u' v\ [SU@m), SU@n), SU@mn)
o" wu" v"| |SUim), SU(n), SU(mn)) (23a)
o u v SU(m), SU(n), SU(mn)

‘ [v] ) [v'] >
B’[U’][W]{[#']Wé CB e IW W )

v
BlolW, [ulW, [’ (23b)

be the SU(mn) 2 SU(m) X SU(n) irreducible bases in the ¢-
space for particles (1,2..., 1), (/1 + 1,...f) and (1,2..., f) re-
spectively, and W { (W j) etc. are the component indices of
theirreps of SU{m){SU(n}). The SU(mn) D SU(m) X SU{n) ISF
are defined as the coefficients in the following expansion:

[V]T VT, (24
BlalWw, [#]W2> - B'%’a CEV}]B{ZE")’?"["H]?"””#"
Bro"u
[v] w1 \] lodeluls
; 24
XHﬁ’lo’l[#’1> ﬁ"[o"][u"]>] we wy

(]

where 7 = 1,2,...{v'v"v] is the multiplicity label, and the
square bracket indicates that the bases are to be combined
into the irreducible basis [o]W, and [0,] W, of SU(m) and
SU{n) in terms of the Clebsch-Gordan coefficients of SU{m)
and SU(n), respectively, i.e.

[ v"] >][‘7]9[l~"]¢

V] >
B'lo'1p']

B"la"1u"1 1w, W,
— {ol6,w, lnie. W
= Cow'rorwiC i ws

WiWIW Wy

x\ [v'] > [v"] >
B' VW wIWI B " [e"IW [ 1W3

25
The inverse expansion of Eq. (24) is
[ [v'] > [v"] >] [olelel,
B'lo'Hu) 1B la" "V W, W,
, (vl
= Wrglolblulé . 26
"VZTBC[VIﬂau,[f"]B# B[Ulwl[#]W2> ( )

Attaching the Young tableaux ¥ () and ¥ [} (e3)
with (@9) = (1,2,.../;) and (@9) + (f; + L., f) to thetwo irre-
ducible bases in the right-hand side of Eq. (24), it reads

(v] >
v 1m' v Im" B Lol W, [u]W,
= clirpiewe,
BZ}/B [EF:] v iB"o"p
Bro'ué
X[ v >
m'o?, B'[o'1(#']
‘ [v" >] lolelnls
M mrag, Bt w1 W, W

(27a)
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The left-hand side of Eq. {27a) is still the SU(m#)D
SU(m) X SU(n) basis. It belongs to the irrep [v] of SU(mn),
therefore it must also belong to the irrep [v] of the permuta-
tion group S f)"'. In other words it is also a S % f) DS %( f,)
X S f,) basis.

The Clebsch-Gordan coefficients of the permutation
group are known'! as the coupling coefficients which couple
the irreducible basis of SU{m) and SU(n) into those of
SU(mn). For example

W)
m', B o 1W  [w']W;
[”]>. (28)

!
=3 clvig.m (o]
omiss |y W[ Iy W

On the other hand the Clebsch—Gordan coefficients of the
unitary group are the coupling coefficients which couple the
irreducible basis of S{ f}) and S{ f,) into those of S ( f). For
example

o] >
6o’ Im; 0" 1m), W,
"z e
wiwy [ IWiloIws m; Wi my WY
(29)

With the help of Egs. (25) (28) and (29), the last factor in Eq.
(27a) can be put into the form

H (V] > [(v'] H (olelpl,
m'a}, B0 ']

m"w(z)’ﬂ"[a"][,u”] W, w,
= V'ig,m' V18" ,m"
= X OO Clt:
[o] > ‘ [u] >
6 (0'Imi (0" 1m, Wil 16 (Vs (" Vg Wl
(27b)

Comparing Eq. (27) with Eq. (17) one gets an important
relation

W Blololuld . CVBIYIBIVIET
ARG o w = C L850 gt (30)

Or, expressed in the form of an overlap integral,

<7v'm y" m[:j]ﬁa Wuw, )
[P L) | Ry

< vl
T \rv'm'v'm” BoW ,uW,

Gt ) e

namely the SU(mn) D SU(m) X SU(n) ISF [or the f, particle
CFP (coefficients of fractional parentage)] are equal to the
S(fi +£)28 (fi)XS(f;) ISF.

Furthermore, since the value of S (f, +/2) DS (f))
X S (/) ISF is independent of m and n, one arrives at the
conclusion that the value of SU(mn) D SU(m) X SU(n) ISF is
independent of m and n. The reason we failed to realize this
obvious fact for so long is because we usually use concrete
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TABLE: IL SU(mn) DSU{m)x SU(n) ISF C 31115212

[o]p'] [22] [31]
2T+ 1,28'+'r °r

[vllo]lp]

[V]ZT+ 1154 Ir
[vI(Ap)S

02)1

[31][22]

B11[31]
311" 33F

210 21)1

[21°] {321 (321
R 2r

\

R21°112) 172

quantum number for a given m and n rather than the parti-
tions to represent the irreps of SU(m) and SU(n). For exam-
ple, in the case of SU(3), we use (Ax) (corresponding to the
partition [4 + u, u]) or the dimension of the irrep; for SU(2)
we use the quantum number S or T. As a test of the above
conclusion, in Table II we list the SU(6) DSU(3) < SU(2) ISF
for [v] = [21°], (4 ) = (12), S = 1/2 calculated by Zhang et
al? and the SU(4) DSU(2) x SU(2) ISF for [v] = [21%),

S = T = 1/2 given by Jahn.'? They are exatly the same. (See
Table I).

Therefore, every SU(mn) D SU(m) x SU(n) ISF with a
particular m and n gives an infinite number of SU(m'n’) D
SU(m’) X SU{n’) ISF with m’ = m, m 4 1,..and n’ = n,
n—+1,.

Another point worth mentioning is that not every
SU(mn) DSU(m) x SU(n) ISF can be deduced from the
SU((m — 1)n) DSU(m — 1)X SU(n) ISF or the
SU{m(n — 1)) DSU(m)x SU(n — 1) ISF. The reason is that
the Young diagrams [¢’], [¢”] and [o] of SU(m — 1) can
have at most m — 1 rows, therefore the SU(mn)DOSU(m)

X 8U(n) ISF with the Young diagrams [¢’], [0”] and [o]
of m rows can not be deduced from the SU{(m — 1)n) D-
SU(m — 1) X SU(n) ISF.

5. SU(mn) D SU(m) < SU(n) ISF AND CLEBSCH-GORDAN
COEFFICIENTS OF PERMUTATION GROUP

Putting [v"] = [¢”] = [1"] = [1] in Eq. (30), using
Eq. (4), and omitting redundant indices 7,6,4,8 *, one gets a
relation between the single particle CFP in the group chain
SU(mn) DSU(m) X SU(n) and the Clebsch—-Gordan coeffi-
cients of S(f)and S(f— 1):

(V1B (o] [u] 1B,1v)B°
C e et = Codf A
—_ [v] Bm V1B m
- 2 Cgmnll’”z Co’m, u'ms (32)
mim;

In the case when S’ is redundant, Eq. (32) reduces to Eq. (5).

Now we turn to derive a similar expression for f,-
particle CFP. The SU(mn) DSU(m) X SU(n) basis and the
Yamanouchi basis of S (f )lm Blol W: (mwz) can be expanded
in the following two ways:

(1). Transform the Yamanouchi basis of S (f) into the
S(£12S(fI)XS(f,) basis

5 J. Math. Phys,, Vol. 22, No. 1, January 1981

v iv] v 1[v"]
matomn = 3. (w70 )
% [v}
VIm' [v"Im”, B o] W, [ W,
(33)
Using Eqgs. (27), and (29) this becomes
[v] S T P [ O
m,B[a]W[,u]W)_ E( [v1, m' m")
XCURI I e CYL e C e
xc},;lz?#,';é };"1{3”7;,,

X‘ [o] > [w] } [o"] )
mia}, Wil Imso, Wil \miod, wi

e ) - (34)

miw,, Wy

X
The sum is over

v'm T Bo'uB o " OpW Wi W W im;, m;m{ and m.
(2). In analogy with Eq. (28) one has

[v]

)= 5 o o1 )] 1] )
m’B[U] Wl[.u]WZ mym, n A m, Wl n, WZ
(33)
By means of the expansion
[o] >_ ([a] (o] 9[0'][0'”])
mw,l 9;:'”;, m, T omymy
Wiwy
[o'] > [o”] >
[o]16,W,
T N | I B
and a similar equation for |[7), ), Eq. (35) becomes
[v] >
=3ee,
m, B oW, [u]W, Z e
9[01][0_” I][ L
><([a] 01,717 "] ¢[u’ ;:]
m, my m mym;
[0] H (o"] >
folg,w, [nlg, W,
XCowirws € ,,2 1ol , Wil Imial, Wy
[/L] > (w )
s08, W milw(z),Wg

The sum is over m,m,c” myu"my 6 W/ Wi W?{and W,
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Comparing Eqgs. (34) and (37) one gets

[v] 7[v1[v"]
2 z [V]’ 4 ”
v'm'r B'B" m m m
ORI e CAET C L2
fix m{m; (v] B,
= 2 Ca‘;"l I:"mz
0ld'][o" Tle”
() @ 20,
ml ml ml m; mé’
(38)

where the sum over m, and m, is carried out with fixed m;
and mj. Utilizing the unitarity property property of the
Clebsch—-Gordan coefficients and of the transformation co-
efficients (1| [v], 71*)*"1), we finally get an expression for
the SU(mn)D SU(m) X SU(n) ISF

C[v]r B[Uw[[#"]]‘tﬁ"a” .

fix m’

-3

1geme {[V] v ][v"
xcogim( o, ])
m

% ([0]’[01,9[01[0"])(
m mi my
(39)

In the case when any of the multiplicity labels 7, 8’ and 8 ” is
redundant, Eq. (39) can be simplified. For example, if 7 is
redundant, one gets

C [v} Bloloulé
1By, [v" 1B 0" n”

([V]

B, (v18',m'
z C‘[;:']’pl:nmz C ;

omj, p'mj

¢ [ ][#"])

m5 my

[VI[v"] V) B
m VI s s o,

mm; mymy

C ol i C L s
([a] (o] 9[U][G"])( ¢[#][,u"])
’ m; my m; my
(40)

For the totally antisymmetric irreps [v'] = [1/],
[v"]=[14], [v] = [17], Eq. (40) reduces to

C Hj}]],[[a']]([)!%,]ﬁf‘][a"][#”] = ou Oy Oy m
{o] 6 [0][‘7"])
m%];( [ ]’ ’ m;r
o 610'] [a”]) (h,,rhm )1/2
: 8585 By 8 ’
X (m1 o] m; m{ ’ h"

(41)
where &, h_. and h_ are the dimensions of irreps [¢’], [0]
and [o] of the permutation groups S{ f,), S( /) and S (f),
respectively.
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We know that the total CFP in the shell model can be
factorized as

(lf'[V']a1ﬁ1L1S1T1’ If’[V”]azﬁszszTﬂ}lf[V]a.BLST)

172
_ h,,. h,,. C [vlTal
=3 p [V1a,L,, [v"JasLs
T v
[v)r.BST
XC G 58T 1571 88,y (42)

The factor (k.. A, /h,)'/? is called the weight factor. Now we
know it is a SU(4(2/ + 1)) DSU(2/ + 1) X SU(4) ISF for the
totally antisymmetric states, and the total CFP of Eq. (42) is
nothing else but the SU(4(2/ 4 1)) D(SU(2/ + 1)DSO(3))

X (SU(4) DSU(2)x SU(2)) ISF.

By using the symmetries of the transformation coeffi-
cients'* and those of the Clebsch—Gordan coefficients® of the
permutation group, from Eq. (39) we get another symmetry
of SU(mn) D SU(m) X SU(n) ISF

W) Bcle lule [v. 81210 (21
Cisoniiprouw =€C 1 pean1p s

wheree = + 1isa phasefactor depending on phase conven-
tions and the tildes represent the conjugate irreps (inter-
change rows and columns in Young diagrams).

The relations between the SU(m + 7) DSU(m) X SU(n)
ISF and the outer-product reduction coefficients are very
similar to those between the SU(mn) D SU(m) X SU(n) ISF
and the Clebsch—-Gordan coefficients of the permutation
group, which will be the subject of our next paper.
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The question of the possible general existence of real Clebsch-Gordan coefficients (coupling
coefficients) for compact groups is considered. Criteria are established for a group to be
susceptible to the classical rotation group approach in which a choice of standard irreducible
matrix representations is made such that there is a fixed inner automorphism of the group
carrying all standard representations into their complex conjugate. In connection with a
generalization of this approach the concept of quasi-ambivalence of a group is shown to be

relevant.

PACS numbers: 02.20. + b

1. INTRODUCTION

In his review' of coupling and recoupling theory for
compact groups, Butler raised the question of the possible
general existence of real Clebsch—-Gordan (C-G) coefficients
(coupling coefficients). After noting the lack of an answer to
this problem he stated in a footnote? that the tetrahedral
group requires nonreal coefficients. It will be shown below,
however, that this is not the case (Sec. VI). In fact, there do
not seem to be examples in the literature contradicting a
“reality conjecture.” In the present paper we consider the
general problem and establish sufficient conditions for a

compact group to allow a choice of real C-G coefficients.
As is well known, C-G coefficients for a compact group

G are elements of unitary matrices intertwining tensor pro-
ducts of unitary irreducible matrix representations of G with
matrix direct sums of unitary irreducible representations of
G. More specifically, if I', and I, are unitary irreducible
matrix representations R—T; (R ), ReG, of G, any unitary
matrix C with the property that the representation
R—-C'(T}(R)®T,(R)) Cof G is a matrix direct sum of uni-
tary irreducible representations of G will be called a matrix
of C-G coefficients for I', @ I',. Here ® denotes tensor (or
Kronecker or direct) product of matrices.

By a system of standard representations for a compact
group G we shall mean a system of continuous unitary irre-
ducible matrix representations of G containing one irreduci-
ble representation from each equivalence class and with the
property that if a matrix representation I of G is among the
standard representations and I is not equivalent to its com-
plex conjugate representation T, then T is also among the
standard representations. In connection with systems of
standard representations we shall understand matrices of C-
G coefficients to transform tensor products of standard re-
presentations into direct sums of standard representations.

Now, the precise problem which we wish to consider is
the following one:

(A) Given a compact group G, is it possible to find a
system of standard representations of G such that for any two
standard representations ', and I', there exists a real matrix
of C-G coefficients forT', @ T,?

We shall start by formulating the problem a little differ-
ently in order to make it easier to attack. To this end, we
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introduce a concept closely related to C-G coefficients,
namely that of triple coefficients. Given an ordered triple
I',I,I'; of matrix representations of a group G, we define a
set of triple coefficients for T',I',I'; to be a column vector ¢
satisfying

[T,(R)8T,R)8Ts(R)]c=c for all ReG. (L1)

In(I.1) cisajoint fix-vector (i.e., eigenvector with eigenvalue
1)forthematricesT',(R ) ® T,(R ) ® T'5(R ), ReG. Thustheset
of all ¢ satisfying (I.1) forms a linear space which we shall
denote ¥ (I',I',T;). The dimension dim.% (T',[,I';) of this
space is equal to the number of times the trivial one-dimen-
sional representation of G occurs in T', ® T, ® T',. Denoting
the elements of ¢ by (7-*), where the y, are component
designations for the I';, Eq. (I.1) may be written

| T, T,
(R )Yﬂ’x( )
Vi 72 Vs

forall y,¥,,7;and all ReG. (1.2)

Y TyR),, TR), T
YLYRYS (I‘ r, T,

Y172 73

Equation (I.2) will be recognized to be an identity satisfied
by the general 3-f symbols defined by Wigner® [and in par-
ticular, the famous 3-/ symbols for the special case of

G = SU(2), the rotation group, when the T'; are chosen as
the conventional irreducible matrix representations of
SU(2)]. The concept of triple coefficients is a slight general-
ization of that of 3-j symbols; it was introduced in Ref. 4 in
connection with a discussion of the Wigner—Eckart theorem
[cf. Eq. (I1.3) below].

The problem posed in (A) above now turns out to be
equivalent to that of the existence of real triple coefficients,
the latter being precisely formulated as follows:

(B) Given a compact group G, is it possible to find a
system of standard representations of G such that for any
ordered triple ' \I',T'; of three standard representations there
is a basis (c,...,cy ) for F (T ,I',T';) consisting of real column
vectors?

It requires a series of arguments of a rather detailed and
nonfundamental nature to demonstrate the equivalence of
the reality problems (A) and (B). We therefore defer this dis-
cussion to Appendix A. Before attacking problem (B) in Sec.
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II, then, we want to observe the following reasons for being
interested in an answer to it:

(i) The well-known Wigner—Eckart theorem in our nota-
tion* reads

@ onlen) _
N . ' I,r
— (l//l' ﬁl‘, lﬁ) ( 1 +2 3) i L3
/321 | I®™2s Yi Y2 Va/s (L3

One usually thinks of this formula for matrix elements of a
tensor operator £ between symmetry-adapted basis vec-
tors as giving a factorization into quantities (the triple coeffi-
cients) expressing the “symmetry” or “geometry” of the op-
erator and quantities carrying the “physical” content of it
(the numbers (@ "'||Z"*||¢"*) 5 , the so-called reduced ma-
trix elements). It would be nice to know to what extent any
“nonreality” of the operator /7 can be attributed to the
reduced matrix element (by choosing real triple coefficients)
and thus be regarded as an aspect of its physical nature.

(ii) For practical calculations, real numbers are usually
preferable to nonreal complex numbers.

(iii) A theorem proved in Feit’s book® (but apparently
otherwise not much recognized in the literature) asserts that
C-G coeflicients of a finite group—nonunique as they are—
in a certain sense characterize the group up to isomorphism.
Thus, these coefficients might also be of a more fundamental
mathematical interest.

Il. THE REPRESENTATION TRIPLE PROJECTION
MATRIX

Let G be a compact group (G may, in particular, be
finite) and let dR be normalized Haar measure on G [if G is
finite of order |G |, this means that f; f(R)dR

= |G|~ g f(R )forany functionfon G ]. If T',T’,,I'; are
continuous unitary (irreducible) matrix representations of G,
the matrix

T, =f [F,(R)oT,(R)eT,(R)] dR

has the following properties:

(i) r1232 = r123 s

(ii) T';,5 = I'},3 T (the adjoint matrix)

(iii) a column vector ¢ is a fix-vector for I’ ,; if and only
if ¢ satisfies (I.1).

Sketch of proof: Property (i) is immediate from the transla-
tional invariance of integration over G. Property (ii} follows
from the unitarity of the I"; and the unimodularity of G, i.e.,
thefact®thatf; f(R ~')dR = s f(R ) dRforanycontinuous
function fon G. As for (iii), “if”’ is trivial; “only if’ follows
from the observation that ¢ = T';,;¢ implies that for all ReG,

[T (R)eI(R ) ® Iy(R ) ¢
=[[(R)e(R)eI(R)] T ;¢
=I'c=c¢c,
again because of the translational invariance of integration.
Thus I',,, is the matrix for the orthogonal projection
onto % (T ,I',I'y), a fact which has also been noted by
Wigner.” (This projection property is well known in general
representation theory.®) This means that 5 (I'\,I,) is
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spanned by the columns of T',;. In particular, a basis for
% (L \I,I';) may be selected from the columns of T',s.
Therefore, if T',,, is a real matrix for all triples T',\I',I; of
standard representations, we can answer question (B) from
Sec. L. in the affirmative.

One way in which I' ,; may become real for all standard
triples is through the existence of a continuous mapping 7 of
G into itself and a choice of standard representations such
that the following conditions are satisfied:

(a) Haar measure on G is invariant with respect to 7,
that is,

[ reewy ar - [r@)ar

for any continuous function fon G.
(b) For any standard representation I we have

I(r(R)) =T(R) forall ReG.

Indeed, in this situation we have

Ty = f [F.(R)® TR ) e To(R)] dR
- j [T,(+(R)) # T>(r(R)) @ Ty(r(R )] dR

_ j [[,(R)&@T5(R)@T5(R)] dR =Ty,

We now point out some consequences of having a situa-
tion with (a) and (b) fulfilled.

Note first that (b) implies that for any standard I" we
have
NAR) =Lr(rR)=T(r(R) =T(R)=T(R) forall
ReG. This shows, by the Gel’fand-Ratkov theorem,” that
7R ) = R for all R, that is, 7 is an involution and thus, in
particular, a bijection of G. This is immediate if G, as is often

the case in practice, has a faithful irreducible representation.
phism of G since any standard representation composed with

T gives a representation (the complex conjugate
representation).

Thus, the mapping 7 is necessarily an involutory auto-
morphism of G. In Sec. IV we investigate to what extent the
above situation may be realized with 7 being an inner auto-
morphism of G, i.e., a mapping of the form R—R,RR ;- '
ReG, where R, is a fixed element of G. For inner automor-
phism (a) is automatically satisfied because of the transla-
tional invariance of integration over G. [Actually, (a) is satis-
fied for any continuous involutory automorphism. '’] Since
the investigation of (b) in the case of inner automorphisms
falls into two parts, according to the Frobenius-Schur clas-
sification of irreducible representations, we discuss this clas-
sification briefly in Sec. IIL

IIl. THE FROBENIUS-SCHUR CLASSIFICATION

We start by introducing the following auxiliary
concept:

If R—I'(R), ReG, is a unitary matrix representation of
a group G, a conjugating marrix for I is a unitary matrix U
intertwining I and T (the complex conjugate
representation):

Ture Damhus 8



UIr'(R)U'=T(R) for all ReG. (IIL1)

If T and T are equivalent [meaning that there is a nonsingu-
lar U satisfying (III.1)], it can easily be shown that I" has a
conjugating matrix (see Ref. 4, Sec. 5.2 or refer to the well-
known fact that equivalent unitary irreducible matrix repre-
sentations are unitarily equivalent'").

Using the unitarity of the matrices I'(R ), ReG, we see
that (II1.1) is equivalent to

N(R)T UDR)=U for all ReG, (I11.2)

where denotes transposition of a matrix. Now suppose that
I' isirreducible. From the form of the left-hand side of (III.2)
the linear space of a/l (for the moment not necessarily uni-
tary) matrices U satisfying (II1.2) is stable under transposi-
tion of matrices and is therefore the direct sum of two sub-
spaces consisting of symmetric matrices and antisymmetric
matrices, respectively. On the other hand, by Schur’s lemma,
this space is of dimension at most 1, since I' and T are irredu-
cible. Thus, given I, either all matrices U satisfying (II1.2)
are symmetric or all such matrices are antisymmetric. This
observation forms the basis for the Frobenius—Schur
classification:

Definition: A unitary irreducible matrix representation
is of the first kind if it has a symmetric conjugating matrix. A
unitary irreducible matrix representation is of the second
kind ifit has an antisymmetric conjugating matrix. A unitary
irreducible matrix representation is of the third kind if it is
not equivalent to its complex conjugate representation.

Suppose I is a unitary matrix representation and U a
conjugating matrix for I'. Let A be any unitary matrix. Then
it is immediately verified that AUA~! is a conjugating ma-
trix for the representation R—AI'(R ) A~', ReG. Since the
transformation

U—>AUA '=(A")T UA™!

evidently preserves symmetry/anitsymmetry of U, we see
that equivalent matrix representations are of the same kind.
Note: This classification was introduced first by Fro-
benius and Schur in a slightly different way'? (cf. the remark
following Theorem 1 below). Various alternative descrip-
tions of the classification exist, including a simple character
test for classifying an irreducible representation, but as we
shall not need these we refer the reader to some relevant
literature'*~'” and to the more detailed treatment in Ref. 18.
The entries of conjugating matrices are what Wigner®
and several subsequent authors have named 1-j symbols and
for which Butler' has suggested the name 2-jm symbols.

(I11.3)

IV. COMPLEX CONJUGATION OF MATRIX
REPRESENTATIONS BY INNER AUTOMORPHISMS

We now turn to the subject of complex conjugation of
matrix representations by inner automorphisms announced
in Sec. II. Suppose a choice of standard representations can
be made for a compact group G such that there is an inner
automorphism R—R,RR 5 ', ReG, taking each of these re-
presentations into its complex conjugate. Since we then have

T(R)=T@R,RR; ') = TRHTR)T(R,)" for all ReG
(IV.1)
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for any standard representation I', we see that all standard
representations of G must be equivalent to their complex
conjugate and thus be of the first or the second kind (i.e., G
must be ambivalent ). Some further necessary conditions for
the desired situation to be attainable may be noted
immediately.

Firstly, by inserting R = R, in (IV.1), we see that for
every T the matrix I'(R,) is necessarily real.

Secondly, the statement (IV.1) is equivalent to saying
that I'(R,) is a conjugating matrix for I for every I'. Thus, if
I' is of the first kind, I'(R,,) is necessarily symmetric; if T is of
the second kind, T'(R,) is necessarily antisymmetric.

Combining these observations on I'(R ), we see that if I"
is of the first kind we have

T(R3)=T(R,)" T(R) = [(R,) T T(R,)

=T(R,)T T(Ry) =1, (IV.2)
where 1 is the unit matrix.
If T is of the second kind we have
F(R (2)) = I\(R_o) I‘(Ro) = - F(RO)T r(Ro)
= —T(R)" T(Ry)= —1. (Iv.3)

From (IV.2) and (IV.3), we have I'((R 2)*) = 1 for all
standard I". This implies (by the Gel’fand—Raikov theorem®)
that (R 3)* = 1 (the identity element in G). Thus R } is an
involution in G. In Sec. II we noted that R—>R,RR ;' is an
involutory mapping of G into itself; this means that
R}RR ;? = R for all ReG or that R j commutes with all
ReG. Thus, R is a central involution in G.

Summarizing, the inner automorphism approach re-
quires G to be ambivalent and to have a central involution
which is a square and which is mapped to 1 by all irreducible
representations of the first kind and to — 1 by all irreducible
representations of the second kind.

When the approach is actually realized the standard
irreducible matrix representations of G necessarily have real
conjugating matrices.

(We note that for a finite ambivalent group the explicit
assumption of the existence of a square root of the central
involution is unnecessary since the remaining assumptions
and the Frobenius-Schur square-root count'?'%%° there are
2 dimI such elements, where the sum is over all standard
irreducible representations.)

The necessary conditions thus established turn out as
well to be sufficient for the inner automorphism method to
be applicable. This follows from Theorems 1 and 2, which we
state below. These theorems have been proved in Ref. 18.
Note the large degree of freedom which one has in prescrib-
ing the actual form of the conjugating matrices of the stan-
dard representations. This is of importance in establishing a
convenient Wigner—Racah algebra for the group. Examples
of groups satisfying the above necessary and sufficient condi-
tions are SU(2), the icosahedral double group 7 *, the octahe-
dral double group O *, and the dihedral double groups D ¥,
D%, and D ¥. The conventional treatment of the rotation
group, SU(2), uses standard irreducible matrix representa-
tions & W all having & U(C ) as a conjugating matrix.?!
The inner automorphism approach has been used in the con-
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struction of a Wigner—Racah algebra involving real C-G
coefficient for O * in Ref. 22 and for I * in Ref. 4. See the
general discussion in Sec. 5.4 of Ref. 4.

Not all ambivalent groups satisfy the above conditions;
see Sec. V and Appendix B.

Theorem 1: Let Gbe a group and I an equivalence class
of unitary irreducible matrix representations of G of the first
kind. Suppose R,eG is an element with I'(R 3) = 1 for any
matrix representation I' in I". Let P be any symmetric real
orthogonal matrix with TrP = y ~(R,) [TrP is the trace of P;
Xr(Ry) is the character of I" at R;). Then there exists a ma-
trix representation I' in /™ with the following properties:

(i) T(Ry)=P,
(i) PT(R)P'=T(R) for all ReG.

Remark: Taking R, = 1 and P = 1, we see that there is
in particular a rea/ matrix form I" of I". This was actually the
criterion for a representation to be of the first kind in the
paper by Frobenius and Schur.'? The choice of real matrix
representations is of course a rather natural one for irreduci-
bles of the first kind and such a choice ensures the existence
of real C-G coefficients (if no irreducibles of the second kind
are involved). However, in certain cases, e.g., when adapta-
tion of the standard representations of a group to specific
group-subgroup hierarchies is desired, it may be necessary to
have P+1 (for several examples of this see Ref. 4).

Theorem 2: Let G be a group and I” an equivalence class
of unitary irreducible matrix representations of G of the sec-
ond kind. Suppose R,eG is an element with T'(R2) = — 1
for any matrix representation I' in I'. Let P be any antisym-
metrix real orthogonal matrix. Then there exists a matrix
representation I'" in I” with the following properties:

(i) T(Ry) =P,
(i) PCR)P'=T(R) for all ReG .

Remark: It may be seen from the treatment in Ref. 18
that the assumptions of Theorem 2 imply that P and T'(R,)
both have trace zero. This is why the assumptions in Theo-
rem 2 do not include, as do those of Theorem 1, a condition
on the trace of P.

If one has established a matrix form of an irreducible
representation which is brought into its complex conjugate
by a certain inner automorphism it may be useful to know to
what extent this matrix form may be changed by similarity
transformations without destroying the inner automorphism
property. This is answered by the following proposition.

Proposition: Suppose I is an irreducible matrix repre-
sentation of a group G and R,G is an element such that

I'(R,RR ;) =T(R) for all ReG.

Then, if I is unitarily equivalent to T, I"" is brought into its
complex conjugate by the inner automorphism

R—R,RR ;' if and only if there is a real orthogonal matrix
A such that

AT(R)A' =T'(R) for all ReG.
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Proof. “If” is easily checked. To see “only if,” let Bbe a
unitary matrix such thatI"(R ) = BI'(R) B~! for ReG. Now
I'(R,) is a conjugating matrix for I and I''(R,,) is a conjugat-
ing matrix for I'. Remembering the transformation rule
(I11.3} for conjugating matrices and noting that all conjugat-
ing matrices for I'” are proportional (because I'" is irreduci-
ble), we see that there is a complex number A with |1 | = 1
such that B['(R,) B! =I"(R,) = ABI'(R,) B/, i.e., such
that B = AB. Choosing u such that 4> = A and putting
A = uB gives the desired conclusion. Q.E.D.

Fano and Racah in their argumentation®: for the reality
of SU(2) coupling coefficients use the “only if’ part of this
proposition for reducible representations without any com-
ment. The line of argument in the present paper circumvents
this inconvenient point.

V. FURTHER REMARKS ON THE APPLICABILITY
OF THE INNER AUTOMORPHISM APPROACH
There is an immediate consequence for the “representa-
tion algebra” of an ambivalent compact group G—that is,
the way the tensor products of irreducible representations of
G decompose into irreducibles—of the group being suscept-
ible to the inner automorphism approach. Suppose that
RyeG withT'(R %) = 1 for allirreducible representations I of
G of thefirstkindand TR 2) = — 1 for all irreducible repre-
sentations of the second kind. Then, given a triple
I' I',T'; of irreducible representations and a fix-vector ¢ [that
is, a solution to (I.1)], we have

c=[T|(R2)eT,(R})eT,(R2)] ¢
=[(+1)e(+L)e(+)lc= +¢ (V.1)

where 1, is the unit matrix of the same dimension as I';;
i = 1,2,3. Equation (V.1) shows that if nonzero fix-vectors
exist, i.e., if dim.% (I',I',I';) > 0, an even number of the IT'; are
of the second kind (either two of them or none of them).
Now, it is easily seen, for example by the use of characters,
that dim.% (I',I,T;), the number of occurrences of the trivial
one-dimensional representation of Gin T, T, ® T, is equal
to the number of times any one of the I'; occurs in the tensor
product of the remaining two (since G is ambivalent, the
complex conjugations may be dropped here). Thus, the prop-
erty of triple tensor products deduced above from (V.1) may
be translated into the following property of the representa-
tion algebra: the product of two irreducible representations of
the same Frobenius-Schur kind always decomposes into a
direct sum of irreducible representations of the first kind. For
the purpose of the present discussion we shall express this
property by saying that “the representation algebra of G is
regular with respect to the Frobenius—Schur classification.”
[Butler®* uses the term *“quasi-ambivalent” for this property;
this is unfortunate for the following two reasons: (1) this term
has already been used in the literature for a different proper-
ty (see Sec. VI); (2) an ambivalent group does not necessarily
have the property, as we point out below.]

Wigner?® noted that multiplicity-free ambivalent
groups [ambivalent groups with dim# (I',I',I';)< 1 for all
triples, so-called simply reducible groups] have a regular re-
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presentation algebra. (His proof was actually slightly incom-
plete; a full proof was given by Mackey.!”) The property of
being multiplicity free is not necessary for the representation
algebra to be regular; this is demonstrated by the examples of
the octahedral and icosahedral double groups referred to in
Sec. IV. The question arises whether all ambivalent groups
have a regular representation algebra. Butler and King*® ex-
amined various groups and came up with an example (due to
J.S. Frame) of a group, 2F,(2), of very large order featuring a
triple of fwo first-kind irreducible representations and one of
the second kind having nonzero fix-vectors; however, this
group is not ambivalent.?® Here we demonstrate that the
above question must be answered in the negative. Indeed,
there is an ambivalent group of order only 72 which has a
nonregular representation algbebra. Because of its funda-
mental interest we describe this example briefly in Appendix
B.

It still remains to be investigated to what extent it is
possible and desirable to apply the inner automorphism ap-
proach to groups of practical importance other than the sub-
groups of SU(2) mentioned in Sec. IV. We stress, though,
that even if the group satisfies the necessary and sufficient
conditions of Sec. I'V there may not exist matrix forms of the
irreducible representations compatible with the inner auto-
morphism and which have additional desirable properties.
Thus, for example, it is demonstrated in Ref. 4 that a choice
of standard representations with the inner automorphism
property allows for an adaptation to the icosahedral group—
subgroup hierarchy 7 * 3 C * {in the usual Schoenflies nota-
tion) but does not allow for adaptation to /*DD¥*DOC¥or
I*DT*DC*.

Vi. QUASI-AMBIVALENT GROUPS

Referring to the discussion in Sec. II, we note that a
consequence of condition (b) is that for every irreducible
character y of G we have

x(rR) = y(R) =y(R™") for all ReG.

If G finite, this means that for any R the elements 7(R )
and R "' belong to the same conjugacy class (since the irre-
ducible characters of G separate its conjugacy classes®’).
Groups admitting an involutory automorphism 7 with the
property that 7(R ) and R ~' are conjugate for all ReG have
been called quasi-ambivalent.*® (Note that an ambivalent
group is quasi-ambivalent; indeed, in this case 7 may be tak-
en to be the identity.) Thus, a finite group to which the auto-
morphism approach expressed by (a) and (b} may be applied is
necessarily quasi-ambivalent.

Conversely, one may ask if the automorphism approach
may be applied to any quasi-ambivalent group. We do not
have an answer to this, but we give an example of a more
restricted result which still indicates the relevance of quasi-
ambivalence to the problem we are studying.

Proposition. The automorphism approach may be ap-
plied to any quasi-ambivalent compact group G having no
irreducible representations of even dimension.

11 J. Math, Phys., Vol. 22, No. 1, January 1981

Proof. Let 7 be a (continuous) conjugacy class-inverting
involutory automorphism of G. It will be sufficient to show
that given an equivalence class I” of unitary irreducible ma-
trix representations of G we may find a I' in I” such that

I'(~(R)) =T(R) for all ReG. (VL1

Now, if y is the character of the representation /" and y, is
the character of the representation R—I" (1(R )), REG, we
have

¥-R)=x(rR) =y(R ") = y(R) for all ReG
(VL.2)

from the assumptions on 7. Let I be any matrix representa-
tion in I". From (V1.2) the representations T’ and
RTI'(7(R)) are equivalent (they have the same character).
Thus there is a unitary matrix V such that

['(AR)=V'T'(R)V for all ReG. (VL3)
Rewriting—as was done in obtaining (II1.2)—we get
I'(R)T VI'(r(R))=V for all ReG. (V1.4)

Using that 7 is involutory one now shows that V satisfies
(VL4)ifand only if VT does. As in the discussion following
(ITIL.2), this leads to the conclusion that V is symmetric or
antisymmetric. Since it is of odd dimension, it must be sym-
metric. This means®® that there is a unitary matrix Q such
that V= QQ ™. Putting

IR)=Q'I"(R)Q for all ReG

gives a matrix representation with the desired
properties. Q.E.D.
An example of a group satisfying the conditions in the
proposition is the tetrahedral group 7 (isomorphic to the
alternating group 4,). This group is not ambivalent since it
has nonreal irreducible characters, but it is quasi-ambiva-
lent?® and has only irreducible representations of dimensions
one and three. Thus, real Clebsch-Gordan coefficients may
be chosen for T (cf. Sec. I). In fact, in Ref. 30, we have even
given real coefficients for the two double-group hierarchies
T*DC¥and T*DCY.

APPENDIX A

In this appendix we shall demonstrate the equivalence
of the reality problems (A) and (B) of Sec. I. Some of the
material needed for this demonstration has been given in the
thorough treatment of triple coefficients in Ref. 4. We shall
not repeat all of that here but instead give references to the
appropriate parts of Ref. 4.

We start with an important remark concerning prob-
lem (B). In practice—and partly in the arguments to fol-
low—one requires more than just some basis for & (I',I',T,).
Firstly, the basis may be required to be orthonormal, and
secondly, when two or three of the I, are identical, leading
to a partial or full permutational symmetry of I', ® ', ® T,
one may require the basis vectors to be adapted to irreducible
representations of the relevant permutation group (S, or S;;
see Sec. 3.2 of Ref. 4). These additional requirements, howev-
er, raise no difficulties in the present context since the group-
theoretical projection operators of S, and S, as well as the
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Gram-Schmidt orthonormalization procedure, applied to a
set of real columns will lead again to a set of real columns.

We next need to introduce some notation. The matrix
direct sum C~ (", ® I';) C of representations of G referred to
in connection with formulation (A) is of the form

A,

A,

C'Iel)C= ) (A1)

where the A, are standard matrix representations of G. If any
two of the A, are equivalent they are identical because they
all are standard. Suppose now that A is a matrix representa-
tion of G appearing among the A; in (A.1). If ¥, is a compo-
nent of I'y, ¥, is a component of T',, and 6 a component of A,
we shall designate the element of C corresponding to these

components as

Ty Tyyo| BAS) . (A.2)

This is the conventional coupling coefficient notation. The
index £ is needed to indicate the position of A in the block
diagonal matrix representation in (A.1) when several of the
A, areidentical to A. Thus the pairs ¥,7, serve as row indices
in C and the triples B AS as column indices in C.

Furthermore, if (¢,,...,Cy) is a basis for # (I',I',A),
where I',, I',, and A are unitary irreducible matrix represen-
tations of G (not necessarily standard), we shall denote the
element of a basis column ¢; corresponding to the compo-
nents 7, of T';, %, of I',, and 8 of A by the symbol

(r, T, A)
" Y2 8/’

The connection between C-G coefficients and triple co-
efficients may now be stated compactly in the following
formula:

(T v Iy, BAS )

T,
= @ (I'T,AB)(dimA)'"? (7'1

(A.3)

I A) : (A.4)
Y. O/
Here the triple coefficients are assumed to come from an
orthonormal basis (c,,....¢x ) for F (I';,A), (' T,AB ) is a
phase factor (complex number with modulus 1) and dimA is
the dimension of A. The formula is to be interpreted in the
following way:

Given triple coefficients

('r’ T, A)
Y. Y2 O/

for each distinct A occurring in (A.1) and a choice of

¢ (T,I",AB )for every pair AB, thenumbers (T, 7,T;7,| BAS )
defined by (A.4) will form a matrix of C-G coefficients for
I', ® I',. [The number of times a given A occurs in (A.1) is
equal to the dimension of # (T,T,A), cf. Appendix of Ref. 4.]
Conversely, given a matrix of C-G coefficients

(T,y,.F,7,| BAS) for T, ® I'; and a choice of (T, I",A8 ) for
every Af, the numbers

12 J. Math. Phys., Vol. 22, No. 1, January 1981

(f, T, A)
Vi Y2 6/s

defined by (A.4) will form sets of triple coefficients for the
ordered triples I',I",A. (See Sec. 5.4 of Ref. 4 for the specific
phase conventions relevant to groups susceptible to the inner
automorphism approach.) The proof of these assertions runs
along the following lines:

{1) One shows that triple coefficients of the form

(F T, A)
Vi Y. 6/s

couple I'; with I', to give A: rearranging

3 LiR),, TR, AR s

viré'

X(r, T, A) _(fl I, A)
vio v2 88 \ri v. 6/s
for all y,, ¥,, 6 and all ReG,

using the unitarity of A, gives

3 [MR),, TiR), . ]

¥ivi

T fz A T, T, A
X(r,' , ) = ( ooz ) AR),
Yi v: bJs ; w . 6/p Rz

for all y,, 7, 6 and all ReG,

(A.5)

(A.6)

which is that part of the matrix equation obtained from (A.1)
by multiplying by C from the left which pertains to the par-
ticular copy of A distinguished by .

(2)Oneshows that the coefficients (I",y,I',y,| B AS ) de-
fined from triple coefficients by (A.4) form a unitary matrix
C. This is the least trivial part of the proof; it requires Schur’s
lemma (see Sec. 3.3 and Appendix of Ref. 4).

(3) Conversely, one shows that C-G coefficients
(T',y,L,7,| B AS ) are triple coefficients of the type

(Fl I, A)‘
Y. v: 8Js’

this is just a reversal of the argument in (1). The unitarity of
the C-G coefficient matrix assures that an orthonormal basis
for 7 (T',T,A) s, in fact, obtained if (A.4) is used to define the
triple coefficients.

Thus, having established (A.4), we see that we shall be
satisfied to show the equivalence of the reality problem (B)
and the corresponding one “with two conjugations ”, i.e., the
one obtained from (B) by replacing .# (I',I',I';) by
F (T,I,T,). Let us call this one (B'). We proceed as follows:

First note that if I is a unitary irreducible matrix repre-
sentation of G and we have a nonzero set of triple coefficients

(I‘ r 1, )
v v o0
for the triple I'T'1; (where 15 denotes the trivial one-dimen-

sional representation of G and 0 its component), then for a
suitably chosen real number (I} the matrix U with elements

u,,,,zn(r)(r r 1G)

v v 0 (A7)
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will be a conjugating matrix for I'. This follows by observing
that the equation

S T(R),, TR),. . 4,  =u, foral ReG, (A8
Yio¥i

satisfied by the u,, ', if rewritten as

> I'R),, u, TR )yiy- =ty for all ReG, (A.9)

Yord

demonstrates that I'(R )TUI" (R} = U. Compare Eq. (II1.2}.
From the discussion in Sec. IIT we now see that U is propor-
tional to a conjugating matrix for I'. Obviously, I is of the
first or second Frobenius-Schur kind if and only if nonzero
triple coefficients of the type (A.7) exist.

Suppose now that (B) can be answered in the affirma-
tive. We want to show that then (B") can as well, i.e., that for
any three standard matrix irreps I'y, I',, and I'; of G there is a
real basis for .# (T, T',T";). We distinguish four cases:

() If T, and I, are both of the third kind, their complex
conjugates are, according to the definition of a system of
standard representations in Sec. I, both standard representa-
tions themselves and there is nothing to show.

(ii) If ', is of the first or second kind and I, is of the
third kind, we argue as follows: define a matrix U, by (A.7),
with I’ taking the place of T, so that U, becomes a conjugat-
ing matrix for ;. In doing this, use real triple coefficients
[this is possible because there is a real basis for & (I'\I'| 1)
by assumption] and a real number n(I",); then U, will be a
real matrix. Since T, is itself a standard matrix representa-
tion, there is by assumption a real basis (c,...,¢y ) for
(O, L, PutU = U ! 1,8 1,, where 1, is the unit ma-
trix of the same dimension as I';; = 2,3. It is then seen by
direct verification that (Uc,,...,Uey ) is a real basis for
F(T,L,T).

(iii) If T, is of the first or second kind and T, is of the
third kind, the argument is completely analogous to the one
in (ii).

(iv) If neither I, nor I, is of the third kind, the argu-
ment is as in (ii) except that now rwo real conjugating matri-
ces U, and U, enter, the matrix U turning a real basis for
(I, I,T,) into a real basis for .# (T,I,I';) being then de-
finedbyU=U;"' U, " ®1,.

If, conversely, we assume that (B’) can be answered in
the affirmative, we get to (B) by using conjugating matrices
for the conjugates of standard representations, using then
(A.7) with T instead of T".

The desired proof is hereby completed: formula (A.4)
and the discussion following it showed the equivalence of
(A) and (B’), and we have just shown (B’) to be equivalent to
(B).

APPENDIX B

Here we describe the example alluded to in Sec. V,
namely a group of order 72 which is ambivalent and the
representation algebra of which is not regular with respect to
the Frobenius~Schur classification. The inner automor-
phism approach is not applicable to such a group (see Secs.
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IV and V). P. Landrock constructed this example®’ when
asked by the author if all ambivalenty groups have the cen-
tral involution property derived in Sec. IV.

The group in question is a semidirect produc
G = (C; X C;)OD ¥ of the direct product C, X C; of the cyclic
group of order three with itself and the dihedral double
group D ¥, the latter being isomorphic to the quaternion
group. This semidirect product is constructed in such a
way™ that it has six conjugacy classes: €, = [E }; €,
which is all of C; X C, except E and thus contains eight ele-
ments of order 3; € 4, which consists of nine {(noncentral})
involutions, among which is the involution of D ¥ (the ele-
ment usually described as the rotation of 360°); and three
classes ¢ 15 , € %5, and € 15, each consisting of 18 elements
of order 4 and each intersecting D ¥ in two elements. The
group therefore has six irreducible characters, and the char-
acter table is

t32

Cgl %8 %9 %{8 %%8 %;8
Yul 1 1 1 1 1 1
Y| ! 1 1 1 -1 =t
Yl 1 1 1 -1 1 -1 first kind
X} 1 1 1 -1 -1 41
Y2 | 2 2 2 0 0 0 second kind
X8 8 -1 0 0 0 0 first kind

The characters y,;, Y12 Y13: X14» and Y, will be recognized
each to yield one of the five irreducible characters of D ¥
when restricted to (subduced to) D ¥. The sixth character is
easily found by the orthogonality relations. The Frobenius-
Schur classification of the irreducible representations may
be found using the character test referred to in Sec. IIL

Since all characters are real, the group is ambivalent.
Furthermore, it is readily verified that the tensor product
Y& ® Yy decomposes according to

Xs®X¥s =X+ X2t X3+ Xia +2X2 +7Xs»
from which it is apparent that the representation algebra of
G is not regular.
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A straightforward derivation of the matrix elements of the U(n) generators is presented using
algebraic infinitesimal techniques. An expression for the general fundamental Wigner coefficients
of the group is obtained as a polynomial in the group generators. This enables generalized matrix
elements to be defined without explicit reference to basis states. Such considerations are
important for treating groups such as Sp(2n) whose basis states are not known.

PACS numbers: 02.20.Sv
1. INTRODUCTION

It was shown in a previous publication' (herein referred
to as I) that the polynomial identities satisfied by the infini-
tesimal generators of a semisimple Lie group may be applied
to give a simple determination of the (multiplicity-free)
Wigner coefficients of the group. In this paper we shall ex-
tend some of the techniques presented in I to give a simple
self-contained derivation of the matrix elements of the U(n)
generators.

An orthonormal basis for the finite dimensional irredu-
cible representations of U(n) was first constructed by
Gel’fand and Zetlin.2 The matrix elements of the U(x) gener-
ators in this basis were first derived by Gel’fand and Zetlin®
and rederived using boson-calculus techniques by Baird and
Biedenharn.? In their discussion of the Gel’fand—Zetlin re-
sults Baird and Biedenharn made an important contribution
by explicitly expressing the general matrix element as a
product of a reduced matrix element and a Wigner coeffi-
cient. As a result the fundamental Wigner coefficients of
U(n), for general n, were given for the first time. It is our
principal aim to obtain these results using algebraic infinites-
imal techniques in contrast to the integral techniques of Gel-
’fand and Zetlin and Baird and Biedenharn.

The relationship between our approach and that em-
ployed by Biedenharn ef al.>-> has been discussed in 1. Al-
though the two approaches are closely related we feel that
our approach offers some novel features. In the literature it is
customary to obtain the matrix elements of generators of the
forma; , , and a”+! (m < n) first and to obtain the matrix
elements of the remaining generators by repeated commuta-
tion. Making use of the concept of simultaneous shift opera-
tors which shift the representation labels of U(n) and each of
its canonical subgroups in a certain prescribed way, we shall
present an alternative derivation where the matrix elements
of all generators are obtained just as easily as those of the
formal ,, anda™*'. An expression for the general funda-
mental Wigner coefficients of U(n) is also given in terms of
polynomials in the group generators constructed using the
characteristic identities of U(#x) and each of its canonical
subgroups. The expressions obtained are clearly generaliza-
ble to more general groups.

“Present address: School of Physical Sciences, The Flinders University of
South Australia, Bedford Park, South Australia, 5042.
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We shall also obtain an expression for the
U(n) : U(n —1) reduced Wigner coeficients (or isoscalar
factors) as a polynomial in the group generators. The simul-
taneous shift operators used in this paper are obviously relat-
ed to the pattern calculus of Biedenharn ef al.® and their
concept of Wigner operator. The exact relationship between
them will be discussed in a forthcoming publication.

The extension of this work to the discrete series of re-
presentations of the noncompact groups U(#n,1) and the
orthogonal groups O(n) and O(n, 1) is evident.

2. WIGNER COEFFICIENTS AND REDUCED MATRIX
ELEMENTS

The generators a;(i, j = 1,...,n) of the Lie group U(n)
satisfy the commutation relations

[a).af] = 6Fd} — 8iaf
and the Hermiticity property

@) =4/
These generators may be assembled into a square matrix a

whose (7, /) entry is the generator a;. Polynomials in @ may be
defined recursively by the formula

(@ *"); = (@")af = ai(a™);.
Associated with the matrix a is its adjoint & with entries
a/ = — a;. Polynomials in @ may be defined by
@) = @a; =a @y,
It has been shown’ on a finite dimensional irreducible repre-

sentation of U(n) with highest weight A = (4,,...,4,,) that the
matrices @ and @ satisfy the polynomial identities

[ @-ar=0, [[@-a)=o (M)

r=1 r=1

where the roots ¢, and @&, are given by
a,=A, +n—r=n—-1—a,.

By virtue of the identities (1), projection operators P [r]
and P [r] may be constructed by setting

Plr = [1(-‘-’:—01—)

IFr\a, —

Plrl= 1] (-_———_—) :
= \&, — Q
The matrix elements of such projectors in unitary represen-
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tations of the group were shown in I to be bilinear combina-
tions of Wigner coefficients. To be more explicitlet ¥ (4 )bea
finite dimensional irreducible representation with highest
weight 4 and let [, ) and |, ) be Gel’fand basis states in the
space V'(4). According to I we have

<(f/) (/1')>

Z<A 104 — A)(A—A,lﬁ_/1> @
™ il (w (w Lj o
where l}o) constitutes an orthonormal basis for the contra-

gredient vector representation and where |}°;fv) ) denotes the

product state |°) & |, ). Similarly, we have

P[r]; )
()7
z</1 10|14 + 4, ></1+A, 10 2 >
&\ (w (w) i’
where |!°) forms the usual basis for the fundamental vector
representation. Substituting i = j = n into Eqgs. (2) and (3)

P[rl;

3

we obtain
n L] Aadp
<( )‘P L )> Berery <(v)’n w 1
Algean| AN A 10| A+ 4,\]?
<(v) PirT (v’)> =Swe ((v)’n ) > - @

It is our aim now to apply the U(n) characteristic identi-
ties (1) to evaluate the operators P [#]” and P [#]” which, by
Eqgs. (4), are essentially squares of Wigner coefficients.

We now turn our attention to the group U(n +1)
whose generators ; (7, j = 1,...,n +1) may be assembled
into a matrix & whose (i, j) entry is the generator a;. The ma-
tarix b satisfies an n +1 degree polynomial identity analo-
gous to the U(n) matrix a:

n41

1 ¢—Bo=0.

k=1
where the 3, take constant values on an irreducible repre-
sentation with highest weight A = (4,,...,4,, , ) given by 8,
=A, +n+1 — k. Inasimilar way we define the adjoint
matrix b whose roots /3, are given by B, =n — f3,.

As for U(n) we may construct the U(n +1) projection
operators

nttl (b —f3,
otk1 ="l (ﬂ /’;,)
I—1 k= 1

#k
- n 41
olkl=11 ) .
[ —
7;1
Also, according to I, if p(x) is any polynomial we may write
n+1
P)= 3 P(BIQIk] (5)

k=1

From the U(n +1) identity we have
bQ (k] =05.01k]

Taking the (i,n +1) entry of this matrix equation we may
write

16 J. Math. Phys. Vol. 22, No. 1, January 1981

S a0k, =BQIkY L, i=lun
Rearranging this expression we obtain

@, QI = (B —a)iQ k1., . (6)
Similarly, we may write

Qlklntial ™ =QIk1; " (B —a). )

For simplicity let us for the moment denote the U(n)
invariant Q [k 177 | by C,. Clearly, the C, are U(n + 1)
analogs of the operators P [7]7 whose matrix elements are
squares of Wigner coefficients. It is our aim to express C, as
a function of the B, and a,. Note that Eq. (5) implies

n+1
PO, ="3 P(BICi,
k=1
which enables a systematic evaluation of U(n) invariants of
the form P(b); 1] once the C, have been determined.

We may invert Egs. (6) and (7) by writing

Ok ]L+1 = [(B — a)-l]_;ar{+1 Cis

QLk1!* =Cai " [(B —a)'Y, (®)
where ( B, — a)™' denotes the matrix

(B —ay'= Z (B —a,)'P[r].

r=1
Throughout the remainder of this section let ¢ denote the
U(n) vector operator with components ¢' =a/, | ,
i = 1,...,n, with adjoint ¥" whose components are given by
] = a} *'. Following Green and Bracken,® the vector oper-
ator ¥ and its contragredient ¢' may be resolved into a sum
of shift vectors

v= 3 uir), =3 ¥l

r=1 r=1

which alter the U(n) representation labels according to

Alr] =9[r1Ay + 64,),

AW =4[] — 85,).
Such shift vectors may be constructed by application of the
U(n) projectors P[r] and P [r] as follows:

Ylrl = Pirly =yPIr),
Vi =Plrly" =¢'Plr].

Decomposing the U(n) vector ¢ into its shift compo-
nents allows us to write Egs. (8) in the form

Ok, = 3 YIr(B —a —1)' C,,

S Cu(B

However, from Eq. (5), we have

2 Q[k n+1 -6 +1 =0,

k=1
Hence, summing Egs. (9) over k from 1 to n +1, we obtain

S uin('S (B —a, —n'c) -0

r=1 k=1
However, the shift vectors ¢[r] form a linearly independent

QLK = —a, =" '[r],. &)

for i=1,..,n
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set since they effect different shifts. This implies that

f (B —a, —1)'C, =0, r=1,.,n (10)

k=1

This set of equations together with the condition

n+1 n+1

S a=1(S otknt =811 )

k=1 k=1
uniquely determine the C, . These equations are easily solved
(using Cramer’s rule for example) and yield the solution

C.="T[ B —B)" [ (Be —a, — . (11

P =1
£k
Similarly, using the adjoint projectors Q [k ], one may
deduce the equations

Okl = 3 CulBe —a)'Blrl,

r=1

Okl = 3 ¢'r(B —a,)'C., (12)
r=1

where C, is shorthand notation for Q [k |7 +1 which may be
expressed in terms of the 8’s and a’s according to

- n+1 n

C.= H (B _Bp)_l H (B —a)). (13)

p=1 I=1
#k

The U(n) invariants C, and C, are the U (n +1) ana-
logs of the operators P[]} and P [r]" which may likewise
be expressed in terms of the roots in the U(#) and U(n —1)
identities. This then enables us to evaluate the fundamental
Wigner coefficients (4) as required. However, in order to
determine the matrix elements of the group generators we
must also determine the reduced matrix elements of ¢ and
v,

Since the matrix elements of the projectors P[] and P[]
are bilinear combinations of Wigner coefficients, the
Wigner—Eckart theorem allows us to write

vlrle'[r] = M, P[r],

Y'rlglrl = M, P[r], (14)
where the M, (M,) are U(n) invariants whose eigenvalues
determine the squares of the reduced matrix elements of 3
(¢'"). Equation (14) is clearly an operator generalization of
the Wigner—Eckart theorem and may be derived using pure-
ly algebraic techniques as demonstrated in Ref. 7. By taking
the traces of Egs. (14) we obtain the result
Ylr1y'ir],

t,(P[r])

M =
(15)
_ Prgle)
T LPILrD

which enables the invariants M, and M. to be expressed as a
function of the 8, and a, using techniques similar to those
used in the derivation of the C, and C, (see Ref. 7 for further
details). We obtain

M, =(-1)"T[ (B, — )] @ —a,—1", (16)
p=1 I#r
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n+t
M, =(-D"][ (B, —a, =D [] (@ —a +])".
p=1 I#r
amn

One may check directly from Eq. (15) and the Wigner-Eck-
art theorem that the M, and M, in fact determine the re-
duced matrix elements as required.

Taking the (#,#) entries of Eqgs. (14), we obtain

v[r]"Ytlrl, = M,P[r];,

(18)

Y], ¢lr]" =M, P[]},
which, using formulas (11), (13), (16), and (17), enables us
immediately to write down the matrix elements of the gener-
atorsa’ ., andaj,*'. However, in order to obtain the matrix
elements of the remaining generators we need more informa-
tion. To this end we obtain a relationship between the
U(n +1) and U(n) projection operators which, as we shall
later see, reflects the properties of U(n +1) : U(n) reduced
Wigner operators.

First of all it is easily seen, as a trivial property of
Wigner coefficients and Eqs. (2) and (3), that the following
relations holds:

QLk), ((Cy'QLkY; =01k,

QLT (CY' QLK) =QLk1/
A proof of this result which exploits only the Lie algebra
commutation relations is presented in Ref. 7 (see also
Green®). By applying the U(n) projectors P[r] (P [r]) to both
sides of the above equations, we obtain, by virtue of Egs. (9)
and (12), the result

S PUAQIKY,PIAT

Im=1

=yY[r)'Ci( By —a, =) ¢'[r] ;.
We now note, from the form of C, given by Eq. (11), that
C.(B. —a, —1)" isindependent of a, and hence com-
mutes with ¥[r]. We therefore obtain

PrliQ (k). PIrI7T
=C (B —a, —1Y'( B —a,yYlr1Y'[r];.
Using Egs. (14) this in turn may be written
P[rliQ [k, Plr]7
=CM.(Bi —a, —1Y'( B —a,)'Plrl}. (19
Similarly, we obtain
PrliQ[k17PIr];
= ékMr(Bk —a, =1y'( B, — ar)—lﬁ[r][j' (20)

As we shall see Egs. (19) and (20) are essentially all we
need to determine the matrix elements of the U(n)
generators.

3. SIMULTANEOUS SHIFTS

The Lie group U(#) admits the canonical® chain of
subgroups

U(n)D U —1)D..DU(1), Q@D

where each group U(m) occurring in this chain has infinites-
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imal generators consisting of the U(n) generators a'; for val-
ues of  andj in the range 1,...,m. Before proceeding we estab-
lish some notation. We denote the U(m) matrix whose (i, /)
entry is the U(m) generator @', (i, j = 1,...,m) simply by a,,.
We denote the characteristic roots of a,, by «, ,,,

{r = 1,...,m). They take constant values on a finite dimen-
sional irreducible representation of U(m) with highest
weight (4,,,,,-..,4,,,,) givenby ., = A,,, + m —r. We de-
note the corresponding U(m) projectors simply by P (") and
PC):

m a, —a,,
P(7)=1 (22,
r [#r \Qpyy — Oy

F m a—m _E,m
=ll\=——=—)
r TEP Ny — Ay

where g, is the U(m) adjoint matrix whose roots &, ,, are
givenby &,,, = m —1 — &, ,,. We denote the (rm,m) entries
of these projectors by C,,, and C_',,m , respectively. From the
previous section we know that these operators are essentially
squares of Wigner coefficients whose eigenvalues are given
by [cf. Egs. (11) and (13)]

m m—1
Cr.m = H (ar,m _ak,m)—] H (ar,m — —1)’

k=1 I=1
#r

_ m i (22)
Cr,m = H (ar,m _ak,m)_1 H (ar.m _al,m~1 )

k=1 =1
#r

Finally we denote the U(m) vector operator {a., ., }
(i = 1,...,m) simply by ¥(m). Its Hermitian conjugate ¢'(m)
constitutes a contragredient vector operator with compo-
nents ¥'(m), = a” *'. We denote the shift components of
these operators by #(™) and ¢'("), respectively. According
to Eqgs. (14) we may write

) (7)-.5(7)
() -.5(7)

where the U(m) invariants H,‘m and M, (the squared re-
duced matrix elements) are given by

m+1
Mr,m =(_1)m H (ak,m+1 _ar,m _—1)

k=1

X H (ar,m - al,rn + 1)_1’
HEA4

@3

— m+1 (24)
Mr,m = ( _1) " H (ak,m +1 ar,m)
k=1
X H (ar,m — AL _l)—l'
Istr
The (m,m) entries of Egs. (23) yield the relations
)" *('") ~i,,C
t/}( r) ¢ r m rm rm?
(25)

(") A7) =M.

r r
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which determines the matrix elements of the generators
ay ., anday*t.

If U(n +1) and U(m) are two canonical subgroups of
U(n), we have already remarked that the operator ¥(m) with
components ¥(m)' = a., ., constitutes a U(m) vector opera-
tor. Hence, each operator @, ,, may be written as a sum of
shift components (") which alter the representation labels
of the group U(m). However, if & is a positive integer less
than m, then the components ¥{(m) (i = 1,...,k ) also consti-
tute a vector operator with respect to the subgroup U(k).
Hence, any given operator of the formal, ., (l<m +1)
transforms as a component of a vector operator with respect
to the subgroups U(m), U(m —1),...,U().

In the limiting case when / = m we see thata;, ., can
only be a component of a vector operator with respect to the
subgroup U(m). In this case a);, ., can only alter the repre-
sentation labels of the subgroup U(m) and we may resolve
ay, ., into its U(m) shift components according to

o= 5. (7)

r=1

m

Suppose now we consider a generator of the form af]l ;|
which transforms as a component of a vector with respect to
the subgroups U(m — 1)and U(m). Firstly, & 7| mustalter
the representation labels of the subgroup U(m) and we ob-
tain a primary decomposition into U(m) shift components
m m\™ -1
an =3 w( ) ;
r=1 r
where

mY mY\ . _(m\:
l’[}<r) =P(r>-a'j"+’ :a'J"“P(r)v'

J J
Now each #(™)™ ~' is also a component of a vector op-
erator with respect to U(zn —1). Hence, we may further de-
compose P(7)™ "' into its U(m —1) shift components ac-
cording to
mym-t  m (m m —1 )"‘*‘
¢( r ) - ,;l 4 r ! !

where
m m—1\"-1 (m—l)'"*‘ (m)"
'/}(r ! ) =P I/, 4 r
my - m —1 )m;l
)
Hence, we obtain the resolution

m  m—1 m m—1\—!
it = 3750 ")

r=11=1

where each component ¢ " ') simultaneously alters the
representation labels of U (m) and its subgroup U (m —1)
according to

O G B (Y TR )

tint7 ") =AY s 0

By our construction the shift components (7" ™ —')are giv-
en by
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m m-—1 m—1 m
L R G
r 1 !
-1
=wm?(7 ")
where P(™ ™ ') may be interpreted as an (m —1) X m ma-
trix of operators with entries
— i m—1 — i k
P(m 1 m) _ z P(m l) P(m)’
l r/; & I /o \r/

i=1,..m-—1, j=1,.m.

Similarly, we define the operators P (" " ~1).

More generally, an operator al, ,; (/ <m +1) may be
decomposed into a sum of shift components which simulta-
neously alter the representation labels of the subgroups
U(m), U(m —1),...,U(I). We write this decomposition as

; _ m m—1 Y
Gmer = (Zk) '/’(i(m) im —1) il ))’ (26)

where the summation symbol is shorthand notation for
m—1 ]

=1
Each shift component simultaneously alters the representa-
tion labels of the subgroups U (m),...,U (/) according to

m m—1 )
4 k“"/](i(m) i(m —1) "'i(l))

m m —1
- '/](i(m) im —1) i)

forp=1/...mandk=1,..,p.

These shift components may be constructed by repeat-
ed application of the subgroup projectors as in the a7}
case. Let us denote the/ X m matrix of operators with entries

i MZZ '"Z' P (i(ll))ip (i(llill) )r'"P (i(r:, __11)):

(my=1im=-1)=1

s +6u) @D

r=1 g=1 p=1

P

()

i(m) J
simply by

P( 1 —1 m )
i(l) im =1 i(m))
It is clear that these operators project out the simultaneous
shift components of the generator @/, ., = y¥(m)' from the
1
= P( .o Yoo, e

left:
m I
'/j(i(m)mi(l )) i) i(m)

Similarly, we define the projectors
A el
im) i(m-=1) i)
whose (7, /) entry is given by

m—1 m=2

,,Z‘l .,;1 ,le(t(m)) (z(nr; —1 )) (z(l ))/

fori=1,..,mandj = 1,...,I. Clearly, these operators project
out the simultaneous shift components of the generator
Y(m) =a!, ., from the right:
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l/j(t(’:tn) il )) Ym)P (z(m) l(ll))' 29

In a similar way we define the operators

~ ( l -1 m )
P i) im —1)  i(m)
and ‘ (30)
p(m mt Y
im) im-1) i{)
defined in the same way but with the order reversed.

By taking the Hermitian conjugate of Eqgs. (26)—(29) we
see that the generator a” *' (I <m +1) may also be resolved
into its simultaneous shift components according to

artl =3 W(z(m)

i)
where each component

!
™.
#iomya)
may be constructed by aplying the projectors (30):

#(iom
(1 m—1
=P (i(l ) i(m —1)  i(m)

-1 I
=yt P( m )
=V P omy im —1) i)
We conclude this section by obtaining a generalization
of Egs. (23) for the multiple shift vectors

m m—1 !
‘[’(f(m) im —1)"i(l )) ‘

-1 1 )
im—1) " i)/

-1 1
im —1) il ))
" Jotom

We have
W(z(m) 1(11)) 'p(i(’rnn)mi(i))[
= 5 Py o) p oo ? ()
-5 ity iom 1) Com) i)
x p(l_(m - 11 )...i(i ))]’ a1

However, from Egs. (23), we know that

W(z(m)) (t(m))/ Micsm (z(m))/

and it follows that Eq. (31) may be written
(] m-—1 \zf m\=f m-—1 I\
Moy )
mENill) im —1) i(m)P im—1) i)/,
(32)

By repeated application of Eq. (20) this in turn may be
written

m
H @ip.p —@

p=1+1

X 11 M, Cr- (33)

(p—1),p—1 _1)-l(ai(p).p —Qip—1),p—1 )—1
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Similarly we have

zp(z(nr:z) 1(1)) l'of(z(m) z(j))
= H @ip.p —@

p=1+1
-1 il " 7
><(wf(zﬂ),;: T ®ip 1y, p-1 ) H Mi(r),rci(r),r- (34)
r=1

These are the required generalizations of Egs. (25).
They in fact determine the squares of the matrix elements of
d, ., anda" "', respectively.

4. MATRIX ELEMENTS OF THE GROUP GENERATORS

Throughout this section we assume that we are working
in a finite dimensional irreducible representation of U(n) and
we shall adopt the usual Gel’fand basis notation. Our aim is
to evaluate the matrix elements of the generators a’, ,; and
ay*' (I<m). The matrix of @7 | is of course diagonal with
entries

1!

Kp—b,p—1

m+1

2 j’xm—H - EA’

i=1 i=1
Suppressing the labels of U(n +2), we may write an
arbitrary Gel’fand pattern in the form
A’i,m +1
A

i“m

/{i,l 1

»

(=D "2 Gy i

—_/?’r,m +r— )Hlfl (ir,m _/ll,m——l +l_r+1) 172

where (v) denotes a Gel’fand pattern for the subgroup

U(/ —2). Let us fix this Gel'fand pattern and write it in the

form |4, ) for ease of notation. We begin by obtaining the

matrix elements of the generatorsa’, ., anda *'.
Resolving @) ,, into its U(m) shift components, we

have

a1 Au) = é:l 'ﬁ(':l)ml'l/zk)

= z N:n[/{j'm.*,] ;/lj,m;lj,mfl ]

r=1

XA+ 4,0,
where (1, + 4, ,,) is shorthand notation for the state ob-
tained from |4 ;, ) by increasing the label 4, ,, of the group
U(m) by one unit and leaving the remaining labels un-
changed. The matrix elements N7, in view of the Hermiti-
city property

o(7),=1CT]
and Eq. (25), are given by

N:'n(ﬂj.m 415 /i’j.m 5 /{j,m )= </{j,k IMr,m Cr,m Mj,k ) 2
(335)
(Strictly speaking, this matrix element is to be multiplied by
aphase factor. However, it is customary to choose the phases
of the matrix elements of @7, , | to be real and positive. The
question of phases shall be discussed more fully in the next
section.) Substituting for M, ,, and C, , using Eqgs. (22) and
(24) gives the result

N7 = (36)
m_, A, —A.+1—-0A,,.. =24, +1—r+1)
#r
Similarly, the matrix elements of a7 +' are
N:"(/ij,m“;/{jm; Jom — 1):</lj,k| r,ml/lj,k>l/2
_ (=D"I ' Ay — A +r—p+1D) O3V A — Aoy +1— r))‘/2 . a7
e, A, A, +—0A,, -4, +I—r—1
=r

The method for calculating the matrix elements of
a', ., anday ' is similar and, in view of Egs. (33) and (34),
no more difficult. Resolving @/, ., (I<m) into its simulta-
neous shift components, we have

:?%"(( i) P

- ,(%N <z(’:z) z(i))

XA ju + Digmym + 7+ Biya)s
where |4, + 4, + =+ + 4,4),) denotes the state ob-
tained from |4 ;, ) by increasing the representation label
A».,» of the subgroup U (r), r = I,...,m, by one unit and leav-
ing the other labels unchanged. In this case the matrix
elements

a£n+l |’{j,k>

20 J. Math. Phys. Vol. 22, No. 1, January 1981

N (i(’rrrlz)mi(i ))

are given by

l m l ! 172
{4 Mf(t(m) il )) ‘/’(i(m)'"i(l )) A
which, by virtue of Egs. (33) and (35), equals

* H N ﬁ [(Z'i(r),r —ﬂ’i(rfl),r~l +i(r—=1) — ’4("))7|

r=1 =1+1
X(/{i(r),r —Air—yr—1 + ir—1) —i(r) +1)! ]1/2’
(38)
where N ,, are the matrix elements of the generator a,
which are given by Eq. (36). The undetermined phase ( + )
will be obtained in the next section.
Clearly,
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N (i(rrnn)mi(i ))

corresponds to the matrix element
<Aj,m +1 ﬂ'j,m +1 >
4 “)

where (1) = (A ) except for A ), =44, +1, r=1...m.
Similarly, the matrix elements

N (i(n;)mi(ll))

of the generator @' ' (/ <m +1) are given by

m 1 i + m l 172
+ </1f"‘ "”(f(m)'"i(l )) v (i(m)'"f(l )), /lf”‘> ’
which, in view of Eq. (34), equals

* ﬁ A—,:(r) H [(/{i(r),r ~/I’i(r—l),r—l +ir—1D—in
r=1

r=1+1
+1)_l (/i’i(r),r - li(rfl),r~l +ir—1) — i(r))-l ]1/2’

where N/, are the matrix elements of the generator a
which are given by Eq. (37).

!
Q11

r+1
r

5. CHOICE OF PHASES

In obtaining the matrix elements of the U(n) generators
there is a degree of freedom in that the phases of the gener-
ators a;; ., may be chosen arbitrarily. Following Baird and
Biedenharn,® we have chosen these phases to be positive
[which agrees with the Condon-Shortley convention for
SU(2)]. By Hermiticity it follows that the phases of the gen-
erators a7 ' are also positive. The phases of the remaining
generators are then dictated by the Lie algebra commutation
relations. It follows from these considerations that the gen-
eral matrix element

N (i('jln)mi(ll ))

has phase®
S (i(m —1) — i(m))S (i(m —2)
— i(m —1))-S (i) — il +1)),
where S (x) is the sign of x and §(0) = 1.
It is interesting to note that the choice of phases may be

obtained algebraically using the U(n) characteristic identi-
ties as demonstrated in Baird and Biedenharn.*

6. ANALYSIS OF RESULTS

We have shown that the only nonvanishing matrix ele-
ments of the generatora’, ., areofthe form [suppressing the
labels of the subgroup U(m +1)]

A’ A

(Gorletr | G @
where A "is of theform A’ =4 + 4,,,, where 4., is the
U(m) weight with 1 in position i(m) and zero elsewhere.
Also, since @/, , , is a vector with respect to the subgroups
u(),...,U(m — 1), we see that the only allowed patterns (u')
are of the form (u") = () except uj,,, = py,,, +1 for
r=1,...,m — 1 and some i(r) in the range 1,...,>. The matrix

1

am +1
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element in this case is

N (i(r;)'"i(i ))

and is given by Eq. (38). On the other hand, using the
Wigner—Eckart theorem, this matrix element may also be

written
A 10|14+ 4,
(A +4, m)||4 ) < H , s

where the first term is the U(m) reduced matrix element
( M. ) 1 /2'

(m),m

In the notation of Baird and Biedenharn let us denote
the U(/ ) Wigner coefficients (Cy;, ;)" by (/> ), the reduced
matrix element (M,,,,)"* by (;,}'), and the corresponding
“reduced Wigner coefficients” by (,,};, _, ). Then the ma-
trix element

N (i(’:z)mi(i))

may be written in terms of reduced matrix elements, Wigner
coeflicients, and reduced Wigner coefficients according to®

N (i(’rnn)mi(ll )) - (:mj;) ,jlﬂ (i(r —IY)): -1 )(;(l—) 1l>

It is interesting to note that by taking the trace of Eq.
(20) we obtain the result

t,(ﬁ (m m m))
r k r
= Ck,m +1 Mr,m Cr,m (ak.m +1

X (ak,m +1 = ar,m )-1‘

In terms of reduced Wigner coeflicients this relation may be
written in the form

ol )= )

which shows that the reduced Wigner coefficients are deter-
mined solely by the subgroup projectors.
Finally, from Eq. (32) we may write the matrix element
(39) in the form
/{ >1/2
(wl

<(2)‘M"""”'"F(i(ll)"'i(’:z))l3 (i(’rnn)mi(i )):

Comparing this with the Wigner—Eckart factorization (40),
we see that the general Wigner coefficient is given by

A =1 m\={ m I\ A
<(#) i (f(l) ’f(m)>P(f(m)"’i(l)), (u)>
(4 10 ‘ A+ Ai(,,,)> 2
(W)’ 1 (&)

This is clearly a generalization of Eq. (4) in Sec. 2.

(40)

- ar,m —1)_]

@én

7. CONCLUSION

Equation (41) shows that the general fundamental
Wigner coefficients may be obtained solely from a knowl-
edge of the subgroup projection operators. This form for the
Wigner coefficients is useful and clearly may be generalized
to arbitrary (multiplicity free) Wigner coefficients corre-
spondingtothereductionof ¥ (1 ) ® ¥ (1), where V' (4 )isone
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of the tensor representations. One simply applies the U(n)
projectors corresponding to the U(n) tensor identity with
reference representation V (4 ) (see Ref. 1 for further details)
and the canonical subgroup tensor projectors with reference
representation given by the decomposition of ¥ (4 ) into irre-
ducible representations of its subgroups. By this means we
may give a general expression for the U(n) Wigner operators
of Biedenharn ez a/. as a polynomial in the group generators.
This procedure is probably best described in the context of
the pattern calculus and will be discussed more fully in a
later publication.

Finally, we note that we have given an expression for
the general matrix element (and the corresponding Wigner
coefficients) as a polynomial in the group generators. This
enables us to discuss ““generalized matrix elements” without
explicit reference to a basis state. It is therefore suggestive
that this approach may be useful for obtaining generalized
matrix elements for groups whose basis states are not known.
In particular, it is hoped that useful information concerning
the symplectic groups may be obtained by this method.
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The main purpose of this paper is to describe a technique of reduction, whereby from the class of
evolution equations for matrices of order /N solvable via the spectral transform associated to the
(matrix) linear Schrédinger eigenvalue problem, one derives subclasses of nonlinear evolution
equations involving less than & ? fields. To illustrate the method, from the equations for matrices
of order 2 two subclasses of equations for 2 fields (rather than 4) are obtained. The first class
coincides, or rather includes, that solvable via the spectral transform associated to the generalized
Zakharov-Shabat spectral problem; further reduction to nonlinear evolution equations for a
single field reproduces a number of well-known equations, but also yields a novel one (highly
nonlinear). The second class also yields highly nonlinear equations; some examples are given,
including another novel evolution equation for a single field.

PACS numbers: 02.30.Jr

1. INTRODUCTION

Recently we have introduced and discussed a class of
matrix nonlinear evolution equations that can be solved via
the spectral transform associated with the matrix Schro-
dinger spectral (or “scattering”) problem." These equations
involve generally N ? fields (here and below N is the order of
the matrices under consideration); but this number can be
reduced by identifying equations (or rather classes of equa-
tions) that are satisfied by matrices having some special
structure. For instance the requirement that a matrix of or-
der N be Hermitian halves the number of independent fields
(from N ? complex fields to NV ? real fields); the requirement
that it be symmetrical reduces the number of independent
fields to LN (N + 1); and so on. Such reductions are, however,
rather trivial, and the corresponding restrictions on the class
of evolution equations, that are required to guarantee com-
patibility with the time evolution, are easily established.! But
other reductions are also possible, that decrease the number
of independent fields by inducing nontrivial relations be-
tween different matrix elements that are compatible with the
time evolution (for appropriately restricted classes of equa-
tions). The main purpose of the present paper is to introduce
a technique to identify such reductions. The method is then
illustrated by applying it to the case of matrices of order 2,
thereby obtaining, from the general class of equations in-
volving 4 independent fields, sublcasses of equations involv-
ing only two fields, or just a single one. One such class coin-
cides with (or rather includes, since there is one added
element of generality) that solvable via the spectral trans-
form associated to the generalized Zakharov-Shabat spectral
problem?; a result that has been obtained independently by
Jaulent and Leon.?

For matrices of order 4, the simpler equation of the

“Permanent address: Istituto di Fisica, Universita di Roma, 00185 Roma,
Italy.
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class solvable via the Schrodinger spectral transform has
been analyzed by Bruschi, Levi, and Ragnisco.* This equa-
tion involves of course 16 fields; reduced versions involving
respectively 10, 8, 6, 5, or 4 fields have also been obtained, by
identifying the cases in which some of the 16 fields, if vanish-
ing at the initial time, continue to vanish for all time.* Thus
these reductions are rather simple; although the equations
obtained in this manner are certainly far from trivial. All
these reductions can be treated by the technique described in
this paper, but this technique is actually richer. We plan to
present the results obtained by its application to matrices of
order 3 and 4 in separate papers.

The plan of this paper, and an outline of its content, can
be evinced from the titles of the following sections and sub-
sections. Here we merely report two novel, highly nonlinear
evolution equations involving a single field, whose solvabil-
ity is demonstrated below. The first reads

Uy = Upxx — 6ux {uz - (u + Uy — 2u3)2/
[@? — 4(u® + ui — u)]}; (1.1)
U+ o0,t) =0, u(— ow,t)=0 if a®#1,

u( — oo,t) = arbitrary constant if a° = 1.

u=u(x,t),

The second reads
U, =V — 35 + 0, [4 exp(v) + Bexp(—v)+ C];

v=v(x,t), v+ o0,t)=0, v(— o0,t)=0
or
v — w,t)=In{B/A4). (1.2)

2. PRELIMINARIES AND NOTATION

The class of matrix nonlinear evolution equations solv-
able via the spectral transform associated with the matrix
Schrodinger spectral problem reads’

Q =a,(L)0,.Q]+B.(L)Go, . @1
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Here and below Q =@ (x,?) is a matrix of order N vanishing
(sufficiently fast') asymptotically,

Q(+ «,2)=0. (2.2)

Latin subscripts run from 1 to N? — 1, Greek subscripts
from 0to N * — 1 and repeated subscripts are summed upon.
The N * matrices g, provide a basis for matrices of order N,
with g, = 1;the 2N ? — 1 functions @,, (z) and B, (z) are ratios
of entire functions (in all interesting cases, they are in fact
rational functions; in most interesting cases, they are just
polynomials of low degree); except for these restrictions,
these functions are arbitrary, and it is their choice that char-
acterizes each particular evolution equation of the class (2.1).
The possibility to solve the Cauchy problem for (2.1) via the
spectral transform technique is maintained even if the func-
tionsa,, and B, depend explicitly on the time variable ; but
we assume, for the sake of simplicity, that they are time inde-
pendent. Then the evolution Eq. {2.1) is invariant under time
translations; the (Cauchy) problem we shall always have in
mind is the determination of Q (x,?) for £> 0 given by

Q(x,0) = Q0 (x) (2.3)
(of course with @ (+ «0) = 0). Finally the integro-differen-

tial operators L and G are defined by the following formulas
that detail their action on the generic matrix F (x):

LF(x) =F.(0) =2[Qx0).F @)} + G f dx' Fx),(2.4)
G_F(X) = {Qx(x’t)’F(x)}

+ [Q(x,t), [ ax [Q(x’,t),F(x’)]]. @5
Here of course, as well as above and below, subscripted var-
iables denote partial differentiation, and the square and
curly brackets with a comma inside indicate as usual com-
mutators and anticommutators:

[4,B]=AB — BA, {A,B}=AB+ BA. (2.6)

The solvability via spectral transform of (2.1) hinges
essentially on the fact that the corresponding evolution
equation for the reflection coefficient R (k,t) is linear':

R,kt)=[A(—4k*R (k)]
+ 2ik {B(— 4k )R (k,t)}; (2.7)
here and always below

4@)=a,(2)o,, B@)=PpB)0o,. (2.8)
In fact, to solve completely the Cauchy problem via the spec-
tral transform, the time evolution of the appropriate param-
eters corresponding to the discrete part of the spectrum (if
any) must also be given'; but we assume for simplicity that
these results can all be extracted by analytic continuation in
k of R to the poles on the upper imaginary axis'; so thatin the
following we limit our analysis to the time evolution of R.
This simplifies considerably our presentation; of course the
results are then, strictly speaking, established only for Her-
mitian matrices Q vanishing asymptotically faster than ex-
ponentially; but they clearly have a more general validity, as
can be easily demonstrated by looking directly also at the
time evolution of the part of the spectral transform associat-
ed to discrete eigenvalues.'
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The basic tool of our treatment obtains from the Wrons-
kian-type formulas’

2k [F(— 4k 2R (k)]
- J "Bk fo L) [0 @K} ¥ k), (2.92)

(2ik {H (— 4K )R (k)

=J " dxW(x,k )k, (L)Go, | ¥ (x,k ).

(2.9b)

Here and below, f,,(2) and 4, (z) are arbitrary entire func-
tions (in fact, in all applications below, low-order
polynomials);

F@=f,.0,, H@=h,()0o,; (2.10)

¥ and ¥ are appropriate matrix solutions of the Schrodinger
equation characterizing the spectral problem'; while the re-
maining symbols have already been defined. We have not
indicated explicitly, in these equations, the time dependence
(of R, Q, ¥, and ¥); indeed these equations are merely a
consequence of the spectral problem, having nothing to do
with the time evolution. But they remain of course valid if 0,
and therefore also R, ¥ and ¥, depend on time (such depen-
dence is indeed, from the spectral point of view, purely
parametric).

3. REDUCTION TECHNIQUE

The task here is to identify matrices Q having a special
structure that is maintained as they evolve in time according
to (2.1), or rather according to some appropriate subclass of
(2.1). The essential requirement characterizing such a spe-
cial structure is that it induce, at any given time, relations
between the different matrix elements of Q, so as to reduce
the number of these that can be assigned independently (as
functions of x, for any given ¢ and in particular for ¢ = 0);
these relations need not be algebraic, but can in fact be inte-
gro-differential (see below).

Since the time evolution (2.1) of Q is complicated, while
the corresponding time evolution (2.7) of R is simple [indeed
this simplicity constitutes the foundation of the spectral
transform technique to solve (2.1)], it is clearly easier to find
matrices R that have a special structure compatible with the
time evolution. On the other hand, since there is a one-to-one
correspondence between R and Q (up to the discrete spec-
trum part of the spectral transform, that, as explained above,
is ignored in this analysis), clearly to any reduction in the
number of independent elements of R (each being a function
of k) there corresponds an analogous reduction in the num-
ber of independent elements of @ (each being a function of x).

Thus the main question is to translate a special struc-
ture of R into the corresponding special structure of Q; or
rather, to identify those special structures of R that make
such a translation easy (namely, to identify those restrictions
on R such that the corresponding restrictions on Q are easily
ascertained). A convenient tool to achieve this goal was re-
ported at the end of Sec. 2, for the results (2.9) imply that, if
thematrix Q (x,? ) satisfies the (nonlinear integro-differential)
equation
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fnl)o,,,Q ] + h,(L)Go, =0, 3.1
the corresponding matrix R (k,t ) satisfies the linear equation
[F(—4k*),R)+2ik {H(—4k*),R} =0, 3.2)

where the matrices ¥ and H are of course defined by (2.10).
Note that in these equations the 2V 2 — 1 functionsf,, (z) and
h,, (z) are arbitrary (they must be entire; in all practical appli-
cations they will be low-order polynomials).

The matrix equation (3.2) yields of course, for given F
and H, N “homogeneous linear equations for the N ? elements
of R; thus, for a generic choice of F and H, it is compatible
only with the trivial solution R = 0. But for appropriate
choices of F and H, the restriction (3.2) merely implies a
reduction in the number of independent elements of R; and
the corresponding relation for Q is then explicitly given by
(3.1). Note that this last equation is generally integro-differ-
ential and nonlinear [see (2.4) and (2.5)]; however, if the
functions f,, (2) and 4, (z) are polynomials of very low order
(zero, or perhaps one) (3.1) can be explicitly solved; namely
the relations between the different matrix elements of Q im-
plied by (3.1) can be rewritten as explicit expressions of some
elements in terms of the others (see below).

Of course this process of reduction can be applied more
than once, namely it can be required that R satisfy » equa-
tions of type (3.2) (with F(2) = F'2(2), H (z) = HY(2),

Jj=1,2,...,n), the corresponding Q being then constrained by
the n corresponding equations of type (3.1).

Thus, this technique provides the possibility to trans-
late appropriate types of constraint on R (k) into the corre-
sponding constraints on Q (x), and vice versa. Let us empha-
size that one is displaying here certain properties of the
spectral transform, that have a priori nothing to do with the
time evolution, and which may indeed also have applications
just in the context of the spectral (or “scattering”) problem.
But of course if Q, and therefore R, evolve in time, the ques-
tion of compatibility of any condition imposed on these ma-
trices arises: if at the initial time Q resp. R satisfy a certain
restriction of type (3.1) resp. (3.2), shall they satisfy it for all
subsequent time? We identify below subclasses of the evolu-
tion Eq. (2.1) for which this is the case; clearly each evolution
equation of these subclasses may be considered to describe
the evolution of M fields, with M < N ? (the precise value of M
in each case depending on the specific case under consider-
ation, see, for instance, the examples discussed below).

As we have already mentioned, rather than discussing
the compatibility of a restriction of type (3.1) with the time
evolution (2.1) of Q it is convenient to consider the compati-
bility of the corresponding restriction of type (3.2) with the
time evolution (2.7) of R; the correspondence between R and
Q being then a guarantee that one kind of compatibility im-
plies the other.

Let us thus define

Z(k,t) = [F(—4k?),R (k,t)] +2ik {H(—4k?),R (k,t()3} Y

in order to ascertain when Z (k,t ) = 0 is compatible with

(2.7). Differentiating with respect to ¢ and using (2.7) one
easily obtains
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Z(k,t)
= {A(—4k?),Z (k)] + 2k {B(—4k?*),Z (k,t)}
+ C(k,t) 3.4
with
C (k,t)=[R (k,t),([4 (— 4k *),F( —4k?)] —4k*[B(—4k?),
H(—4k*]))] —2ik {R (k2 ),([B(—4k?),F(—4k?)]

+ [ (—4k)H (—4k ). (3.3)
Thus Z (k,0) = 0 implies Z (k,t) = O for ¢ > 0 provided
C(k,t)=0; 3.6)

this last equation is therefore the compatibility condition.

Note that C, as defined by (3.5), depends on the matrices
Fand H, that characterize the restrictive condition (3.2), and
on the matrices 4 and B, that characterize the evolution
equation (2.7); it depends moreover on R itself, that is of
course a priori unknown except for the requirement that it
satisfy the restriction (3.2). Thus (3.6) is required to hold for
any R compatible with (3.2). Of course (3.6) is required to
hold for all values of k.

There is always at least one evolution equation of the
class (2.1) for which the compatibility condition holds,
namely the “scalar” case corresponding to

a, () =4, =0, (3.72)
or equivalently
A=0, B=p,(—4kH1. (3.7v)

Examples in which the reduction process is compatible with
a larger subclass of (2.1) than this are given below.

If the compatibility condition (3.6) is satisfied, a matrix
O, that has been reduced by the condition (3.1) to have only
M < N?independent elements (each being a function of x, for
given ), may be required to evolve in time according to (2.1).
Then this matrix evolution equation, although correspond-
ing formally to N ? scalar equations, yields in fact only M
coupled evolution equations, the remaining N * — M being
automatically satisfied. Thus one is finally left with a system
of M coupled evolution equations for M fields; these may be
assigned (as functions of x, for — o <x < o) at any given
time (and in particular at the initial time ¢ = 0), their values
at all subsequent times being then determined by the require-
ment that they obey the system of evolution equations.

In conclusion, the process of reduction can be summa-
rized as follows: (i) choose the matrices F (z) and H (z2); (ii)
ascertain the constraint they imply on R through (3.2); (iii)
ascertain the constraint implied on 4 (z) and B (z) by the re-
quirement that (3.6) hold for any R compatible with (3.2), as
determined in step (ii) [of course with the same F (z) and H (z)
in (3.6) as in (3.2)]. All these steps are algebraic, and they
determine the class of reduced evolution equations. The cor-
responding structure for the matrix Q is determined by (3.1);
this last step need not be purely algebraic. This process of
reduction may be performed more than once, with different
(judicious!) choices of Fand H.

4. APPLICATION TO MATRICES OF ORDER 2

In this section the analysis is restricted to matrices of
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order 2, in which case the natural choice for the basic matri-
ces o, identifies them with the standard Pauli matrices:

10 0 1

”"=<o 1)’ ‘7‘:(1 0)’
(7 o) ==(o _1)
2=\ o)f 2T\0 1/

{Um’ T, ] = 26mn7 [am Ty ] = 21’6,,,,,[0'[ .

(4.1)

Here of course §,,, is the (symmetrical) Kronecker symbol
4,.,=1ifm=n,$é,, =0if m#n) and ¢,,,, is the (com-
pletely antisymmetrical) Ricct symbol (€,,; = 1). It will be
convenient torepresentalsothematricesQ (x,t )and R (k,¢ )in
this basis, writing

QEQyop =Q0+Qm0m’ R.:—R#U# =R0+Rmam :
“4.2)

Thus our task here is (i) to analyze the constraint condi-
tion {3.2) [for various possible choices of the matrices F (z)
and H (2)] and to investigate how it reduces the number of
independent components of R; (ii) to identify, using the con-
dition (3.6), the subclass of the nonlinear evolution equations
(2.1) that are compatible with the constraint; (iii) to extract
from the corresponding constraint {3.1) relations determin-
ing some of the elements of Q in terms of the others, or equiv-
alently some of the components Q,, in terms of the remaining
ones; (iv) to write explicitly the novel class of nonlinear evo-
lution equations for the reduced number of fields, introduc-
ing at this stage if need be an appropriate notation (to make
contact with known results) and discussing some specific
examples.

We note first of all that, as can be easily shown, there is
no choice of the matrices F and H in (3.2) that reduces the
number of independent components of R from 4 to 3. There
exist instead several possibilities to reduce the independent
components to 2; and then the reduction process can be ap-
plied once more (sometimes rather trivially, sometimes non-
trivially; see below) to reduce to one field only. The more
interesting instances are discussed in Sec. 4.1-4.4.

4.1 Simple example: The class of nonlinear evolution
equations solvable via the generalized Zakharov-
Shabat spectral problem as a subcase of the class of
nonlinear evolution equations solvable via the matrix
Schrodinger spectral problem

Set
F(z)=0, H(z)=o0,,

in (3.2). There immediately follows
R (k,t) = R (k;t)o, + Ry(k,t )0,

@.1.1)

(4.1.2)

Itis also easy to obtain the corresponding relations for Q (x,¢)
that obtain inserting (4.1.1) in (3.1):

Qxt)= Qo(x’t) + Ql(x’t )0'1 + Qz(x9t o, (Q3(x,t) = 0),
(4.1.3)

Q&%O==[fdeQKfJ4A+[fwdﬂQﬁfﬁﬂ{
: : 4.1.4)

To obtain the last equation, we have used the boundary con-
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(Ro(k’t) = R3(k’t) = 0)

dition Qy( + 0,t) = 0; the condition Qy( — «0,?) = 0 im-
plies a constraint on Q, and Q, (see below).

We consider next the compatibility condition (3.6), and
using (4.1.2) it is easily seen that it implies
(4.1.5a)

(4.1.5b)

A(z) = ayz)os,  (afz) = ayfz) = 0),
B(2) =Bolz), (Bilz) = Bilz) = Bslz) = 0).

[Actually the compatibility condition does not con-
strain 3,, but the validity of (3.2) with (4.1.1) implies that the
B, term does not contribute in the nonlinear evolution equa-
tion (2.1}; thus by setting £, = 0 no generality is lost.]

Thus the subclass of nonlinear evolution equations for
the two fields @, and @, reads

Q,(x1) = 2Bo(L )@, (x,t) + as(L )[03,Q (x,1)],

where of course L is defined by (2.4) and Q is expressed in
terms of Q, and Q, by (4.1.3) and (4.1.4). The corresponding
equation for the reflection coefficient R (k,t ) reads of course
R, (k,t) = 4ikBy| — 4k )R (k,t) + a5 — 4k *)[o3,R (k,t)].
4.1.7)

To show the complete correspondence of these equa-
tions to those solvable via the generalized Zakharov-Shabat
spectral problem (Ref. 2) we introduce the matrix

(4.1.6)

0 q(x,t))
)=
O PN
= 0.9,(x.t) + io,q,(x,t ), (4.1.8)
so that
4=q,+9» =0 —95 1=4q+r), g=lg—71)
(4.1.9)
and we relate it to @ (x, ) via the formula
r
Q=VX+V2=(q 9 ) (4.1.10)
r, qr
so that
[Tavowa =~
[ v oy = —iguna)
Q1=qix» Q=14 - (4.1.11)

This last formula provides some motivation for introducing
the “matrix Miura transformation”* (4.1.10). The corre-
sponding formula for R reads

0 a7 = k,t) )

RW”‘(wﬂwm 0
With these notations (4.1.6) and (4.1.7) become

(4.1.12)

o3v,(x,t) + YLzs(x.t) =0, (4.1.13)
a,' = k,t) + Hk)a = k,t) =0, (4.1.14)
with
_{ i)
u(x,t ):( 4(e) ) (4.1.15)
(k) = — kB —4k?) +2a5( —4k?), (4.1.16)

the matrix integro-differential operator L ¢ being defined by
the formula
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u(l)(x)
Lyl o
- (u( )f) u,"(x) rx.t)
- Z( — u,Dx) ) +i ( q(x,t))
X on dx' [rx' u@(x') — qix’,t u'’(x')], (4.1.17a)

or equivalently

Lzsulx) = (2) " 'o3u,(x)
—u(x,t) J.w dx' (v(x',t),ou(x')). (4.1.17b)

The complete equivalence of these equations to those of Ca-
logero and Degasperis” is apparent.

Actually the class of nonlinear evolution equations ob-
tained here is more general than that of Calogero and Dega-
speris,” because there one had the condition that the two
fields g and » vanish asymptotically (x— + oo ) together with
all their derivatives, while here one must require that Q van-
ish asymptotically (x— + o) with all its derivatives, namely
[see (4.1.10)] all the derivatives of the two fields g and 7 are
required to vanish asymptotically, but the two fields them-
selves need not both vanish as x— — « [that they should
vanish as x— + oo is implied by (4.1.11) and (4.1.9)]

gixt) — 0, rxt) — 0, gxztifxt) — O
X— + o0 S

X— + oo X @
{4.1.18)
To display an explicit example, we set
a,(2) = (2i) (@ + bz), Bo(2) =Lc + d2). 4.1.19)

Then the nonlinear evolution equations read

r,=iar+ib [r, —2gOr] +cr. +d[r., —6@n)r.]

(4.1.202)
g, = —iaq—ib[q. —2(gr)gq] + cq,
+d [ —6(gN 4. ], (4.1.20b)
or equivalently [see (4.1.9)]
g1, = —iag, — ib [grx —2(qF — 3)g:] + ¢y
+ d [qlxxx - 6(9% - q% )qlx ]’ (41213)
g, = —iaq, —ib [ch —2(g7 — q%)Ql] +¢q,x
+ d [quxx - 6(4% - q% )q2x ] (4 1'21b)

A reduction of the class of nonlinear evolution equa-
tions solvable via the matrix Schrodinger spectral problem
to the class solvable via the “generalized Zakharov-Shabat
spectral problem’ can be performed also in the case of matri-
ces of order N, in close analogy to the treatment given here.
We propose, however, to treat this problem in a separate
paper, where we shall also provide a more detailed analysis
of the connection between the two spectral problems [such
an analysis may also serve to better motivate the transforma-
tions (4.1.10) and especially (4.1.12), that have been given
here without much explanation of their origin).
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4.2 Further reduction: Identification of a novel highly
nonlinear class of solvable equations for a single field

In Sec. 4.1 we described the reduction of the class of
nonlinear evolution equations solvable via the 2 X 2 matrix
Schrodinger spectral problem to that solvable by the gener-
alized Zakharov—Shabat problem Ref. 2. As is well-known,
several classical nonlinear evolution equations are contained
in this class, including in particular the nonlinear Schro-
dinger equation, the modified K dV equation and the sine-
Gordon equation. These equations (in particular the last
two, that are generally written for a single real field) can be
obtained by applying once more the reduction technique; but
these developments are too trivial and well-known to deserve
reporting. In this section we consider instead a less trivial
additional reduction of the class of evolution equations
(4.1.6) [with (4.1.3) and (4.1.4)], namely that resulting from
the choice, in (3.1) and (3.2), of

F(2) = 0, + i{co + ¢,2)o2,

where ¢, and c, are constant.
It is then immediately seen that

R(kt) = R (k,t)[o) + ilco — 4k c\)o,] = R,k )F( — 4k2).
(4.2.2)

The derivation of the corresponding formula for Q, re-
sulting from the constraint (3.1) that now reads

[on@] +ilco + ¢,L)[o,@] =0, (4.2.3)
is less elementary; we outline the main steps in the Appen-
dix. The final result is most conveniently written in terms of

the fields ¢, and g, of Sec. 4.1 [see in particular (4.1.8~
4.1.11)], and it reads

9= [co% - Cl(zq? - qlxx)]/
[1—deegt + 4cilgt —ai)]'7> (4.2.4)

Next one considers the compatibility condition (3.6),
and it is easily seen that it implies a; = 0.

In conclusion, a class of nonlinear evolution equations
for the single field

ulx,t)=q,(x),

H(z) =0, (4.2.1)

(4.2.5)

solvable by the spectral transform technique obtains setting
a; = 0in (4.1.6), letting S,(z) be an arbitrary entire function
(or more generally, the ratio of two entire functions), and
expressing the matrix Q in terms of the single field u as im-
plied by (4.1.8)4.1.11), and (4.2.4-4.2.5). Equivalently but
more simply, the same class of nonlinear evolution equations
obtains from (4.1.13), with ¥(z) odd in z and entire (or, more
generally, the ratio of two entire functions), the fields 7 and ¢
being given in terms of u by (4.1.9), (4.2.4), and (4.2.5).

The asymptotic boundary conditions that must supple-
ment this class of equations, so as to assure consistency, via
(4.2.5), (4.1.11), (4.1.10), and (4.1.9), with the assumed as-

ymptotic vanishing of Q and its derivatives, require u to van-
ish with its derivatives as x— + o,

O=u(+°°!t)=ux(+°°:t)=uxx(+ °°vt)='"! (4263)
and moreover that all the derivatives of « vanish as

X— — o0,

0=u,(~ o0,t) =g(— o0,t) = (4.2.6b)

but the value of  itself as x-—» — o is required to vanish only
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if ¢ # 1 (elementary algebra shows that, if ¢ = 1, any as-
ymptotic value of u is consistent with the requirement that
the matrix Q vanish asymptotically):

u(— oo,t) =0 if c3#1,

u( — «o,t) = arbitrary constant, if ¢ =1. (4.2.6c)

Infactitis easily seen that, providedcj = 1 and ¢, #0, u
might even diverge as x— — o [but the derivatives of u
must vanish, see (4.2.6b)].

Of course another requirement on u is that g,, as given
by (4.2.4) and (4.2.5), be finite for — oo <X < 0 ; a condition
sufficient to guarantee this is the requirement that u itself be
regular and that the denominator on the right-hand side of
(4.2.4) not vanish for real x. It is clearly sufficient that all
these conditions hold at the initial time, since they are then
automatically guaranteed to hold throughout the time
evolution.

A simple example of nonlinear evolution equation of
this class obtains inserting (4.2.4)—(4.2.5) in (4.1.21a) (of
course with @ = b = 0, as required by the consistency condi-
tion that forces a,(z) to vanish; see above). It reads

u, =cu, +du,, —6u,[u*—(cou—2cu’+cu,)/

(1 — depe,u® + 42 u® — 4ctul)]}). (4.2.7)
The change of dependent and independent variables

ulx,t) = (co/c)) Pu'(x' 1), x = (co/c))x +ct),

t'=dlcy/c,)t, (4.2.8)
yields for u'(x",¢ ') the neater equation
U, =, —6u (1> —(u—2u +u, )/
[@® — 4(u® —u* +ul)]}, (4.2.9)

that we have written omitting all primes (for notational con-
venience; and we persevere below), and setting ¢, = 1/a. The
boundary conditions for this equation are

O=ul+ o, t)=u,(+ 0,t) =t + o0,t) ="

(4.2.10a)
0=t (— ooyt)=thy(— c0,t) = s (4.2.10b)
ul— o,t} =0 if a*#1,

u( — oo,t) = arbitrary constant if a*=1. (4.2.10¢)

Let us emphasize once more that the technique to solve
this equation is through the equivalence of (4.2.7) to (2.1)
witha,, =0,8,, =0, B(z) = i(c + dz) and Q given in terms
of uby(4.1.8-4.1.11)and (4.2.4-4.2.5). This implies of course
not only the possibility of solving the Cauchy problem' [giv-
enu(x,0)onecanclearly compute Q (x,0); and given Q (x,¢ jone
can recover u#(x,t ) with just one quadrature, as implied by
(4.1.11)}, but also to obtain all the results associated with the
solvability of (2.1) by the spectral transform technique: An
infinite number of conserved quantities, Backlund transfor-
mation, all the soliton phenomenology.' Here we merely re-
port the single soliton solution of (4.2.9), that reads

u(x,t) = 2pal(1 + 4p>)* — a®]~"/*/cosh{2p[x — £ (¢)]},

(4.2.11)
with
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E(t) =&, — 4p°t. (4.2.12)
In writing this equation we assume that p is a positive con-
stant such that the square root on the right-hand side of
(4.2.11) is real, or equivalently, such that the quantity v de-
fined setting

cothy = (1 + 4p%/a, (4.2.13)

is real. Note that the soliton of this equation moves with
constant speed; this is in contrast with the generic behavior
of the solitons associated with matrix nonlinear evolution
equations,’ but it agrees with the generic behavior of the
solitons of the nonlinear evolution equations of the Zak-
harov-Shabat class (4.1.13),% of which after all (4.2.9) is
merely a subcase (although one that would not have been
easy to discover without the technique given above). We also
report the spectral transform' of the matrix Q corresponding
to (4.2.11); it has of course R = 0, and a fwo-fold degenerate
discrete eigenvalue — p?, so that the matrix C associated
with it' has the structure

C=C+6G (4.2.14)
C =2pexp(2p§,)P;, j=12, (4.2.15)
&, =€&—(2p) 'Insinhu, &, =&, —in/(2p), (4.2.16)

=11 +4%,), =12, (4.2.17)

“_cosh[v—(;)u] A = i sinh[v — (—)ul,
AN =0, j=12.

(4.2.18)
Note that the constant g is in fact not present in C,
C = 2p exp(2p€ )(o sinhv + io, coshy), (4.2.19)

and accordingly does not appear in (4.2.11). Let us empha-
size that, for equations obtained by reduction, the fact that
the solitons may correspond to degenerate discrete eigenval-
ues appears not to be exceptional.*

Let us finally discuss some limiting properties of the
solutions u(x,t;a) of Eq. (4.2.9).

Clearly u(x,t; «0) satisfies the mK dV equation
n= +1 (4.2.20)
(with 7 = +1); and indeed in this limit (4.2.11) yields the
single-soliton solution of the mK dV equation (this solution
is imaginary; indeed it is (4.2.20) with 7 = —1 that has real
solitons).

Another limiting case obtains setting

— 6nu’
U =u,. . —0Nu u,,

u(ex,e';2/€) = f dx’ sin[Z f dx” E(x”t)], (4.2.21a)

u(x,t) = 14 arcsin[ 4 u(ex,€‘t;2/e)], (4.2.21b)
2 dx dx

with e 0. It is then easily seen that u(x,? ) satisfies again the
mK dV equation (4.2.20) (with 7 = —1).

A third limiting case obtains setting instead
u(ex,e’t;1)

= —J dx' exp[——2f dx”ﬁ(x",t)], (4.2.22a)
d 3

— ulex,e'51)|, (4.2.22b)
dx
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again with e—0. It is easily seen that also #(x, ) satisfies the
mK dV equation {4.2.20) with (y = +1).

It is remarkable that these three limiting procedures all
yield solutions of the mK dV equation. It should however be
noted that while the first two prescriptions produce solu-
tions of mK dV that vanish asymptotically, the last one ap-
pears to yield solutions that diverge asymptotically; the way
is thereby opened to the study of the Cauchy problem for the
mK dV equation with diverging asymptotic behavior, that
however does not appear to be anywhere as interesting and
important as the analogous problem for the K dV equation.®

4.3. Another class of nonlinear evolution equations
involving two fields

In this section we consider another reduction of the
class of evolution equations (2.1) for matrices of order 2, that
again decreases the number of independent fields from 4 to 2,
but in a different fashion than in Sec. 4.1. It obtains setting in
3.2)

F@= —iyo+r2)o, H@)=vyos. (4.3.1)
There immediately follows
R(kt) = — [(vo — 4k 1))/ (2ivk )R (k,?)
+ R (k,t)o, + Ry(k,t)o,,
(R;(k,t) =0), (4.3.2a)
or equivalently
R (k,t) = Ry(k,t) + R, (k,t)o,
— [2ivk /(v — 4k 2y IRk 2 Yo,
(Ry(k,t) = 0). (4.3.2b)

These two expressions display the fact that R contains now
only 2 independent components; while their equivalence is
quite obvious, the first is to be preferred in the special case
Yo =¥ = 0, the second in the special case ¥ = 0 (see below).

The corresponding expression for @ obtains inserting
(4.3.1)in (3.1). After some labor, that we consider sufficient-
ly straightforward not to warrant any reporting, there ob-
tains the result

Q1) = Qyxt) + Q\(x,1)a, + Qo(x,t)ay  (Qs(x,t) =0),

(4.3.3)

Oolx,t) = (v + 2y, Wz)hz[?l(y + 2y W)W, — i W3,
+ Wiy +7 W,) + YoWoly + v\ Wo)

+ VW + 443U — 4y, yUW,), (4.3.4)
W= W= [ v e,
Q,(xt)= — W}X(x):t), j=12, (4.3.5)
U=U(@xt)= — F dx’ Q,(x',)Wy(x',t), (4.3.6a)
Uxt)= — W,(x,t;Wz(x,t)

+ f " dx Qe WX 0). (4.3.6b)

Note the similarity of this definition of W} to the definition
(4.1.11) of the fields g ;; the differences are caused by the
need, in Sec. 4.1, to reproduce the notation of Calogero and
Degasperis.’
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We consider next the compatibility condition (3.6), and
using (4.3.2) it is easily seen that it implies

a(2) = i[(y, + v:12)/V1B5(2), (4.3.72)
ax(2) = B(2) =0, (4.3.7b)
a5(2) = ilyz/(yo + 112)18:(2), (4.3.70)

with B,(2), 3,(2), and 3,(z) arbitrary entire functions, or rath-
er ratios of entire functions. Note moreover that the con-
straint condition (3.2) with (4.3.1), together with (4.3.7a),
implies that the &, and 5, terms in (2.1) cancel each other, so
that one can set, without loss of generality,

a\(z) = B3(z) =0. (4.3.7d)

In conclusion the class of nonlinear evolution equations
that we have now obtained corresponds to (2.1) with the
functions «,, (z) and 3, (z) restricted by the conditions (4.3.7)
and with the matrix Q given by (4.3.3-4.3.6). This class, for
any choice of the functions a,, and 8, [compatible with
(4.3.7)], yields two coupled evolution equations for the two
fields Q,(x,?) and Q,(x,t), or equivalently for the fields
W (x,t) and W,(x,t) of (4.3.5) (indeed the evolution equa-
tions have generally a neater appearance when written in
terms of the dependent variables W, rather than Q ;; see
below). The boundary conditions to be required are clearly
0= Wj( + o0,t) = ij( + 0,t) = ijx( + 0,t) =",

i=12, (4.3.8a)
and
O0=W, (—0,)=W,  (—w,t)=-, j=12 (43.8b)
As for the values of the fields W, as x— — oo, the relevant
condition must be read from (4.3.4), corresponding to the
requirement

Qo — o0,t) =0. 4.3.8)
The first example we consider corresponds to the choice

Vi=0, Bo@)=4c+dz), Bl2)= —Lby/y. (439
Then one obtains for the two fields
ulxty= W xt), vxt)=Wyxt)+Ly/y (43.10)
the evolution equations
u, = —bv, — 20 +v'—-C?H] +cu,

+d[u, —6u (W +v"—CH], (4.3.11a)
v, =b(u, —2u@®+ v’ - CH] + cv,

+d [v,,, ~60 (7 + 0" - C?)], (4.3.11b)
where we have introduce the constant

C=1v/7. (4.3.12)

Assuming the constants b, ¢, d, and C 2, as well as the fields 22
and v, to be real, one can introduce the complex field ¢ (x,¢)
setting

& (x,t)=u(x,t) + iv(x,t). (4.3.13)
Then the two evolution equations (4.3.11) combine into the
single equation
¢ =ibld. —29(|¢|°— |C D]+ cd,

+d [$ee —67(|8 1> — |C D], 7= +1
(4.3.14)
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(forp = + 1, u, v, and C are real; for n = — 1, they are
imaginary). Moreover the boundary conditions for the field
& (x,1), besides requiring the asymptotic vanishing of all its
derivatives, read

S+ 0,t)=IiC, |d(— ,t)|=|C]| (4.3.15)
Thus the field
Yix,t) = exp( — iat + iu)d (x,t), (4.3.16)

where a and y are real constants, satisfies the “generalized
Hirota equation”’

¥, = —iap +ib [¢. —29(|¢|* ~ |C [W] + cy.

+d [Yoe —67(|9]* = |C |, ], (4.3.17)
with boundary conditions
[+ 0,1)| = [¥(— ,t)| = |C . (4.3.18)

[Note that the last equation need not imply
P(+ o0,t) =Y(— o0,t).]

Of course subcases of this equation are the (generalized)
versions of the nonlinear Schrodinger equation and of the
mK dV equation, that obtain respectively fora = c =d =0,
b =1, reading

il/’l = - wxx +217(|'//|2 - |C |2)¢"

n=+1 |¥+«t)=|C| (4.3.19)
andfora=b=c=0,d=1, (x,t) = *(x,t) = u(x,t),
reading

Uy = Uppx _-67](1‘2 - |C |2)u’

7= +1, u(+oo,t)=|C|% (4.3.20)

The second example we consider corresponds to the
choice

7170, By =i +dz), B\()=0. (4.3.21)
One obtains then the two nonlinear evolution equations
lJ/_f! (x’t) = chx (x9t) + d [;’/jxxx (x’t)

—6Qy(x, )W, (x,t)], j=12, (4.3.22)
with Q, given in terms of W, and W, by (4.3.4)—(4.3.6). These
equations are rather complicated; but they yield a simpler

equation if a further reduction is performed. This is dis-
cussed in Sec. 4.4.

4.4 Further reduction: Novel solvable nonlinear
evolution equation for a single field

The further reduction that we apply here is directly sug-
gested by the structure of (4.3.22), that is clearly compatible
with the position

Wolx,t)=ulx,t), Wix,t)=pu(x,t), 4.4.1)
p being a constant. This implies [see (4.3.5)—{4.3.6)]
Uix,t)= —pul(x,t) (4.4.2)
and [see (4.3.4)]
Qolx,t) = (¥ + 27.u) {1i(y + 2y )iy, — i}
+uly + vy + (1 + 0%y + viuju]}.  (4.4.3)

Thus one obtains now for the single field #{x,? ), or rather
for the field
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t'=dA3,
(4.4.4)

the nonlinear evolution equation {hereafter all equations are
written for the primed variables, but dropping all primes for
notational convenience)

u'(x',t') =2y /Yulx,t), x =Ax -+ ut,

u= Ly — 32/ + )
ox
+ 1A(t +uP =B/l +u)+ Cul, (4.4.5)
where
A= — Y1+ W/ (i), (4.4.6a)
B=A4+ 3y/(rid?, (4.4.6b)
C= —A— B+ (ch —u)/di?. (4.4.60)

Of course some of these constants can be eliminated or set to
unity by appropriate choices of the constants A and u.

The boundary condition to be associated with (4.4.5)
requires all derivatives of # to vanish asymptotically, and
moreover ¥ itself to vanish as x— + o (we are assuming
A>0):

0=u(+ 00,t)=ux(+ oo,t):uxx(+ 00,[):...’
(4.4.7a)

O=1,(— oo,t) =t (— oco,t) = (4.4.7b)

As for the value of u as x— — 0, the following four possi-
bilities are all compatible with the condition Qo — c0,2) = 0:

(- t)=—1%1, u(—o,t)=—1+(B/4)"
(4.4.7¢)

of course the last one can be contemplated, for real u, only if
the ratio B /A is positive (this we assume below).

Another interesting version of the nonlinear evolution
equation (4.4.5) obtains setting

u(x,t) = exp[lv(x,t)] — 1,
since v obeys then the nonlinear equation

v, = Vpxx — %v)}c +UX[A eXp(U)-{—Bexp(*U)-*'C],

(4.4.8)

(4.4.9)
while the boundary conditions read
0=v(+ c0,t) =0, (+ 0,0) =0, (+ w0,t) =",
(4.4.10a)
O0=v.(— 0,t)=0,(~ 0,t) =", (4.4.10b)
UV —o0,t)=0 or v— co,t)=In(B/4). (4.4.10¢)

Let us note that the expression of the {matrix) reflection
coefficient corresponding to the matrix Q of (4.3.3)(4.3.5)
and (4.4.1)—(4.4.3) reads

R (k,t) = Ro(k,t)[1 —2iky(yy — 4k 2y ) ' (po, + )],
4.4.11)
and evolves according to the simple equation
Ro,(k,t) = 2ik (c — 4k > d)Ry(k,t) (4.4.12)
[here we are again using the unprimed ¢ variable; see (4.4.4)].

Finally let us note the limiting cases that can be ob-
tained from (4.4.9) [or equivalently (4.4.5)], setting

v(x,t) = egix,t), (4.4.13)
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A=Ay + 14" + 4,67, (4.4.14a)
B= — A" + A, (4.4.14b)
C= —24,¢7, (4.4.14¢c)

and considering the limit e—0. Then (4.4.9) becomes

by = Yrex + U (Ao + A8 + A7) (4.4.15)
with the boundary conditions

0=¢'(i— oo,t)::iﬁx(i w,t)=¢/xx(i oo,t)_—_..._
(4.4.16)

This equation is, however, already contained in the class
considered in Sec. 4.3 [see (4.3.17)].

5. CONCLUDING REMARKS

The main purpose of this paper has been to present the
method of reduction. Since the worth of any pie is apparent
only in the eating, we have also applied it, but in the simplest
context, namely to matrices of order 2. This has not only
displayed the connection between the class of nonlinear evo-
lution equations solvable by the spectral transform associat-
ed to the Zakharov-Shabat spectral problem? and those
solvable by the matrix Schrédinger problem,’ but has in
fact provided some generalization of the Zakharov-Shabat
class (by allowing a less restrictive asymptotic behavior of
the solutions). Moreover novel classes of nonlinear evolution
equations involving two fields, or a single field only, have
been obtained; we have displayed some of these, that provide
therefore novel additions to the stock of nonlinear partial
differential equations of evolution type solvable by the spec-
tral transform technique. All these equations possess of
course all the properties characteristic of the “soliton” equa-
tions; and it is straightforward to display such properties
using the formalism given in this paper and elsewhere.’

A number of additional applications are naturally sug-
gested by the results of this paper; in particular we shall
report separately the findings yielded by the application of
this approach to matrices of order higher than two.
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APPENDIX

In this Appendix we indicate how the nonlinear inte-
gro-differential equation (4.2.3) [with (4.1.8)—{4.1.11) and of
course (2.4)—2.5)] can be solved to yield (4.2.4).

Trivial algebra yields first of all

qzx + fCoqlx + icl[ qlxxx _6qlxq% +4qltq§

+44,.919, +44,, f dx’ 42x(x')Q1(x’)] =0. (Al

x
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It is then convenient to set

w(x) = J dx'qy, ()0, (A22)

7:(x) = — w,(x)/q,,(x), (A2b)
and to note that the left-hand side of (A1) is a perfect differ-
ential, so that integration from x to « yields

Up! + ic(ﬂ] + icl(qlxxx _zq? +4q2w) =0. (A3)

Multiply this equation by ¢, , and use (A2b) to elimi-
nate ¢,. One obtains again in this manner a perfect differen-
tial, whose integration from x to «o yields the equation

2iw + cogt +¢i(gh — ¢F +4w) =0. (A4

This is immediately solved for w (to identify the correct solu-
tion out of the two possible ones note that w must vanish
when ¢, and g, vanish, since this is what happens in the
limit x— + o), and subsequent insertion in (A2b) yields
(4.2.4).
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A method is suggested to solve the Helmholtz equation in an arbitrary domain with general form
boundary conditions. The method permits reducing this equation to that of Poisson and an
infinite set of simultaneous linear algebraic equations. Convergence of the method is proved for
any wave number. Thus, it becomes possible to solve the Helmholtz equation by using any known
method developed to solve the Poisson equation. As an illustration, an effective algorithm is
constructed to solve the two dimensional diffraction problem on the arbitrary periodic boundary
for any wavelength by using the conformal mapping techniques. If the boundary contains
irregular points, then the field in all approximations has in all these points singularities of the

needed type.

PACS numbers: 02.30.Jr, 02.30.Mv, 02.60 Lj, 03.40.Kf

INTRODUCTION

The Helmholtz equation describes a rather great num-
ber of physical processes, so the task of developing methods
for its solution is important both for theory and applications.
As explicit solutions of the Helmholtz equation are known
only for a few domains of the simplest form, it is necessary to
develop numerical algorithms for less specific cases. A lot of
publications have been devoted to this problem. Application
of general methods of numerical mathematics, such as vari-
ational and network methods, the moment methods, etc.,
enabled solution of many concrete problems. As the wave
operator — (4 + k?) is not positive definite, however, the
amount of needed operations grows abruptly when the do-
main size increases or the domain form becomes more com-
plicated; besides, no effective error estimates are known.
Note also that these methods require a certain smoothness of
the domain boundary. When applied to domains with irreg-
ular boundaries, the methods should be specially modified
for each type of irregularity to capitalize on some particular
features. This is especially bothersome when the boundary
contains irregularities of different types, e.g., angle points
with different angles. This all resulted in the construction for
a number of special domains and boundary conditions of
“hybrid” semianalytical methods which are highly effective
in numerical calculations and take into account singularities
in irregular boundary points in the natural way in the frame-
work of the method. !~ The methods are effective only for
domains with cylindrical or infinitely thin plane boundaries
and they make substantial use of domain geometry. The situ-
ation in the field was pessimistically summed up by R. Mit-
tra who wrote (Ref. 1, Chap. I): “As is the common feature
of analytically oriented computer techniques, these methods
cannot be applied to arbitrary configurations.” Actually, the
situation is not so hopeless because application of analytical
transformations permits the construction of effective meth-
ods to solve many types of equations including the two di-
mensional Helmholtz one in the arbitrary configuration
domain.>*

In this work we present a general scheme for construct-
ing an effective method to solve the Helmholtz equation in
domains of arbitrary configuration and with general form
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boundary conditions. The method consists of reducing the
Helmholtz equation Au + k*u = f(x) (k is arbitrary) to the
Poisson equation and a convergent infinite set of simulta-
neous linear algebraic equations. So it is possible to solve the
Helmbholtz equation in all cases when there exists an effective
algorithm to solve the Poisson equation. As a specification of
the scheme we consider the two dimensional problem of
plane wave diffraction on an arbitrary periodic surface. Here
the Poisson equation is solved explicitly by means of confor-
mal mapping. This enables one to solve the diffraction prob-
lem with no assumptions as to boundary smoothness; be-
sides, if the boundary has irregular points, then the field in
all approximations has in these points singularities of the
needed type. The solution obtained in this way is semianaly-
tical for it is given by a series with numerically calculated
coefficients that converges everywhere in the domain.

1. FORMULATION OF THE PROBLEM AND SOLUTION
SCHEME

Consider the equation
Au + Ku = f(x),

in the domain 2 with the boundary I". A general form
boundary condition

Bu]|lr =@ x), (1.2)
providing that the unique solution exists, is given on I; if the
domain {2 is infinite, then the operator B also contains radi-
ation (or equivalent) conditions on infinity. The formal
scheme of the suggested method is as follows:

Rewrite Eq. (1.1) in the form

Au = f(x) — k*u. (1.3)

Partition the domain {2 into the sum of nonintersecting
subdomains £2,, £2 =u;. ,£2,. Let us take in each subdo-
main (2, a function system {u;,(x)}7_, complete in a func-
tion class containing the solution. Generally speaking, the
choice of {2, is arbitrary and made for convenient construc-
tion of the systems {u,, (x)} or for usage of a priori informa-
tion on the solution. For example, if it is possible, one can
choose £2; so that variables will separate; then corresponding
partial solutions (modes) are taken as u,, (x). Let /, be a

(1.1)

X = (Xy50eX,1 )s
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system of linear functionals defined on functions continuous
in £2,. By definition this system is biorthogonal to {u,, }:
l,;(u,,) = &7, where 8} is the Kronecker symbol. Substituting
the expansion of u(x) with respect to the functions u,, (x) in
£, to the right-hand side of Eq. (1.3):

u= 3 4,0, xn,, (1.4)
n=1
we obtain
du=fx)-K 3 4,u,K, x0. (1.5)

n=1
Denote i,,(x) = w,;, (x)¥;, where 9, is a characteristic

function of the subdomain £2,, and let R [g(x)] be a solution
(or a generalized solution) of the Poisson equation with the
right-hand side g(x) and boundary conditions (1.2); if Eq.
(1.2) includes radiation conditions, then while defining R [g]
they must be replaced by a condition of boundedness on in-
finity. Using this notation, Eq. (1.5) can be rewritten in the
form

u=R(f1-KS 3 4.R[q,]. (1.6)

i=ln=

Applying functionals /; to both sides of Eq. (1.6) and
taking into account Eq. (1.4), we obtain an infinite set of
linear algebraic equations of the second kind to compute the
coefficients
i

A, =L,RIM-KY 3 4, LR[E@,]), i=1..2.
i=1ln=1 (17)

Equating to zero the determinant of Eq. (1.7), we obtain
the characteristic equation that determines the Laplace op-
erator spectrum for boundary conditions (1.2).

With some modifications this scheme can be applied to
the Neumann problem which corresponds to the Poisson
equation that has no solution for an arbitrary right-hand
side.

The suggested scheme can be easily recognized as the
somewhat generalized abstract method by Galerkin.”* The
generalization deals with the domain partitioning and intro-
ducing several systems of coordinate functions and corre-
sponding functional systems. When & = 1 we obtain the
abstract Galerkin method with functionals biorthogonal to
the coordinate functions. Such choice of functionals results
in equations of the second kind for the sought coefficients.

Rigid formalization of this scheme and general theo-

4
e
- L2/ s X
FIG. 1.
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rems on convergence will be published elsewhere. In the pre-
sent work we consider, as an illustration, the two dimension-
al problem of plane wave diffraction on a general config-
uration periodic surface.

By our method we shall be able to obtain a semianalyti-
cal solution of the problem that automatically accounts for
the field singularities in irregular boundary points (if there
are any). Such a solution is of interest by itself.

2. PLANE WAVE DIFFRACTION ON A PERIODIC
BOUNDARY

Consider a two dimensional problem of plane wave dif-
fraction on a periodic surface.

The domain (2 is a half-space with a periodic boundary
I" with the period a (see Fig. 1).

That part of §2 that is bounded by one period of I" from
below and by the segment y = 0, 0<x <5, of the OX axis from
above will be called the main resonator D. All domains ob-
tained by translating D along the OX axis by the integer
number of periods will be also called resonators. Denote the
boundary of D by dD. The part of D which is coincident
with 7" will be called the actual boundary of D and denoted
by 4D while the segment y = 0, 0<x<8 will be called the
resonator gap.

The plane wave u® = 4 ¢ = * meets I" with the inci-
dence angle @. Here f = & sing,a = — ik cosg, k = 27/2

= w/c is the wave number, o is the frequency, and c is the

light velocity. The field u(x,y) to be found is the sum of u‘®’
and the scattered field u_; u(x,y) will be determined from the
Helmholtz equation (1.1) with f(x) = 0. As boundary condi-
tions we take those of Neumann for

o
onlr

(it is evident what changes should be made in all following
considerations to treat the Dirichlet problem), those of Flo-
quet for quasiperiodicity

u(x + d,p) = e #u(x,p), .2)

and the condition of radiation or limiting absorption. If I"
contains sharp bends (angle points), then the Meixner condi-
tions” must be added as well. By insignificant changes in the
arguments of the papers,'®!' one can demonstrate that the
conditions suffice to determine the field sought for complete-
ly and uniquely.

According to conditions (2.2) and the radiation condi-
tion, the field at y > O can be given in the form

=0 Q.1

u=u®+ $ P, 2.3)

n= — o

where
B, =B+ Qm/d), a,=(B2—k?"
ay=a, Ima, <0; a,>0 if Ima, =0.

Terms in Eq. (2.3)with |3, | <k describe reflected prop-
agating waves while terms with |3, | > k describe surface
waves. For the sake of simplicity we introduce the following
notation:
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e Eeiﬁ,.x —a,y ,

n

r iB"x’ + all-y'
e, =e ,

—pifx + ay 1 — X +ay
e, =e , €, =e .

The field in the resonator D will be given in the form
similar to Eq. (1.4):

u= i B, u, (x)), 2.4

where {u,, (x,y)} is a complete in .#,(D ) orthonormal sys-
tem of functions. The condition (2.2) permits one now to
extend the field to all resonators.

Let us make certain changes in the general scheme to
simplify further treatment, namely, instead of Eq. (1.5) we
take the equation

N
w4+ ¥ Ce,, y>0,

n= —N

f: Em u, (X,y), (x’y)eD

m=0

The equation above is obtained from Eq. (1.5) by formal
substitution of series in the right-hand side by their finite
segments. Accordingly, instead of u,C,, and B,, we intro-
duce new variables U’,C,, and B,,, respectively. The
right-hand side of Eq. (2.5) is, generally speaking, discontin-
uous, with a jump in the resonator gap. It is not difficult to
see that the equation with the fixed coefficients C,, and B,
and boundary conditions discussed above has a unique solu-
tion continuous with the first derivatives in {2 (the solution is
regarded as a generalized one'® or classical everywhere but
in the points 0 < x < §, y = 0 where matching is made.) With
U4 found, we shall determine the coefficients C, and B,
from Eq. (1.7) changed accordingly. U {}”’ will be construct-
ed with the help of the quasistatic Green function.

AU = — K2 (2.5)

3. CONSTRUCTION OF QUASISTATIC GREEN
FUNCTION

The quasistatic Green function is defined as a Green
function for the Laplace operator that satisfies the equation.

AG=6(x —x',y—), O<x<d, 0<x'<d, 3.1

and the boundary conditions

G| g
onlr
Gx+dyxy)=e"G(xpxy)G (x,00,x'y)=0.

(3.2)

[In general, the quasistatic Green function may be de-
fined as a Green function for the Laplace operator with
boundary conditions depending on the wave number. When
@ = 0, i.e., when the incidence angle is right, the conditions
(3.2) become independent of k and the problem (3.1) and
(3.2) becomes a standard periodical static Neumann prob-
lem for which the Green function is known to be nonexis-
tent. That can be seen from the formula (3.11). So the case of
@ = 0 is a special one for the given method and must be
regarded as a limit of the problem for slanting angles. More
details will be given in part II of the present work.]

Let us construct the function G. To this end let us map

conformally the domain £2 of the plane z = x + iy onto the
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half-plane % > 0 of the plane { = £ + in so that the point
z = 0 would be mapped into § =0, z =d into { = d, and
infinity into infinity.

This mapping will be further called canonical. Exis-
tence of a canonical mapping follows from the Riemann
theorem.'! It can easily be demonstrated that the mapping
function £ (z) has the form

f@=z+9¢@®, (3.3)
where @(z) is a periodical function with the period d,
@(z + d ) = ¢ (z), and the inverse mapping z({ ) has a similar
form

28)=C+WE) WL+d)=¢(S). (3-4)

Estimates in previous work'? imply that

@(z)—const., y—co; (4§ )—>const.,, 7. 3.5)

Direct calculation shows that Eq. (3.1) does not change
in &, coordinates

4,G=8&—-E'm—7) 0<é<d, 0<&'<d

3.1

(&' =&’ + i is the point corresponding to z' = x' + iy'.)

General properties of conformal mappings, the condi-
tion¢ (o) = o0, and Eq. (3.3) imply that the conditions (3.2)
are also invariant in the plane §:

aG ) p Vo
-— =0, G¢+dnt'm)=e™GEnE' M)
877 n=0
G (§) e ¢ 15 ,:77’) =0. (32’)
Hence, it is clear that G can be sought as a series
G= Y &™G,m&'m) (3.6)
where
1
G, = — f e PG dE. 3.7
d Jo

After some transformations we obtain G, from Egs. (3.7),
(3.1), and (3.2):

dG s 1 I
L — BiG, = —e " —1), 3.8
e B p n—n) (3.8)
dG
u =0, G,|,-.. =0. 3.9
dn ;-0
Hence,
Bl = — Bl + 7'l
G, = —¢ 48 te (3.10)
218, 1d
Substituting Eq. (3.10) into Eq. (3.7) we obtain G:
G= — i PPE— 5N
i I;J‘,.ﬁn el —1Bulln+ 7'l
x & +e . G.11)
2|,1d

From Eq. (3.11) characteristics of the function G needed for
further considerations can be derived:

4, G=86x—x"y—y), (3.12)
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9G -0 (3.13)

an’ (x' el
(d/9n’ denotes differentiating with respect to the outward
normal of I by variables x',p'),

Gxyx' +dy)=e PG (xyxy). (3.14)

For the fixed x,y and y'— oo there exists the constant C such
that

|G (x,p,x',y")| < Ce =" (3.15)
and for all z, z’ from {2 a representation
G= — - lnjz—2|+g@2), lgl<o (3.16)
27
holds.

4. CONSTRUCTION OF U{}Y

Let us prove that the sought solution U}’ of Eq. (2.4)
can be represented in the form

d ©
Uy = —kz{ dx’' (Ae+ + Z C,e )Gdy
0 0

n= —N

Mo
+ f f B, u, (x'y)G dx'dy’]
m=0

=41+ 3 TheD+ S Bug, ).
o " @.1)

Indeed, existence of improper integrals in Eqgs. (4.1) is guar-
anteed by the estimates (3.15), and the fact that U} in the
form (4.1) satisfies Eq. (2.4) follows from the construction
method. Conditions (3.2) also imply that U {Y’ meets the
quasiperiodicity condition and the Neumann condition on
I'. Equation (3.16) and well-known theorems on logarithmic
potentials'? imply that Uy’ and dU {}’/dy are continuous
on the resonator gap. One has only to check how U¢) be-
haves on infinity. To this end transform the first integral in
Eq. (4.1) by means of the Green formula, taking into account
the equality — k%" %" = 4 (¢™ * ), We obtain

d w N
—sz dx’f G(Ae’+ + Y C,,e:,)dy’
0 0 n= — N
d o N —
=f dx’f GAX,.(Ae’ + Y C,,e:,)dy'
n= - N
’V
fdxf (Ae Ce,,)A .G dy’
n= - N
G —{Ae’ C,e,
+J;[ 3’1'( e +n:2—N ,,e,,)

N
— (de’, + Z C,,e:,)g—g] di=I, +I,.
n

n= —N
Here L is a contour made of rays x’ = 0,y'>0,x" = d,y' >0,
and the segment y’ = 0,0<x’'<d.
Taking into account Eq. (3.12), we have
N —_—
Ii=de.+ Y Cie,.
n= - N

Because of Eq. (3.14) the integrals along the rays x’ = O and
x" =d in I, cancel each other, so we are left with
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N
=de.+ Y Cie,

n= —N

d N —
_f [(aer'+ — z C,,a,,e;,)G
0 n= — N
aG
Ae', + Ce ) ] dx’ .
( e+ ,,_E_N ay' y=0

Making use of Egs. (3.12), (3.4), and (3.5), it is not difficult to
obtain for G and dG /dy’ estimates similar to Eq. (3.15):

I=1,+1,

4.2)

|G| <Ce™?, 4.3)

aG ‘ _
vv Ce By ,
ay' <

which are valid when y— o for x',y’ in any fixed domain.
Hence, it immediately follows that 7, and functions g,, (x,y)
decrease as e ~# when y— o . This remark together with Eq.
(4.2) shows that U} satisfies necessary conditions on infin-
ity, which completes the proof of the formula (4.1).

By using the quasiperiodicity condition this representa-
tion for U} is easily extended to the whole domain.

5. SIMULTANEOUS EQUATIONS TO DETERMINE
COEFFICIENTS C, and 8,

To determine the unknown coefficients 5,,, and ﬁm in
Eq. (4.1) we demand that for y>0 the Fourier coefficients of
U Yy with respect to the function system {e”**} when |n|<N
should coincide with C,e ~ “~ while the coefficients with re-
spect to the system {u,, } in the domain D when O<m<M
should coincide with B,,. This condition will be called the
condition of coefficient coincidence. Applying it to Eq. (4.1),
we obtain simultaneous linear algebraic equations to deter-
mine 5',, and B,,

%[Af:fe ""dx+" i Cff

Xe  Brdx + Z E’"f gme"'"‘dx]
0

m=0
=Ce ™+ 84 e, y>0(p|<N); (.1
Afff‘ujdxdy+ N fqujdxdy
D
+ ZOB ~[ngujdxdy
=B, 0< j<M), (5.1

where &5 is the Kronecker symbol.

The condition of coefficient coincidence is evidently an
approximation of the exact equality (1.7) written for the con-
crete case considered. After formal passage to the limit with
N,M— o, Egs. (5.1) turn to exact equations of Eq. (1.7) type.
Foundation for the passage to the limit will be provided in
the next section.

The right-hand side of Eq. (5.1’) and their matrix ele-
ments depend on . Let us show that the solution of Eqs.
(5.1) is nevertheles independent of y. To this end transform
the set of equations (5.1") so that it would be possible to
exclude dependence on y.

Applying the Green formula to f, = fZdx’
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X S5 GA (e;,)dy', taking into account Egs. (3.12)—(3.14), and
the problem boundary conditions, we obtain

fLixp)=e, +J;d (a G+ -aﬁ)

A '
=e, +f,(xp), (5.2)

wherej/’\ is evidently a harmonic function (when y > 0) that
satisfies the Floquet condition (2.2) and the infinity condi-
tion f (x, 0 ) = 0. Because of the Floquet condition f,, canbe
expanded into the Fourier series

L= 3 ..

$= — oo
Substituting this series into the harmonic equation, we ob-
tain the following for @, ( »):

¢ :!’S —ﬁ§¢n.&' = O'
AN
From this equality and the condition £, (x, « ) = 0 we find
— By
€ s

ian dx’

Pu(¥) =
AN N
where f, are constant coefficients. Thus, £, can be repre-
sented as

2 :Bxflﬂ \y (5_3)

We get in a similar way
fap)=e+ § FrfTPE ys0, 0 (54)
8 (xp) = ™ PV p>0. (5.5)

§= — o

Substituting Eqs. (5.2)—(5.5) into Eq. (5.1"), we get Eq. (5.1")
in the form

Af+ + Z Cn./;lp + 2 Bmgmp —0

n= —N

lp|<N .
(5.6)

Now we see that the sought values C, and B,, are actually
independent of y.

6 . ANALYSIS OF EQS. (5.1)

To prove convergence we transform the set of equations
(5.1) to the form without diagonal elements in the right-hand
part and set y to zero in Eq. (5.1"). We obtain

Y =~ Juw 8mip)
C, = C,—F—+ 2 T
! ";E*N L =fotw m=0 1 —fow
(n#p)
r— 85
44l =% (6.1)
1 _f;J(m
_ M N
Bj — Z p gmj 2 Cn f;l_[
m=0 l—gjj n= —N l—gﬁ
(m#£])
‘+
+ 41—, 6.1
l—g,
where
1 B
Sy = | [.(x0)e dx,
dJo
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1( —
gm(p) = 7-[0 gm(x’o)e B dx’

d
fo = -iTJ- fr(x,0)e ™ dx,
0

8 =ffgmujdxdy,
D

ﬂjzfjﬁujdxdy,
D

£t =ij‘ujdxdy.
D

[We shall demonstrate further that £, —0 when p— co and
g;—0 when j— 0. For a finite number of indices, however,
Jopy and g; may equal 1. In this case we leave Eqs. (5.1) in
the original form.] Let us show that Egs. (6.1) permit passage
to the limit when N,M— oo, i.¢., show that limits
C,=1limy, .. C,and B, =Ilim NM—eoo B, existand the se-
quences are summable quadratically, i.e, 22.  _|C,|*

< and 2% _,|B,,|* < « and satisfy the infinite set of
equations

& Joir & &mip)
C,= c,— 4 ¥ B,
g Z 1 _fp<p> mgo L —foim
(n#p)
1 —f;’<p>
& gmj 3 f:1j
Bj = z B, g, + z C, g
m=0 ¥ n= - o
(m3£)) N
i 6.2")
1 —g;

which is obtained from Eq. (6.1) by the formal passage to the
limit. To prove that it will suffice to show that Egs. (6.2)
satisfy the Koch conditions'* which reduce in this case to
quadratic summability of coefficients and free terms.

Prove at first convergence of the series

Si= 3 Mol =3 3 el
np= - = =

Ss= § IfHP Se= Z lgm,l
p=—m=

Ss= 8 S AR Se=3 15 P
n= — e« j=0 j=0

It follows from the Parseval identity for Fourier series that

o 1 d
S 1wl = 7| 1o ax
pP= — o d (¢]
o0 1 d
> |8l =7f lg.,. (x,0)|” dx, (6.3)
P= — 0
and that
1
Sy = —f | f*(x,0)| dx.
d Jo
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Thus, we proved convergence of $;. When a,, > 0, the value
I, = (1/d) §3] f,(x,0)|* dx can be estimated as follows:

1 ( 5
Fﬁmmww

4
=k dx
d

fdxf G (x,0,x' . y)e. dyl

<—j dx{f a’”dyf |G (x,0,x",y )|dx]

kL2
kL 6.3)

where L = max2|G (x,0,x",y")| dx'. Using estimates (3.15)
and (3.16), it is easy to see that L < .

It evidently implies that the series S, converges and
therefore the limit £, = 0 exists.

To prove convergence of S, we use the second of identi-
ties (6.3). We obtain

<
a

1 & (7
S, =— L (x,0)]? dx
2, de::O X |g( )|
4
= L z dx
m=0J0

2

ffu x'y)G (x,0.x",y") dx’ dy'

2
jfu G (x,0x'y)dx' dy'| dx.

(6.4)

The Parseval identity for the function system {u,, } and the
fact that Ge.¥” (D) imply existence of the limit

2 2
lim Ev: fJ.umde’ ay'| =Y ffumde’dy’
Vo= m=0 i
D D

=ff |G |*dx’ dy,
D

and it easily follows from here that

m*O

(6.5)

]im S2,\' = S2

Vo> o0

= —f dxff |G (x,0x'y)|? dX'dy’ < .
(6.6)

Convergence of the series .S,,S;,S; is proved similarly, the
sums for S, and S, being found explicitly:

S, = ffdx dyff |G |*dx' dy’,
D D

Se = ff | f*ep)|?dx dy.

Convergence of the series S, implies that g,—0 when j— co.
So denominators of matrix elements of Egs. (6.2), i.e.,
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1 —f,» and 1 — g, tend to unity when p—cc, j—c and
this together with the convergence of the series S,,...,S, guar-
antees that the Koch conditions are satisfied in Egs. (6.2).
Show at last that U}’ converges to the sought solution u
when M,N—oo.

Note that as sequences of coefficients {C, },.=_ _ and
{B,, )z _, are quadratically summable, the series

Ae, + i Coe., y20;

i B, u,(xy), (xyeD,

m=0

converge in .7, metric to a certain function o(x,y)e.# , and
are defined as their sums in appropriate domains.

It was shown in Ref. 15.that solutions of finite sets of
equations obtained by reducing infinite sets that satisfy the
Koch conditions converge to the solution of the original set
in /, metric. It means in our case that

MN— o

lim z C, -c.+ 3 |§m_B,,,|2]=0, 6.7)

where C,, = O,Inl >N and B,, =0, m > M. Having written
U in the form

ZU:dx'_Loc (Ae'+ -f-":im C,,e;)Gdy’
J”z B,u, (xy )]dedy
+fw£"§m@—qmaw

U = —k

J- 2 (B,, — B, (x'p)Gdx'dy'

m=0

and having used the estimate (6.7) and the Buniakovsky—
Schwartz inequality, we show the existence of the limit

lim U’ =u(x,p)

MN—

d o
= —k ZJ dx’f o(x'y)G dy'
0 (4]

f J' o(x'.y)G dx'dy’ . (6.8)

Similarly, having passed to the limit in Egs. (5.1) and taking
into account Eqgs. (6.8) and (4.1), we find

d
€ - a,pr + 52A eany = %J U(x,y)e — B dx, y>0’
0

B, = f J v(x,p)u;(x,y) dx.

From the Euler-Fourier formulas and completeness of func-
tion systems {e””*} and {u,} we conclude
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Ae, + i C,e,, y>0,
p= —

v(x,y) = 6.9

0

z Bjuj(x’y)! (x’y)ED’
Jj=0
Le.,

v(x,p)=o(x.p). (6.10)

Substituting Eq. (6.10) into Eq. (6.8), we find that v(x,y)
satisfies the integral equation

v(x,y) = — sz f v(x' V)G dx' dy', 6.1)
2,

where £, is the sum of the domains (0 < x < d,0 <y < ) and
D. 1t is seen from Eq. (3.2) that v satisfies the quasiperiodi-
city condition and therefore is extended to all the domain £2.
Using relations (3.12)—(3.16) and properties of potential-
type integrals, it is easy to show that v(x,y)eC '(£2 ), the right
side of Eq. (6.11), has generalized second derivatives and
A §§, vG dx' dy' = v(x,y) almost everywhere in {2; hence,
Av= —KASf, vGdx'dy' = —K’v,and vis a generalized
solution of the Helmholtz equation.'® The condition
dv/n| = 0follows from Egs. (3.2) and (6.11); the validity
of radiation conditions follows from Eq. (6.9). At last, from
the theorem on uniqueness it follows that v(x,p) = u(x,y),
Q.E.D.

Passing to the limit M,N— o in Eq. (4.1), we find that
the exact solution # can be written as

u= AN+ S C L6

+ 3 B.g. ).

m=20
It follows from the above estimates that the approximations
U <Y uniformly converge to u in £2. Note also that for all M
and N, U4} has the needed singularities (satisfies the
Meixner conditions exactly) in all boundary angle points.
This follows from the method of constructing Uy’ and can
be immediately checked. It also follows from the given proof
that determinants of equation sets {6.1) converge, when
M,N— o, to the determinant of the set (6.2). The latter de-
terminant roots form the spectrum of the set eigenwaves and
can be found as the limits for the roots of determinants in
Egs. (6.1) when M\N— 0.

COMMENTS

(1) There are many publications where the Helmholtz
equation is solved by means of conformal mapping (e.g., see
Refs. 16-19). However, when conformal mapping is applied
in a straightforward manner, it causes appearance of a vari-
able refraction coefficient. It hinders further solution and
permits one to receive only qualitative, asymptotic, or mere-
ly numerical results. Our method circumvents the difficulty
as conformal mapping is used not directly for the Helmholtz
equation but to the Poisson equation. That enabled receiving
a semianalytical solution in the general case.

(2) In realizations of the described method for domains
of complex configuration certain difficulties arise in con-
structing the conformal mapping ¢ and in calculating inte-
grals for matrix elements of Egs. (5.1). The former difficulty

(6.12)
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is inherent in the problem considered because the Helmholtz
equation transfers when k—0 to the Laplace equation whose
solution is equivalent to the construction of a conformal
mapping. The latter difficulty is characteristic of all projec-
tion-type methods.® We regard the problem of constructing
£ as solved since numerical methods have been widely devel-
oped and many cases are known when the mapping can be
found in the analytical form. As to matrix coefficients in Eq.
(5.1), they can be simplified considerably, the order of inte-
grals in them can be lowered, and some of the integrals can
be even implicitly calculated. These equations as well as the
development of the technique to solve Egs. (5.1) will be treat-
ed in part II of the present work.

(3) In several cases our method permits one to obtain
solutions in the analytical form.*2%2!

(4) It is evident that our method can be extended to
more general operators whose dominant part can be effec-
tively inverted. In the cases when the corresponding Green
function is not quadratically summable (e.g., the Laplacian
with n > 3) the general scheme of the method must be some-
what changed, but we will not dwell on this question here.
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A Bessel-Watson type of transform pair is developed. Since this result differs from a previously
published result, a comparison between these two results is also presented.

PACS numbers: 02.30.Qy

1. INTRODUCTION

A new generalized transform pair is developed in Ref. 1.
This transform pair is expected to be a generalization of the
Fourier, Watson, and Kontorowich-Lebedev transforms
which are frequently used in mathematical physics for solv-
ing boundary value problems. It appears, however, that the
assumed properties, stated explicitly or implicitly and used
in the proof for the development of the transform pair, are
inconsistent. When these properties of the transform func-
tion, E (v,¢ ) are used in the integral representation of the
solution, E,( £,4 ), it can be shown that E,( £,¢ ) vanishes
identically.

In this paper we first develop a Bessel-Watson type
transform in Sec. 2 and then show in Sec. 3 why the previous
result of Ref. 1 is inconsistent.

2. DEVELOPMENT OF THE TRANSFORM PAIR

A foundation on which many integral transform pairs
in mathematical physics are based can be developed®® from
an appropriate spectral representation of Dirac’s delta func-
tion in terms of a Green’s function associated with a differen-
tial operator subject to appropriate boundary conditions. It
may be emphasized that the Green’s function is different for
different transform pairs. The same technique can also be
employed for the development of the transform pair present-
ly being discussed in this paper. Let us consider the following
differential equation defining a Green’s function G ( £,&,; v).

1 d d v
P (EFoteam) + (1- )eie g

- _ =4 (2.1)

3

where G (& £q; v) = 0 and G (&, &,; v) satisfies the radi-
ation condition at £ = «. The quantity +? is a complex pa-
rameter. Then the spectral representation of §{ £ — &;) can
be shown?? to have the form

__ 1 . _
ES(E — £0)= — zﬁiﬁcw,gg,v}da, A=12,

- _if G(E, € v)vdv, (2.2)
Tl Jc

where the contour C encloses all the singularities of
G (&, £p; v) in the complex v plane in a clockwise sense (see
Fig. 1). For the present problem defined by (2.1), the Green’s
function G { &, £,; v) is given by
G (& 6on V)= — (im/4)Y, (£ )H V&), Eo<é

= —(im/AW, EHDE) Eo<é. (2.3)
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The function ¥, (£ ) is defined by

¥, )=HYE)+RHDE),
and

R, = — HU(ER)/H D (ER), (2.4b)
& =Kr,&x = KR, Ristheradius of a cylinder, and K = pro-
pagation constant. The quantities, H (&) and H (£ ) are
Hankel functions of the first and second kind, respectively.

Thus the desired spectral representation of the Dirac delta
function is given by the following expression,

_ — i (2),
£0lE — 60 = - f Vol VHDE v dv, (2.5)

(2.4a)

where £ _ is the smaller of £ and &, Similarly, £ is the
larger of £ and &,. Since the only singularities of G ( £, &; v)
are the poles of #,( £ _ ) located at the zeros of H '?( &), the

Imy

FIG. 1.
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contour of integration C in (2.5) encloses these zeros in the
fourth quadrant of the v plane (see Fig. 1). In view of (2.5) the
desired integral transform pair may be expressed in the fol-
lowing manner:

E,(£4)= J Ewd ) £) dv, (2.62)
and
Evd) _ E(60)HY £)%, (2.6b)
v £x £

where ¢ is a parameter. In a boundary value problem r and ¢
(with £ = Kr) represent a polar coordinate system. We re-
quire that E (v,¢ ) decreases faster than vH ?(£ _ )in the lower
half of the complex v plane as |v| approaches infinity, al-
though E (v,¢ ) may have pole singularities in the neighbor-
hood of, or along, the real axis. The necessity for such behav-
ior of E {v,¢ ) at infinity will become clear later on. In order to
prove the validity of (2.6a) and (2.6b} let us consider the fol-
lowing analysis,

EZ(§,¢)=f Efv) t,(£)dv
f:/a(f)“—dl f EZ(§O,¢)HG)(§O)"§—§). @.7)

In view of (2.5) and its development, the spectral theory
guarantees™ that the interchange of the order of the integra-
tion in {2.7) is permissible. Then the right-hand side of (2.7)
becomes E,( &,4 ) in view of (2.5). Thus the validity of the
transform pair (2.6a) and (2.6b) is established.

Let us now investigate whether the contour C can be
shifted to anywhere in the lower half of the complex v plane.
In order to accomplish this it is first necessary to study the
behavior of the respective integrands when |v| approaches
infinity in the lower half-plane. For this purpose let us first
consider the integral in (2.5). From the asymptotic behav-
ior*® of the Bessel and Hankel functions for large order v and
with a fixed finite argument, it can be shown that

2[(6. Y ([ Sk )]
v (€ . - (§) (§<§> (2.8)

in the region to the right side of the curve C, as |v| ap-
proaches infinity in the fourth quadrant of the complex v
plane. The zeros of H ”/( £ ) are situated along the curves C,
and C/ in the fourth and second quadrants, respectively.
Initially the tangent to the curve C, makes*™® an angle of
— m/3 with the real axis for a real value of £; and then
becomes parallel to the imaginary axis as |v| tends to infin-
ity. In addition, one finds also that

v (EVHD(S.)
= [(é’ > ) _ (5 §. )] 2.9)
7 [\§. §k

as |v| approaches infinity in the third quadrant, as well as to
the left of C; in the fourth quadrant of the complex v plane. It
may be noted that C can be obtained from C, by changing
the sign of v. Let us also define a contour L which is parallel
to the real axis and lies between the real axis and the lowest
order zero of H'?( £,) in the lower half of the v plane. If

H N, )~
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& #& ., the expression (2.8) vanishes as |v|—> w0 and,
therefore, the portion of C running along the right side of C,
can be deformed onto the portion of L situated to the right
side of the lowest order zero of H '*{ £;). It may be noted that
Er<€_ <&, .Inviewoftherelation (2.9) the integrand (2.5)
vanishes in the third quadrant; however, it diverges in the
region of the fourth quadrant lying to the left of C, as |v|
approaches infinity. Therefore, the portion of the contour C
lying to the left of C, cannot be deformed onto the remaining
portion of L.

Before considering the investigation of the deformabi-
lity of the contour C associated with the transform in (2.6a),
let us first note that on C, where H 2/ £ ) vanishes, the quan-
tity |(2v/e€ ) * | approaches unity as |v|— o and the phase
of vis — 7/2 + €,, 0 < €,€1. Then it can be shown that
€o==imr/(In(2|v|/e& )€1, where £ is a real positive finite
number. The phase of v in the region between C, and the
negative imaginary axis is — 7/2 + € (€<€,), when |v| ap-
proaches infinity. Therefore, in view of (2.9) one finds that

v (EVHD(E, )| ~eM ™, 7>1, (2:10)

in the region to the left of C, in the fourth quadrant as |v/|
tends to infinity.

Let us now investigate whether C in (2.6a) can be de-
formed onto L if so, under what conditions. Since it is as-
sumed that E (v,¢ ) decreases faster than vi ?( £_ ) in the
lower half of the v plane as |v| approaches infinity, a com-
parison of the integrands of (2.5) and (2.6a) shows that the
portion of the contour Cin (2.6a) lying to the right side of C,
can be deformed onto a portion of L in this case also, noting
that this was possible for {2.5). The assumption that £ (v,¢)
decreases faster than vH ( £ _ ) at infinity in the v plane is
justified in many practical problems of interest. For in-
stance, in a problem of scattering or diffraction of waves
(acoustic or electromagnetic) by acylinder, E (v,¢ ) containsa
factor like exp( — iv¢ ), where ¢ is the angular coordinate. If
¢ #0, then this expotential factor contributes to the rapid
decay of the integrand in (2.6a) for Imv < O as |v| approaches
infinity. For example, in many problems of interest one finds

Ewg)~vHIE Je ™, (2.11a)
ie.,

Ewvg) 9.(£)~G(& Evie ™, (2.11b)
as |v|—>o0.

By virtue of the property (2.9), it can easily be seen that
the integrand E (v,¢ ) ¢, ( £) of (2.6a) vanishes in the third
quadrant of the v plane as |v| approaches infinity. However,
the relation (2.10) shows that in the fourth quadrant, be-
tween the negative imaginary axis and C;, the integrand of
(2.6a) behaves in the following manner as |v|—co:

|E(v,¢) ¥, (£)~

where

v!(s Int — ¢)

(2.12)

e<€edn/ In (2|v|/edy) <1.

Since 7> 1, the right-hand side of (2.12) vanishes if the fol-
lowing condition on ¢ and 7 is satisfied

elnt <o,
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elnr<¢,
or 7.<e¢/£,
or 77 < 2v|/eky .

Note that the inequality (2.13) defines a relationship
among the parameters, ¢, & _ , £ , and & for which (2.12)
vanishes. Therefore, if condition (2.13) is satisfied, the con-
tour Cin (2.6a) can be deformed onto L. It may be noted that
since ¢ = 0 in (2.5), condition (2.13) cannot be fulfilled and
consequently the contour Cin (2.5) cannot be deformed onto
the portion of L lying to the left of the lowest order zero of
H(&x).

It may be observed that expression (2.5) also gives the
spectral representation of Dirac’s delta function in terms of
radial eigenfunctions. This can easily be seen by applying
Cauchy’s residue theorem in (2.5). In view of this observa-
tion, expression (2.6a) represents the radial eigenfunction ex-
pansion of the function of E,( £,4 ).

The transform pair (2.6a) and (2.6b) is suitable for a
function E, ( £,¢ ) which satisfies a Dirichlet boundary con-
dition at £, . Similar transform pairs can also easily be ob-
tained for functions which satisfy either a Nenmann or
mixed boundary condition at £. For all such problems, the
starting point should be to construct an appropriate Green’s
function and then follow the steps similar to (2.2), (2.5)-2.7).
It may now be emphasized that in all such integral trans-
forms, the initial contour of integration in the v plane must
enclose all the singularities (poles and branch cuts, if any) of
the Green’s function concerned, and then the asymptotic
behavior of the integrand must be investigated before the
initial contour can be deformed onto a new one.

3. COMPARISON OF THE PRESENT RESULT WITH A
PREVIOUS ONE

The generalized transform pair developed in Ref. 1 is
given by

E(59)= LE(V,¢ ¥,(&)av, (3-1)

(2.13)

and

Efvg)= %f: EAMHS)(f)v%, (3.2)

where 7, ¢, and z represent a cylindrical coordinate system.
The function ¢, ( &) and R, are given by (2.4a) and (2.4b),
respectively. The apparent discrepancy between these pairs
of transforms (2.6a}, (2.6b) and (3.1}, (3.2) is in the choice of
the contours C and L, respectively. In addition, the method
of approach in deriving (3.1) and (3.2) is entirely different
from that used for (2.6a) and (2.6b). In the development of the
pair (3.1) and (3.2), it is assumed implicitly that E (v,¢ ) is
analytic in a horizontal strip bounded by two lines parallel to
the real axis of the complex v plane (one below and the other
above). The integration path L lies inside this strip. The
boundary line lying in the lower half-plane is above the low-

41 J. Math. Phys., Vol. 22, No. 1, January 1981

est order zero of H ?( £ ) and the other boundary line is just
a mirror image of this line with respect to the real axis. Since
¥, ( &) is also analytic inside this strip, the path L in (3.1) can
be shifted onto the entire real axis of the v plane. It is evident
from the properties (3.3a) and (3.3b) that the integrand in
{3.1) is an odd function v and, therefore, the integral (3.1)
vanishes identically.

H"2 (&) =exp(+ ivr)-H (&), (3.32)
and hence
E(—v)= — Ev,d)exp(—imv), (3.3b)

which follows from (3.3a) and (3.2).

It was shown earlier that the contour C can be deformed
onto L provided the condition (2.13)is satisfied. Consequent-
ly, the following Dirac delta function representation as given
in Ref. 1 is not valid.

£8(£— &) = }wa)ﬂ‘f’( E)vdv. (3.4

It may now be observed that the representation s(2.6a)
and (3.1) are equivalent provided the condition (2.13) is satis-
fied and the assumption of the analyticity of E (v,é ) is not
imposed. However, when the contour L is used, the trans-
form pair (3.1) and (3.2) cannot be used for any arbitrary
function, E, ( £,4 ), which has a strong singularity like a delta
function, & ( £ — &,). On the other hand, the transform pair
(2.6a)and (2.6b) canrepresent a field as singularas 8 ( £ — &).

The derivation of (3.1) and (3.2) presented in Ref. 1 is
based on a method similar to that given by Kontorowich and

Lebedev.” One of the main differences between these two
transform pairs"’ is that the contour of integration L is hori-
~ontal (below the real axis) in Ref. 1, whereas it is vertical for
the Kontorowich~Lebedev transform.” It is very important
to note that the transform function in Kontorowich-Lebe-
dev transform is analytic inside a vertical strip including the
imaginary axis of the v plane. In the same way, in Ref. 1 the
transform function E (v, ) was implicitly treated as analytic
inside a horizontal strip containing the real axis in the v
plane [see the development of Egs. (2.6b)—(2.7b) of Ref. 1].
However, in many physical problems E (v,¢ ) may contain
many pole singularities [see Eqgs. (3.5)—{3.7) of Ref. 1] inside
such a horizontal strip. This is the reason why the proof and
the transform pair as given in Ref. 1 are invalid. Consequent-
ly, the derivation of the Kontorowich—Lebedev transform
presented in Ref. 1, as a special case, is also invalid.
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We classify all R-separable coordinate systems for the equations 4,% =3}, _ g~
d,(g'’g"d,%)=0and 3},_ g0, W3 , W = 0 with special emphasis on nonorthogonal

coordinates, and give a group theoretic interpretation of the results. For flat space we show that
the two equations separate in exactly the same coordinate systems and present a detailed list of the
possibilities. We demonstrate that every R-separable system for the Laplace equation 4,% = Oon

a conformally flat space corresponds to a separable system for the Helmholtz equations
A,P = AP on one of the manifolds E,, S, X S,, S, XS,, and S,.

PACS numbers: 02.40.Ky, 04.20.Cv

1. INTRODUCTION

In this article we study the problem of R separation of
variables for the Laplace and Hamilton—Jacobi equations

4
(a)d,¥ = Z g %9,(g"g"3,¥) =0,

Lji=1
{1.1)
4
(b) 2 g9, Wd,W=0.
=1

ric, g = det(g;;) #0, Eij: 88 = 52,&'1‘ =g;,andd;¥
=d_,¥ . Some aspects of R separation for these equations
have been treated in an earlier paper.' In that paper we stud-
ied the orthogonal coordinate systems for which Egs. (1.1)
are R separable. For conformally flat spaces it was shown
that each R-separable orthogonal coordinate system for Eq.
(1.1a) corresponds to coordinates which permit pure separa-
tion for the Helmholtz equation 4,2 == A& on one of the
manifolds E, (flat space), S, X S3, S, X.S,, or §,, where §; is
thej dimensional sphere. In this paper we show that the same
basic results hold for nonorthogonal coordinate systems.
However, our methods here differ considerably from those
of Ref. 1. It is easy to show that if a coordinate system |{x’}
(orthogonal or not) is R separable for Eq. (1.1a) on a given
Riemannian space, then it is also additively separable for Eq.
(1.1b). For orthogonal coordinates on conformally flat
spaces the condition that an additively separable system for
Eq. (1.1b) also R separates Eq. (1.1a) could be completely
solved by employing the Robertson condition in the geomet-
rical form due to Eisenhart.>> However, the Robertson con-
dition no longer holds in general for nonorthogonal coordi-
nates® and in this paper we find it necessary to employ
detailed facts concerning the structure of the conformal
symmetry group of Eq. (1.1b) in order to obtain our results.
Indeed the use of Lie theory appears to be absolutely essen-
tial in this regard.

The paper is arranged as follows: In Sec. 2 we classify
the possible types of separable systems for the Hamilton—
Jacobi equation (1.1b) and in Sec. 3 we give the correspond-
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ing (crude) classification of R-separable systems for the La-
place equation (1.1a). Then in Sec. 4 we study in detail the
nonorthogonal separable systems for conformally flat spaces
and obtain an explicit list. Finally, in Sec. 5 we use our de-
tailed results to show that, even allowing nonorthogonal co-
ordinates, the flat space equations (1.1a) and (1.1b) separate
in exactly the same systems and that on a conformally fiat
space every R-separable system for Eq. (1.1a) corresponds to
a separable system for the Helmholtz equation on one of the
manifolds E,, S, XS;, §,XS,, and S,. Nonorthogonal co-
ordinates arise only from E, and S,. The extreme importance
of these constant curvature manifolds for variable separation
on conformally flat spaces is now clear.

The authors have already given an exhaustive study of
nonorthogonal separation for the Helmholtz equations on
E,, S,, and S,.**7 The remaining case S, will be treated in a
forthcoming paper. This paper will then conclude our analy-
sis of variable separation for the Hamilton-Jacobi, Helm-
holtz, and Laplace equations on three and four dimensional
Riemannian spaces.**

2. SEPARABLE SYSTEMS FOR THE HAMILTON-
JACOBI EQUATION

We now discuss the classification of separable systems
for Eq. (1.1b). Recall that separation of variables for this
equation means W = 2?_ | W®(x") . The existence of sep-
arable systems for Eq. (1.1b) is closely related to the symme-
tries of this equation. To define symmetry operators we em-
ploy a phase space formalism. The coordinates of this space
are (x/, p,), wherep, = d,_, W, j = 1,2,3,4. The Poisson
bracket of two functions F, G on phase space is the function

(F,G}(x, p) = 24: (6,63, F—3,F3,G). (2.1)

j=1

A first order symmetry of Eq. (1.1b) is a function

# =3 Ewp, 22)

i=1

such that {.#,2} _ 8" p, p;} = p(x) (Z7,_.8" p: p;) for

57
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some analytic function p. The {£ {(x)} are just the conformal
Killing vector fields for the metric {g,, }. The first order sym-
metries form a Lie algebra 7 under the Poisson bracket
with dim#°<15 and the maximum dimension is achieved if
and only ifg;; is conformally flat, in which case #°=0(6,C).
A (strictly) second order symmetry is a function

4 s s Py
L= 3 nxpip; 1'=7", (2.3)

=1
such that

4 4
[f’f Zlg"’pip,-] = s, p) ( Zlg”'p,-p,-) ,
W= W=
where p(x, p) is a linear function of the p,. The vector space
of second order symmetries can be decomposed into orbits
under the adjoint action of 7#°. We will show explicitly that
every class of separable solutions W of Eq. (1.1b) is charac-
terized by a triplet of first or second order symmetries .¥ |,
£, £ 3 which are in involution, i.e., {.¥;, £ ;} = 0 for
i+ j. The exact characterization is .2, = 4, (/ = 1,2,3),
where the A, are the separation constants.

Our classification of separable systems is based on the
number of ignorable and essential variables. A variable x in
a separable system is termed ignorable if .Z = p, is a sym-
metry for Eq. (1.1b), where p, = d_; W. Otherwise the vari-
able x' is essential. If the separated ordinary differential
equation in the essential variable x'is first degree, then x'is of
type 1; if second degree, then x' is of type 2.

We consider a separable system for Eq. (1.1b) with two es-
sential variables of type 2 (x',x?), one essential variable of
type 1 (x*), and one ignorable variable (x*). (This is called a
type G equation.) With W=3},_ W), W, =9, W
we can write the separated ordinary differential equations in
the form

W% + lei +A.a, + A40,=9,=0,
Wi+ LW+ Aa,+Ab,=D,=0,
W, W, + 4,85 + A,by=®, =0,
W, =A,,
where f;, a;, b, are function of x’and A, 4,, A, are the
separation constants. Making the trivial change of variable
x’ = X /(%) if necessary, we can assume without loss of gen-

erality that a, = b, = a, = 1. To relate Eq. (1.1b) with Eqgs.
(2.4) we seek functions 6 ;(x',...,x*) such that

_El 6,0,=73 g'W.W,
J= L7
identically in the separation constants, i.e., the coefficients of
Ay, Ay, A5 should vanish in Eq. (2.5). As is easily verified, this
condition determines the @ ; up to an arbitrary multiple
Q(x',....x*) and leads to the Hamilton—Jacobi equation

(G) Q@b —1)(W7i + i)+ (b, —b)
X(W3+ LW+ —ab)W,W,]=0,
with symmetry operators
Ly =(ab, —1)" (pi + fipi — by(P3 + £2P7))
FLr=(ab, 1) (p3 + foPi —ax(p? + £193)),
L= ps- 2.7

(2.4)

(2.5)

(2.6)
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The most general metric tensor yielding separation of this
type can be read off from Eq. (2.6) and the separation is
characterized by .2, =4 ,,j = 1,2,3.
In addition to the type G separable equations above, the
following Hamilton—Jacobi equations admit separation:
(A) Four ignorable variables:

4
(A) Qz P?=0,$,=P.2, i=123;

i=1

(B) Three ignorable variables:

4
B @ Z Gij(x4)pipj =07, = pi» =123
hi=1 2.9
(C) Two ignorable variables with two essential variables
of type 2:
(C) Q[pl + p3 + (e +e)p3 + 2k, + ho) py s
+h+ fHpi]=0,
Ly=psy L= ps
Ly=pi+epi+2h pip,+ fipes

(D) Two ignorable variables with one essential variable
of each type: [It can be shown that (D2)'is a special case of

(D1)]
(D1) Q[ p} +2a,p,p5+ 25, P, ps + dp;

(2.8)

(2.10)

+2fi + f)pspa+epi] =0, 2.11)
1= P3L 2= psL3=2a,p, 5+ 2b,p, ps
+2£p3Ps,

D2) Q[p} +2p,ps+ d, +d) p3
+2f1psPatepi] =0,
L= p3Lr=puLs=2p,ps+d, 3 ; (2.12)

(E) Two ignorable variables with two essential variables
of type 1:

(E1) Q(Q2a,pips+2p,ps+2a, 0,03 +2p, p,4
+ (¢4 —Cz)Pg) =0,

L= p3L = pu-L3=2a,p,p3 +2py s+ ¢, P,
(2.13)
(E2) Q(2pips+2p,ps+2b,p,p4
+ (dl +d2)p§) = O’ b27é01

L= ppLy= Ppu-L3=2p,p3+2b,pr ps + 2 p5
(2.14)
(E3) QQpipa+2p,ps+c,ps+d,p;)=0,
L= p3Lr=puL s =2p,ps+dypi; (2.15)

(F) One ignorable variable with three essential variables
of type 2:

(F) Q(g2—9:) T + (g — q1) + P53+ (g, — g) P}

+ ["ng — g3} + ralgs — q)) + ralg, — g1 p3)

L= pLy=2[d} — )73 (2.16)
+(@ — )23 + (@5 —q2) 73],
Ly=2 [4243(q2 —93)-@% + 4193(9; —ql)-gj;%
+ 019:lq, — )73 ]
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where

2 =g — g, — ¢:)lg. — 9:)1 ", P = pi + 1. pi,
=123
(H) No ignorable variables

B o(3 M rt)=o0,

j=1

(2.17)
4
Fi= S MR =123,

j=1
where M ;, is the (j,/) minor of a 4 X 4 Stickel matrix
[ @, (x*) ] .

Just as noted in the case of three dimensions, there are
no strictly R-separable solutions of the Hamilton-Jacobi
equation which are not equivalent to one of the separable
types listed above.® [An R-separable solution would have the
form W= W%x', x% x°, x*) + 24 _ , W (x)) ]

3. A-SEPARABLE SYSTEMS FOR THE LAPLACE
EQUATION A, ¥ =0

Here we classify the systems for which the Laplace
equation (1.1a) admits R separation of variables. Again the
separable systems can be characterized by a triplet of com-
muting symmetry operators. Recall that

4
L= Y §/x)d,, +&(x) (3.1)
i=

is a first order symmetry operator for Eq. (1.1a) if [L, 4,]
= p(x) 4, for some analytic function p. The set of all first
order symmetries L forms a Lie algebra G under the commu-
tatorbracket [4,B | = AB — BA, called thesymmetry algebra
of Eq. (1.1a). The £ 7 satisfy the Killing equations for a con-
formal Killing vector relative to the metric g; ; and (factoring
out the ideal generated by the trivial symmetry L = 1) Gisa
subalgebra of the infinitesimal conformal group of the met-
ric. When g;; corresponds to flat space then 9 =0(6,C), a
15-dimensional complex Lie algebra.

Similarlx,

L f =

k=

A+ ST AT )

is a second order symmetry operatorfor A, if[L',A,] =K 4,,
where K is a first order differential operator of the form (3.1)
(but K is not necessarily a symmetry). If every L " acting on
the solution space of Eq. (1.1a) agrees with a linear combina-
tion of first and second order operators in the enveloping
algebra of &, then Eq. (1.1a) is said to be of class I; otherwise
it is of class I1.

We now proceed to classify all systems for which Eq.
(1.1a) is R separable, i.e., for which Eq. (1.1a) admits solu-
tions of the form ¥ = e IT¢_ , ¥ (x") , where each ¥ “(x")
satisfies an ordinary differential equation and R is some
specified function of the x/. Substituting ¥ = e*@® into
4,¥ = 0 we obtain the equation

4 . 4
Z b9 P+ z b'3. P+ b®=0,
Lj=1 i=1
where .
bii=gl b= Zgijalen [gl/ZgijMZ] ,

i=

(3.3)
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by=M"(A M), M=e~.

Clearly, an R-separable solution of Eq. (1.1a) corresponds to
a purely separable solution of Eq. (3.3). In proceeding to
classify R-separable systems we do not distinguish between
purely separable and strictly R-separable systems for Eq.
(1.1a) because the conditions for pure separation can be ob-
tained from those for R separation by setting M = 1.

The classification of R-separable types proceeds along
the lines of the systems treated for the Hamilton-Jacobi
equation. A variable x' in a separable system is ignorable if
for some analytic function p, L = d_; + p(x) is a symmetry
operator for Eq. (1.1a); otherwise x' is essential. If the sepa-
rated equation in the essential variable x'is first order, then x’
is of type 1; if second order, then x' is of type 2. It is readily
seen that for a given metric the separation of Eq. (1.1b) is
necessary for the R separation of Eq. (1.1a). Thus, the only
possible systems permitting R separation of Eq. (1.1a) are
those listed in Sec. 2. However, there are additional condi-
tions that must be satisfied by the multiplier M in order for
variables to R separate.

To explain our method we treat one exampie, tne anai-
ogy of the type G equation for Sec. 2, in detail. Here there are
two essential variables of type 2 (x,x?), one essential variable
of type 1 (x*), and one ignorable variable (x*). With

Y =MII%_ | ¥(x’) we can write the separated ordinary
differential equations as

W(lll) + hlq/(ll] + (.fl/lg +Alal +/12b] +K1)W(”

E¢]W“) = O s
VO +hYO + (A3 + A0, + b, + KW
=P,¥? =0, (3.4)

VO + (Aay + Ash, + K)WP= w1 =0,
=10,

where ¥) =9, ¥ To relate Egs. (3.3) with (3.4) one
looks for functions O, (x',...,x*) such that

3 4 4
?3 0,0,= 3 b",P+ YbOP+bd=0,
(3.5)

j=1 j=
where @ = I1° _ | ¥ (x’) . Comparison of the coefficients
of the second derivative terms and the A; terms on both sides
of Eq. (3.5) leads to the same solutions for &, and g'/ as
found in Eq. (2.6). Comparison of the coefficients of the first
derivative and constant terms yields the R-separation
conditions

G - ae)

X exp(ax*)(1 — a,b,) (@b, —1)(b, — b3) 1",
AM =MQ [K,(ab; —1) + Ky(b, — b3) + K5(1 —ayb)) ],
aeC . 3.6)

The symmetry operators .#”’, for Eq. (3.5) such that

L@ =A,P,j=1,2,3 can easily be obtained by solving for
Ay, 45, and A5 in Egs. (3.4). The simplest of these is ¥, = d,;
the other two operators while straightforward to compute
have rather lengthy expressions which we will not bother to
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put down. Finally, the symmetry operators .Z ; for Eq.
(1.1a) such that £ ;¥ = A, ¥ are given by .,
=M.Z" M ~' . The simplest of these is

frmg L1,
2 Q 2

In the following we list the R-separable coordinates for
Eq. (1.1a) in each of the cases (A)-(H), excluding (G) al-
ready listed. In each case we give the form of the metric ds’
and the necessary and sufficient conditions to ensure R sepa-
ration. The Hamilton-Jacobi equations and the defining tri-
plet of commuting symmetry operators can be obtained in a
straightforward manner from these results:

(A) All variables ignorable:

as = 0( 3 ixf),

i=1 (3.7)
4 A M
M?Q= exp( D a,.x’) AM = an, aeC;
i=1
(B) Three ignorable variables:
4

ds* = Q( > gij(x‘)dx‘dxf) .

ij=1

4
M?*Q = fix')exp (z a,.x") , (3.8)
i=1

AM = A—th ), a,eC;

(C) Two ignorable variables and two essential variables
of type 2:

_r
(ef —h?
X { f(dx*) + eldx*)? — 2hdx3dx“}> ,

ds*=Q ((dx')2 + (dx?)? +

M?Q = A,(x'M,{x?) explasy® + agxilef —h2]2 (39
A= K +K),

e=e1+e2,h=h1+h2,f=f1+f2§

(D) Two ignorable variables with one essential variable
of each type:

(D1) dx?*=Q [(dx') + 2b,f —e, — b3d,) " '{(ed,
— fA)(dx?)? — (bdx® — dx*)
+ 2(b, f — e,)dx%dx?
+2(f —bd\)dx’dx*}), f = fi + f,, (3.10)
M?Q = 4,(x")4,(x?) exp(ax’ + a,x’)
X [2bof —e,—b3d, ]2,

M
A4M= E(K1+K2)’

(m>W=4w¥+§W$mMMV
+ (dx*)? — 2 fidx?dx® + 2d dx*dx*}],

e 1 R , (3.11)
0 =4,x)4,x% expla,x” + a4x4)(d )]/2 ,

M
A4M= E(Kl +K2)’ d=d1 +d2§
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(E) Twoignorable variables with two essential variables
of type 1: For systems of this type we supply some of the
details of the R-separation conditions:

(El) ds'=Q [ _ (fﬂz_) (dx' — dx)

a, —a,
+2dx*(dx' — dx?) +2dx*(a,dx* — a,dx") ].
G.12)

The (first derivative conditions for R separation of 4,% =0
are equivalent to

(0, +3,)InM?Q)=a, +a,,
(@, + azaz)ln(MzQ) =b,+b,,
9,In(M?’Q)=a,eC,j=34.

The solutions of these conditions fall into two classes:

(3.13)

Class (i): (a) @, = cosh x', a, = cosh x? or (b} a, = €*',

a,=e"; (3.14)
then
M?2Q= [sinh % (x' — x?) aAl(x‘)Az(xz)
Xexplax® + a.x), (3.15)
AM = %(Kl +K,), a, a;eC;
Class (ii): a,, a, are not of the form (3.14). (3.16)

The the R-separation conditions are of the form (3.15) wih
a=0:
(E2) ds*=Q[ —(d, + d,)(b, dx' — dx?)

+ 2dx3(dx* — b, dx') + 2dx' dx"]. (3.17)
The (first derivative) conditions for R separation of 4,¥ = 0
are equivalent to

(0: + bzaz)ln(MzQ) =a;+a,,
3, In(M*Q)=0b, + bz,c?jln(M 2Q) =a,;eC, j=34

(3.18)
There are two solutions to these conditions:
Class (i): b, 7#x?, (3.19)
M>Q=4 (", (x7) expla;x’ + ax),
M
AM = E K, +K,), (3.20)
Class (ii): b, = x? . (3.21)
Conditions (3.20) hold, except that now
M?Q =44, exp(x’e ™™ + a.x’ + ax?), (3.22)
(E3) ds’ = Q[ —d,(dx")* — ¢ (dx*’? + 2dx" dx*
+ 2dx%dx?] . (3.23)

The first derivative R-separation conditions are

3, In(M2Q)=b, +b,,
(3.24)

3, In(M?Q)=a, +a,,
d,InM?Q)=a,j=34.

These conditions have the general solution
M?Q = A\A, exp(ex'x* + a. x> + a,x*), €=0,1,
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AM = %’ K, +K>). (3.25)

{F) One ignorable variable with three essential variables
of type 2:

ds*=Q [ (dx")? + (d@x?)*. + (@x’f
q9:— 43 g — 4, 91— 9
(dx*)

+ ,
[71(g2 — g3) + 7293 — ¢1) + r3lg: — ¢2)]
M?Q = A4,4,4,8 explax®),

S =[lg, — ¢:)lgs — 91)(q: — )"l — @5)
+ rlgs — 41) + rslg, — 2} 177,

AM= %{K.(qz — g5+ Kilgs — q))

+ Kilg, — q2)];
(H) No ignorable variables:

dsz=Q<i )

(3.26)

——) S = det® #0,
i=1 i

4 172
1M,)",

j=1

o= (@), oM*= DA |

4+ B.M.

A4M= _A!(z J jl+a)‘
o\= S

Here M, is the (j, 1) cofactor of the 4 X 4 Stickel matrix @.

(3.27)

4. CONFORMALLY FLAT NONORTHOGONAL. A-
SEPARABLE SYSTEMS

Here we specialize the results of Sec. 2 and 3 to flat
space, limiting ourselves to nonorthogonal coordinates. (The
orthogonal case has already been treated in Ref. 1.) In princi-
ple, the classification is straightforward: One need only com-
pute the Riemann curvature tensor for each of the separable
nonorthogonal metrics (A)~(G), require that it vanish identi-
cally, and classify all possibilities. In practice, however, the
computations are hopelessly complicated. The problem be-
comes tractible only if detailed use is made of the conformal
symmetry algebra O(6,C) of the flat space Laplace equation.

A basis for 0(6,C) is given by

P,=4d,, j=1234,

Ik,zzkaz,—zlazkz _Ilk9
4

D= —(1+ zziazi)’
i=1

K; =22/ + 22V ~ 22)9,, + 22729,
+ 2220 . + 2z'z°d,. ,
where j,l,m,n = 1,2,3,4 and no two are equal. Now every

nonorthogonal R-separable system for the flat space Laplace
equation

4
D F¥=0,
ji=1
or any other Laplace equation, contains at least one ignora-
ble variable x'. Clearly there must exist an analytic function
psuchthatd,, + p = LeO(6,C). In general, a system with m
ignorable variables is associated with an m dimensional Abe-

1<k <4,
(4.1)

(4.2)
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lian subalgebra of O{6,C). Since we identify two systems if
one can be obtained from the other by an action of the con-
formal symmetry group, to classify all possibilities for ignor-
able variables associated with Eq. (4.2) it is necessary and
sufficient to determine all equivalence classes of Abelian
O(6,C) subalgebras under the adjoint action of O(6,C).

We first list the classes of one dimensional subalgebras
of O(6,C). To obtain most easily the results of Table I we have
made use of the well known isomorphism O(6,C) =sl(4,C)
and the Jordan canonical forms for 4 X 4 matrices. We have
also identified in this and the higher dimensional cases those
subalgebras which can be mapped into one another under
the outer automorphisms of spatial reflection and inversion.
For each equivalence class we exhibit a representative
element.

Suppose that ¢ is an ignorable variable belonging to the
R-separable system { ,x*x3x*]. Then we can assume the
corresponding symmetry operator L = d, + p is identical
with one of the five operators listed in Table I. From this
relationship we can determine how the “standard” coordi-
nates z',...z* are associated to ¢ and the general form of the
metric ds° in terms of dt. The ignorable variable ¢ is orthogo-
nal if the corresponding metric can be written

4
ds*=Q|dt* + > & j(t,xz,x3,x4)dxidxf] . (4.3)

=2

Otherwise, t is nonorthogonal. In Table II we list the metrics
and coordinates corresponding to the operators in Table I.

It follows from Table II that the only operators associ-
ated with orthogonal ignorable variables are 14, 1,3, D, and
P5. Among nonorthogonal ignorable variables the only one
for which the (d¢ )? term doesn’t occur in the metric ds” is
associated with the operator P; + iP,. (Note that in each case
tis not unique; it can be replaced by ¢’ = ¢ + ffor arbitrary
£ For nonorthogonal variables the assertation is that, no
matter what the choice of £, the metric contains cross terms
ofthe formdt ' da.) This last possibility is of great interest, for
it leads to “heat type” variables (slightly renormalized):

=g =b2—i=2t,2 +iz*=c. (4.4)
If in these coordinates we assume a solution of Eq. (1.1a) of
the form ¥ = @ (a,b,c)e”, the resulting equation becomes

(0 + )P = Po.P. (4.5)

Note that here the ignorable variable ¢ is characterized by its
nonorthogonality and the fact that there is no (d# ) term in
the metric.

TABLE I. One-dimensional subalgebras of O(6,C).

cali + BLs+ yD, a, ByeC

al =1L+ Iy —iDY+ Py + iPy— Ly — il + il 3 — Iy i = V' 1
al,+ P,

aly + Bl —iD)+ Py +iP,

. %(Pz +iPy) — il — Iy,

NS
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TABLE II. Metrics and coordinates associated with ignorable variables.

12! =ae "coslat +c), Z2=be "cospt
Z=be "sinft, 2*=ae "sinlat+ )
ds’ = e~ *"[da® + db* — 2ydt(ada + bdb)
+ (@ + b))+ b B?dt* + a*(adt + dcf)
Nonorthogonal unless two of a, B,y are zero.

22 —i*=aé™, Z'4it=b+22

Z+i2=(-2at+ce, Z—i=2u
ds® = e* [da db + 2dt (dc + iaa db) + Hiac — a)dt?].
Nonorthogonal.

3z'=acosat, Z2=b Z=t+c, z*=asinat
ds’ = da® + a?a*dt* + db? + (dt + dc)?
Nonorthogonal unless & = 0.
47 +iz' =ae'Pr Mg —iz' = petFm
22— it =2+ + it = fP
ds’ = e&¥*[dadb + i( B+ a)adtdb + i( B — a)b dtda + df dc
+2dt(df + i Bf de) + (ab(a® — B°) + 4i ff }dt?]
Nonorthogonal. No dz2 term only if a = 8=0.
52 =a2 +if = i‘/zg)evi— ce~)
Z2—i=tF=be* +ce V¥ .
Nonorthogonal.

A representative basis for each equivalence class of two-
dimensional abelian subalgebras of O(6,C) is listed in Table
IIL

The corresponding results for three dimensional abe-
lian subalgebras are listed in Table IV.

Finally, there is only one equivalence class of four di-
mensional abelian subalgebras of O(6,C). A representative

TABLE III. Two-dimensional abelian subalgebras of O(6,C).

1. P, + iP, + 8Myy, Iy — iD

2. P, +iP, P, + iP,

3. Py + iPy Ly + il

8. Py 4 iPy P, — iPy — il g+ Isy + Doy + il53

5. Py 4 iPyP, — iPy— Ly +iD + 1,

6. Py + iPy P, — iP, — Ly — ilyy — il,4 + I,

1.1, +1,—iD,P,+iPy— L, —il,,+il;—1I,,

8. I+ iloy+ 15+ il 5, (P + Ks) + Py + K, + 2il,, — 21,
9.1+ Py, I, — iP,

10. D, Iy + il

11. Py, P, + iP, + 2il,,

12.ihy + 13, i3+ 15

1.ihyy + Ips ilP, — K\) = P+ Ky + g — ilg + 11y + il 5
4. P+ L+ il Py + Ly + il

15. Iy — iD, P, + iPy + 2il,

16. Iy + Ly + allys — iD), 1,4 + iD + B3 —iD)
17.alys + Blly — iD), Py + iPy + 8llys — iD)

18.P, — iP, + B(D — il,, — il,)), D + P, + iP,
- i134 - i121 - 1]4 + 132 + i124 + i13|

has basis P,, P, P, P,.
The above results apply with only slight modification to
the flat space Hamilton—Jacobi equation

4
S @, W)}=0. (4.6)
i=1
The symmetry algebra of this equation is again O(6,C) with
basis

Pj = Pj» ]= 1,2,3,4,

IL,=2p, —Zp.= —I,, 1<k<I<4, (4.7)
4

D= — Z zipi’

i=1
K, =Q2e) —-z2)p; + 227 p, + 227z p,, + 222" p,, ,
where j,I,m,n = 1,2,3,4 and no two are equal. To find all
nonorthogonal metrics for Eq. (4.6) it is clearly sufficient to
examine each of the general nonorthogonal separable me-
trics from the list (A){H) of Sec. 2 and determine which of
these is conformally flat. All orthogonal separable metrics
for Eq. (4.6) were already computed in Ref. 1, so here we
omit the systems of type (A), (F), and (H). Note that every R-
separable system for the Laplace equation (4.2) must corre-
spond to one of these conformally flat metrics. We will show
later that this correspondence is one to one.

The necessary and sufficient condition that a metric
ds* = Q(3g;,;dx' dx’) = Q d§” be conformally flat is that the
conformal tensor C, , of the metric d§” be identically zero."
Here,

Ciu = R + YguR ;i — gaR ji +ngRik
—guRu)+ R (88 — g8t (4.8)

where R, ,, is the Riemann curvature tensor, R ; is the Ricci
tensor and R is the scalar curvature. We will use this condi-
tion to determine the number of nonorthogonal conformally
flat metrics of each type.

TABLE IV. Three-dimensional abelian subalgebras of O(6,C).

LP 4Pyl +iD—1I, P —iP,— il + I, + I, +il;,
2.Py 4+ iP I+ iD—1,,, il — I, + 14+ i,
3.P,+iP, 1 +iD—1I,, P +iP,

4. P+ iP, P+ Ly +ily,, P+ I s+ il

5. Py +iPy, Py —iP, + i,y — I, + Ly + ily,, P, + iP,

6.P, + iPy P, — iPy + Iy + ily, + iyy — Ip»,
ha+ily —ily+ 1

7. Py +iPy, Ly + iy, 114 + i,

8. Py +iP, P, Py + il — I,

9, Py +iP,, P, — iPy, I,y + il — ily + I,
10.D,1,,, I,

V. D, Iy + Ly Ly + ilyy + il — I,

12. P, P, I,

13. P, P, P,
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{B) Three ignorable variables: For forms of type (B) the
conformal flatness conditions prove too complicated to solve
explicitly. Fortunately, group theory comes to our rescue:
The possible separable systems of this type correspond to the
three dimensional Abelian subalgebras listed in Table IV.
Subalgebras 10, 12, 13 correspond to orthogonal coordi-
nates. The subalgebra 4 does not give a separable system
because the three Lie derivatives are functionally dependent.
(In order to define a separable coordinate system the three
Lie derivatives must be functionally independent.) The re-
maining subalgebras yield nonorthogonal coordinates all of
heat type except 11 which, once a radial variable is separat-
ed, corresponds to the single nonorthogonal separable sys-
tem for the Helmholtz equation on the complex sphere .S,.”
[However, this system also arises in E, where the diagonali-
zation of D is accomplished by the diagonalization of the
Casimir operator for the subalgebra O(4,C) generated by the
I,.

’ ]The coordinates and their relationship to the standard
coordinates z/ can be obtained from Tables I and II. For
example, a suitable choice of coordinates for the operators of
type 3 is

Z'+if=e"% - =1,

Ztrit=we ™ Z—_it=u, (4.9)
where 8, — i =1I,; — I}, + iD, d, = {P, + iP,), and
d, = §(P, + iP,). The corresponding differential form is

ds* = e **[du dw — 2i ds(w du + dt )] . (4.10)

We note that this metric also provides a separation of varia-
bles for the flat space Helmholtz equation 4,% = EV. In-
deed, if wesetx' = e 2 x? =1 /2,x* = w/2,x* = u (these
are equivalent coordinates), we obtain

ds? = 2 dx" dx? + 2 dx*(x* dx' + x' dx?) (4.11)
and the Helmholtz equation is
2(3,, + il(~—x3823+834) V=EY (4.12)
x
with separation equations
oLV, =1¥, 4V, =LY,
(= 20,x°05 + 21,05)¥; = 1, ¥, (4.13)

(21,0, + 20./x"\¥, = E¥,

where ¥ = IT%_ | ¥ ,(x’) . The operators .’ ; which describe
this separation are .Y, = {(P, + iP,), £, = {{P; + iP,),
Ly =1Py —iPy, I3+ il,; + il |, — I,4}. The operators
which characterize separation in this case are not all first
order and would also suffice to describe the separation in the
case of the Laplace equation E = 0. (The significance of two
separate operator characterizations of the same coordinate
system will be the topic of a separate paper.) Similar com-
ments hold for subalgebras 1 and 2 on Table IV. Subalgebras
5 to 9 clearly directly define separation of the flat space
Helmholtz equation. Thus, nonorthogonal coordinates of
type (B) all correspond to coordinates that separate the
Helmbholtz equation on E,.

(C) Two ignorable variables and two essential variables
of type 2: It would be possible but extremely complicated to
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derive these metrics by directly requiring the metric (3.9) to
be conformally flat. An easier method follows from the ob-
servation that for a conformally flat space the two Lie sym-
metries corresponding to the ignorable variables x*, x* are
taken from the list of commuting pairs of symmetries in Ta-
ble I11. For each pair of symmetries from this list there are
constraints on the form ds” and the way in which the differ-
entials dx* and dx* appear in it. For subalgebras 1-9 the
corresponding metric is such that e = 0, i.e., the ignorable
variable x* is nonorthogonal and there is no (dx*)? term ap-
pearing in ds>. Thus, to compute all coordinates correspond-
ing to subalgebras 1-9 we can simply require that the metric

d§* = (I, — L)[(dx")* + (dx??] +2dx* dx*
+ (ml — mz) (dx*)?
L —1
be conformally flat.

Subalgebras 10~13 each contain an orthogonal ignora-
ble variable so they do not correspond to type (C) metrics.
Subalgebras 14-18 are somewhat more awkward to treat but
in each case one can show that the metrics associated with
these subalgebras are not of the form (3.9). Thus, none of
these subalgebras correspond to type (C) coordinates.

Now suppose the conformally flat metric is of the form
(4.14). The conditions of conformal flatness are

C1221 = % R1221 =0 ,C1442 = R|442 =0,

(4.14)

m, — m, \?
C1332=R1332+§( : 2) R1442=0,
I —1,

1

Cis = %(Rlsal — Ry + PRV (4.15)
(ly—1)
XW@ — im, — my)R 5, =0,

1

C2332 = %(stsz - R1331) + m

X — $(m — MR =0.

These conditions imply R, ;; = 0 so the metrics d§° are
flat. We then obtain the following distinct solutions:

. (dxl)z (dxz)z
dszz(x] —xz) ——x—l— el 'x—2
+2dx%dx* + (x! + xY)dx*), (4.16)
d§? = (x' — x2)[(dx') — (@x?)?] + 2 dx’dx*
+ (x! 4+ x?)dx*?, (4.17)
d§? = (dx')? + (dx?)? + 2 dx’dx?
+ (ax' + bx?)(dx*)?. (4.18)

The remaining conformally flat metrics of this type are
of the form

d§* = do”* + 2 dx*dx*, (4.19)

where do” is a separable metric in Euclidean two-space (see
Ref. 11). Thus, all conformally flat metrics of type (C) corre-
spond to coordinates that separate the flat space Helmholtz
equation.

(D) Two ignorable variables and one essential variable
of each type: We look for conformally flat metrics of type
{(D1) for which the Lie symmetries corresponding to the ig-
norable variables x?, x* are taken from the list of commuting
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pairs on Table III. Proceeding through the list we find that
there can be no conformally flat metrics of this type, which
are not already of type (D2).

For forms of type (D2) two of the conditions of confor-
mal flatness are

Cin = IR3113=0,C1203 = Rypp3 — 3fiR135,=0.

(4.20)
These two conditions imply d { = 0 and f; = 0. The remain-
ing conformal flatness condition is then C,,; =1
X (Ry221 — d Ry323) = 0, which is equivalent tod 7 — 2
X (d 4)*/d, — d,e} = 0. This equation can be solved to give
the forms
ds? = (dx’)? + [1 + (x®)?1(dx")* +2 dx’dx*
1

+ —— (x'dx?»?, 421
1+ (x?)? () @b
1 232
ds* = (dx*)* 4+ x*(dx')* +2 dx’dx* + w , (422
dx2 2
ds? = (x’dx'y* + ax' (—2)‘ + (@Y +2dx%dx . (4.23)
X

(For these forms we have redefined x? and multiplied by a
suitable function of x>.) The forms (4.21)—(4.23) all define
separation for the flat space Helmholtz equation.®
(E) Two ignorable variables and two essential variables
of type 1: For metrics of type (E1) the conditions of confor-
mal flatness imply that the metric 4§ is flat where
ds® = Qd§® is given by Eq. (3.12). Thus, from Ref. 8 we ob-
tain the possibilities
d$? = 2dx*(dx" — dx?) +2 dx* [(x")dx* — (x})%dx'],
4.24)
1 2
ds* = {A (x4 BE A HC L )2+ C] (dx' — dx?)
+2dx*(dx' — dx?) +2 dx*(x'dx* — x’dx"),
g — [A B C D ] (x%dx' — x'dx?)?

(4.25)
—+
xl (Xl)2 x2 (x2)2 xl _ x2
+2dx3(xPdx" — x'dx?) +2 dx*(dx* —dx").  (4.26)
For metrics of type (E2), (i) the conformal flatness con-
ditions are

1
C|223 = b_czns = %Rlzz,z =0,

CIZZI = RIZZI + (dl + dZ)(R?_ll3 - b2R1223) = 0 (427)
Solving these equations we obtain the conformally flat
metric

o~ (B B C
d _( 2x! + (xz)z

— + %)(xzdx' — dx?)?
e € x
+2dx(dx? — x*dx') +2dx"dx* . (4.28)
This form is conformal to the type (E2), (i) metric of Ref. 8
which defines separation of the flat space Helmholtz equa-
tion. A similar computation shows that there are no type
(E2), (i1) conformally flat metrics.
For metrics of type (E3) the relevant conformal flatness
conditions are C,,,, = R ,,,, = 0 and we obtain the metrics
2 1
ds? = (x df‘

X

2
) — (dx?)? +2 dx'dx* +2(x")dx*dx?,
(4.29)

49 J. Math. Phys., Vol. 22, No. 1, January 1981

d$? = (Pdx')? — (x'dx?)? +2dx'dx* +2dx*dx*,  (4.30)
ds? = xz(a;ill)z + x'(dx?)? +2 dx'dx* +2(x")’dx’dx’,
(4.31)
di? = xX(dx")? + x'(dx*)? +2dx'dx* +2dx’dx®, (4.32)
ds = XZ(‘%')Z 42 dx'dx* +2(c)dxdx’ . 4.33)

As shown in Ref. 8 these metrics define variable separation
for the flat space Helmholtz equation.

(G) One ignorable variable, two essential variables of
type 2 and one of type 1: Comparing the type (G) metric with
the metrics on Table II we see that the symmetry operator
P, + iP, must correspond to the ignorable variable x*. With
this restriction only the nontrivial conformal flatness condi-
tions are C\3;, = C>33; = 0 and we obtain two groups of
metrics:

2ix' 3\2
A2 — (112 € dw? — (dx’) ., (434
I.ds* = {dx') + wra W), ———4(x3 o (4.34)
11:d§? = (dx')? + dw? + Ax'(dx*), {4.35)
where
2 342
dof =Xl + 2dwaxt + EEL,
X
(xzde)Z
da)% = (1 + (x3)2)(dx2)2 + 2 dx3dx4 — "l—+_(x—3)—2° ,
{4.36)

3\2
dew? = (Pdx?? + 2 dx*dx* — sz(d;)i—) ,

dew? = (dx?)? + 2 dx’dx* + Ax*(dx*) .
The metrics of type I determine separation for the Helm-
holtz equation on the four sphere S, and those of type IT
determine separation for the flat space Helmholtz equation.
This completes our classification of conformally flat
nonorthogonal separable forms.

5. A-SEPARABLE COORDINATES FOR 4,¥ =0

In our treatment of conformally flat metrics in Sec. 4
the original flat space metric was chosen in the form
ds’ = Q (2g,,dx'dx") = Q ds*. In addition to the condition of
conformal flatness for the metric d§” the function Q = e** is
determined by solving the equations

4
/lij :%(l 1'jR _le) - %gij( z gkl/l,k/l.l)’ (5.1
ki1

whered,; =4, —4,4 ,=d_.4 and 4 is the second co-
variant derivative of A with respect to g, ; (see Ref. 10).

As we have shown, the metrics d§? correspond to only
two manifolds: £, and §,. The possible functions Q relating
flat space and these two manifolds are independent of co-
ordinates and were already computed in Ref. 1. Further-
more, it was shown in that reference that always

4{4Q1/2+ %Q‘”:o, (5.2)

where R is the (constant) scalar curvature, and A4 is the
Laplace-Beltrami operator on the manifold with metric d5>.
When we studied orthogonal separation for A,& = 0 in Ref.
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1 we showed that we could always choose the multiplier
M = Q' Using this result as a guide we consider one of the
nonorthogonal metrics ds® = Qd$® listed in Sec. 4 and set
¥ = Q-'*¢. Substituting this expression into 4,¥ = 0 and
making use of Eq. (5.2) we obtain

AP+ %qb:o

(5.3)
so that @ satisfies a Helmholtz equation on the manifold
corresponding to d§”. Since the Helmholtz equation sepa-
rates in the coordinates x’ corresponding to d§*, we can find
separable solutions @ = (IT%_ , 4 ;(x”) for Eq. (5.3) and R-
separable solutions ¥ = Q@ -"*IT4 _ | 4 ;(x) for the flat space
Laplace equation. This proves that a// nonorthogonal co-
ordinate systems which separate Eq. (4.6) also R-separate
Eq. (4.2). Combining these results with those of Ref. 1 we
obtain the following:

Theorem: Let {x’}] be a coordinate system (orthogonal
or not) for which the equation

4

S (9,W)=0

=1

(5.4)

is separable. Then

dx*= Y (dZ')y = Q( 3 g”dx‘dx’) =Qdf,

I=1 ij=1

where d§” is a metric on one of the spaces .# = E,, $; XS,
S, %X S,, S, and the coordinates {x’} are separable for the
Helmbholtz equation on .#. If {x’} is nonorthogonal, then
we can assume that .# is one of E, or S,. The function Q
satisfies Eq. (5.3), where R is the (constant) scalar curvature
of .# . Furthermore, the Laplace equation
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S EY=0 (5.5)

=
is R separable in the coordinates {x/}:

V=0 24, (x") A5x4 ) A 4 (x7) .

All separable systems for the Helmholtz equation on .#
yield R-separable systems for the flat space Laplace
equation.

Corollary: Equations (5.4) and (5.5) separate in exactly
the same coordinate systems (orthogonal or not}.

Corollary: If {x/} is a separable coordinate system for
the Laplace equation on a conformally flat space, then these
coordinates permit separation of the Helmholtz equation on
one of the manifolds E,, S, XS}, S, XS, or S,.
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Stability of constant-amplitude motions in slow-fluctuation approximation
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Oscillatory motions at constant amplitude admit of an especially simple description of their
stability in phase space: orbital stability is equivalent to stability of the amplitudes alone,
regardless of phase behavior, while Liapunov stability can subsequently be inferred from the
phases alone. Stability arguments simplify further in slow-fluctuation approximation because of
the availability of explicit quadratures for the amplitudes and phases depending ultimately on a
single polynomial. Thus, all orbital stability information about near-resonant constant-amplitude
motions in conservative, autonomous systems can be exiracted solely from that one polynomial.
Explicit analytic criteria for orbital stability are derived, and auxiliary methods for the
construction of stability charts are developed. Liapunov stability is shown to be a rare exception,
but Liapunov instability is encountered in distinctly varying degrees; a fairly wide class of motions

in a fairly wide class of systems is shown to be Liapunov—unstable only in the third order of a
certain approximation. Five examples are given at some length; they differ starkly in detail.
Owing to their tractable stability properties the abundant constant-amplitude motions play in
slow-fluctuation approximation the role of the often nonexistent, purely periodic solutions of the

traditional theories.

PACS numbers: 03.20. + 1,46.10. 4 z

|. INTRODUCTION

Autonomous, conservative, nonlinear oscillatory sys-
tems of many degrees of freedom (d.f.) with an internal near-
resonance 2g,w; = € can be completely integrated in “slow-
fluctuation” approximation, as we have described recently.'
Referring to that paper' as SF and keeping its notation, we
continue our study of the method.

We now turn to stability. Since this term appears even
more protean in science than in politics, we hasten to explain
that we follow Liapunov and Poincaré and define stability of
motion in 2n-dimensional phase space, not in the n-dimen-
sional configuration space of the given d.f. This is often not
done.” Among writers of practical texts known to us, Cun-
ningham® and Leipholz* are distinguished for meticulous
argument in phase space whenever it helps. Indeed, attempts
at finding universal definitions of stability by the exercise of
intuitive commonsense in configuration space have always
ended with some disappointment. We quote Klein and Som-
merfeld” as an outstanding example; the lucidity of these
eminent authors commands admiration but does not point
the way toward satisfactory, general concepts. Our method
being extremely flexible and general, we naturally do not
wish to be hampered by inadequate definitions of stability.

Let ¢ be a system path in phase space and draw a
(hyper) sphere of radius 7 about each of its points. The enve-
lope of this succession of spheres along % we call the *“7-tube
about €. ¢ is called “orbitally stable” iff for any preas-
signed 7 there exists a p with 0 <p<7 such that any phase
orbit € * which passes somewhere within p of ¢ lies in its
entirety within the 7-tube about %,

“This paper is based on a dissertation which will be submitted to Ohio
University by M. F. A. in partial fulfillment of the requirements for the
Ph.D. degree.
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In the classic applications to celestial mechanics,® % is
a closed curve corresponding to strictly periodic motion.
This is not necessary. € can also represent a quasiperiodic
motion for which ¢ does “not quite” close while an 7-tube
may eventually penetrate itself. The stability definition still
applies, at least in principle; in fact, it requires not periodic-
ity but only boundedness of % (in the unbounded case it
dissatifies inasmuch as even force-free uniform motion
would be unstable). The quasi-periodic case is important to
us because, as we were at pains to emphasize in SF, in near-
resonant systems strictly periodic motions occur only under
special circumstances. Thus our applications will be made to
constant-amplitude (c-a) motions whose phase orbits nor-
mally do not close. In a sense, then, the abundant c-a mo-
tions take in slow-fluctuation theory the place of the elusive
purely periodic solutions of the classical theories.

A motion will be orbitally unstable if for any 7 there
exists at least one orbit % * which eventually leaves the 7-
tube, however small p is chosen. Roughly speaking, in the
unstable case certain arbitrarily small perturbations cause
finite orbit changes. Still, possibly there are many ¢ * which
remain safely within the #-tube even for a finite p. If so, one
may speak of “conditional”” stability: roughly, perturba-
tions of one type leave the orbit stable while the others
change it materially. Phase space topologies of this kind are
well known in the theory of differential equations; for in-
stance, they play a prominent role in the study of generic
properties of linear operators.® They are certainly not con-
fined to recondite systems. With coupled oscillators they oc-
cur easily, as we show in Sec. I11.C.

Sometimes orbital instability (whether conditional or
absolute) results in monotonic amplitude growth, the disrup-
tive event® called an *“explosive instability” in plasma phys-
ics. Again, this is not infrequent, and we meet examples in
Sec. V.
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It does not matter to the orbital stability of € how the
distance between a phase point P on % and the perturbed
phase point P * on % * evolves as the motion proceeds down
the 5-tube. At perturbation time #, the gap must have been
less than p. Later it may grow indefinitely; usually it does,
but sometimes not at all. ¢ is called “Liapunov—stable” iff
l| P*(to) — P(to)|| < implies || P*(z) — P(¢)|| <7 at
all times ¢ > ¢,. (If p can be chosen independently of z, the
stability is furthermore called “uniform”.) Liapunov-stable
oscillators are perfect timepieces.'® They are rare because
nonlinear oscillators rarely have constant frequencies. How-
ever, if Liapunov instability is the rule, it can come in varying
degrees, according to the actual rate of change of
|| P*(r) — P{(t)||. Since the subject may be of practical use, we
discuss it in some detail in Sec. IV. We find, in particular,
that there exist classes of c-a motions and systems for which
Liapunov instability appears only in a higher
approximation.

Stability arguments are fairly simple in slow-fluctu-
ation approximation owing to the availability of explicit qua-
dratures for amplitudes and phases. Central to our presenta-
tion is the simple fact, demonstrated in Sec. II, that orbital
stability of c-a motions can be determined from the ampli-
tudes alone, without regard to phases. Since in our approxi-
mation the amplitudes all arise from a single quadrature in-
volving a polynomial, all orbital stability information about
the various classes of c-a motions can be extracted merely
from that one polynomial, as we show from several points of
view in Sec. II1. Liapunov stability of c-a motions can then
be studied from the phase equations alone; see Sec. I'V.

Throughout the paper our aim is not completeness.
Rather, we want to show how the new slow-fluctuation
method allows one to cut pathways of classification and un-
derstanding through the veritable jungle of detail rooted in
the vast variety of nonlinear processes. Our list of examples
in Sec. V is therefore purely illustrative, even sporadic, just a
small hint of how much there is to be found.

Likewise, we again confine ourselves to systems with
coupling Hamiltonians H,(¢g) dependent on coordinates
alone, except for several asides. With momentum-dependent
coupling, the separation of amplitudes and phases still holds
good, and a single quadrature again furnishes all amplitudes.
Using these facts, which were established in SF, stability
arguments may be fashioned along the lines of the present
paper in cases given explicitly.

We add a word of caution which could already have
been said in SF but carries more weight in the context of
stability arguments: an internal resonance occasionally is
not quite what it purports to be. Consider a coupling
H\(q) = v4,9,9; in three d.f. This is not at all unrealistic, cf.
Sec. V.E, butif m, = m, and a resonance @, = w, is assumed
it becomes tantamount to a degeneracy of the d.f. g, and ¢,
which can be removed in standard fashion by a linear trans-
formation, leading to a new Hamiltonian with a coupling of
the type 719395 + ¥4>43, and now there is no more reso-
nance in the customary sense.'' In order not to overburden
our statements with exception clauses, we tacitly assume
that such trompe-1’oeil degeneracies have been straightened
out.
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Il. GENERAL CONSIDERATIONS

The argument of this section is most conveniently
couched in terms of amplitudes and phases. They are con-
nected with the canonical variables by

q:(t) = A, coslw;t + B,),

pilt) = —mw.4; sinlw;t + B (2.1)

according to the transformations SF (2.1) and (2.2). It de-
serves mention that the simplicity and symmetry of these
formulas is the result of a particular gauge. When a Lagran-
gian L is replaced by an equivalent L + dg/dt, with some
glg), then the generalized momentap, = dL /g, arereplaced
by p; + dg/dq;. The canonical transformation SF (2.1) im-
plies that a choice of a particular g has been made, a fact
easily overlooked. The almost trivial simplicity of the follow-
ing argument, too, results from this gauge; it would be lost
under a homeomorphism p,—p; + dg/dq, of the phase space
which is still allowed in principle.

Consider a motion at constant amplitudes, say 4,(¢)

= A,,. Its phase orbit ¢ has projections onto the p,, ¢; phase
planes which are ellipses given by Eqgs. (2.1) in terms of 7 as
parameter. & itself lies on the (n-dimensional) hypersurface
defined by the intersection of the hypercylinders erected
over the n phase ellipses (2.1); it is not necessarily a closed
curve.

One sees easily enough that orbital instability of € can-
not be caused by the phases 3, (¢ ). Let us first assume that the
amplitudes of & are stable in the following, obvious sense:
for any preassigned %’ there exists a p’ with 0 <p'<%’ such
that on any perturbed phase orbit % * which passes some-
where within p’ of ¢,

AXE) = Ap| < —T——, i=1,.n
max(l,m;;)

(2.2)
holds uniformly in ¢ for the perturbed amplitudes 4 *(z).
Now preassign an 5 > 0, take ' = 7/1/n, note the pertain-
ingp’ >0, draw an 77’-tube about %’ and project it ontothep,,
g, phase planes, resulting in bands of width 27’ about the
phase ellipses described above. Take any phase orbit € *
which comes somewhere within p’ of ¢': because of the rela-
tions (2.2) and (2.1) its projections must lie within the elliptic
7’-bands. However, it does not follow that % * lies within the
7’-tube about ¢, because of possible foreshortening in the
projection. The longest line segment which can have projec-
tions of length <a onto all coordinate axes is the diagonal
d = av/'2n of a hypercube of edges a parallel to the axes; it
will have equal projections a2 onto the phase planes. Con-
versely, any point farther away from % than 7'v'n = 7 will
project outside the elliptical '-band in at least one phase
plane. At all events, € * lies safely within the #-tube about
¢, and hence the assumption (2.2) implies the orbital stabil-
ity of €.

Since the converse is obvious, we have the

Theorem: A motion at constant amplitudes is orbitally
stable iff the neighboring amplitudes fulfill the conditions
(2.2).

This holds regardless of the behavior of the perturbed
phases 3 *(t ); indeed, the projections of the perturbed phase
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point may move within the elliptic %'-bands at any speeds.
On the other hand, if in an orbitally stable case we subse-
quently look for Liapunov stability, we certainly need to
prove nomore than that |8 *(¢) — B;(¢}| < %’ holds uniformly
for all /.

This very convenient approach to stability of c-a mo-
tions results solely from the description in terms of ampli-
tudes and phases, and depends in no way on the techniques
used for solving the equations of motion. It becomes espe-
cially profitable in the slow-fluctuation approximation, for
through the conservation laws SF (3.5) the n conditions (2.2)
are all fulfilled if the one for A4, is fulfilled (or an equivalent
one for p,). A study of solely the underlying polynomial /( 5,)
thus yields all there is to know about orbital stability in any
of the three classes of c-a motion, Case (I) and Case (II) with r
even or odd.

Motions at varying amplitudes present an altogether
more difficult picture. Suppose for the sake of a quick orien-
tation that we have found a phase path ¢ in the neighbor-
hood of which the amplitudes are stable in the sense of
|4 }t)— A,(t)| <7, analogous to condition (2.2). If the
phases also remain stable, € is evidently Liapunov-stable,
but if the phases are affected by the perturbations, ¥ need
not even be orbitally stable, for unless the phase changes 5 *
(t) — B;(t) are limited in just the right way, the perturbed
phase point will gain distance not merely from the unper-
turbed phase point but from the unperturbed phase curve as
well, since the amplitudes are now varying in time. Thus an
orbital stability decision can no longer be based on a study of
the amplitudes alone.

The general case also differs in its ergodic aspects. It
suffices to consider a single phase plane.'? The projection of
¢ is no longer an ellipse, but a spiral which densely fills an
annulus the edges of which are determined by the amplitude
modulation range. The spiral will degenerate into a closed
curve if and only if the modulation and oscillation periods
are commensurate, a rare and exceptional case as empha-
sized in SF."? In general, then, a perturbed phase point P *(t )
will continually lie arbitrarily close to points of % which the
unperturbed point P (¢ ) reaches at certain other times. It may
seem that in such a situation the usual concepts of stability
lose meaning, but this is only a Wiederkehreinwand and we
submit that it fails for the same reason as in statistical me-
chanics: the Wiederkehr times are fantastically long.'* Com-
monsense suggests accordingly that stability be referred to a
time scale. It is certainly legitimate to ask after what time
interval 7{77,0) a perturbed ¢ * will leave the %-tube about % .
When in some sense this 7 can be shown to have a uniform,
positive lower bound 7, as 7—0, then % may be deemed
“orbitally stable during 7,”, and if 7, is adequately long in
relation to some given purpose, although in no way compa-
rable to a Poincaré recurrence time, then the finding may be
worth while.

Thus the general case represents an ample subject in its
own right. We shall not pursue it here but it may well be
mentioned because the surmise is a fair one that the reduc-
tion to quadratures inherent in our method can be exploited
for general motions to yield useful results in practical cases

where the existing, general theory of stability,'® despite all
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the brilliant advances made in the last two or three decades,
remains unmanageable.

IIl. ORBITAL STABILITY

The developments of this section do not necessarily ap-
ply in full detail to the (possibly rare) exceptional cases de-
fined in subsection A. Otherwise they are entirely general.
They can also be adapted without substantial complications
to the case of a momentum-dependent coupling.

A. Some properties of the polynomial f
Recall the definition SF (3.9):

_ = n _ =12
flB)=F*— E_zwiai_fpl‘B . (3.1)
)

Polynomial B ( p1,a) arises from the terms in the coupling
H (g) which contain only even powers of the coordinates,
while F( 5,,a) arises from the resonant terms after the substi-
tutions SF (3.3) and (3.4), and has the general form

F=Clg5\)""g. 5\ + @)%~

g, P + @,)"*Q (Pra)s (3.2)

as follows from the discussion in SF at the end of Sec. II.
Here C #0 is a system constant and the /, are integers >0,
with /, 0 because of our numbering of the d.f., and with
P1>0because of the convention g, > 0 (see SF Sec. III); Qisa
polynomial which can be nonconstant only if there are sever-
al resonant terms in H,. _

From Eq. (3.2) it follows that F(0,a) = 0 and therefore

f10)<0, (3.3)
an inconspicuous but important fact.

Squaring Eq. (3.2) yields

Fl=a,p" + - +a,p’ (3.4)
The highest nonvanishing coefficient a; sometimes depends
only on system parameters, but if one or more d.f. with g;
= Oare present, a; will also contain the amplitude constants

a; and then depends on initial conditions as well. The lower
coefficients always contain the «,. Likewise, if

B=by+b, 5+ +b, 5" (3.5)
the highest coefficient b,, may be independent of initial con-
ditions but it does not have to be, and the lower ones normal-
ly are not, as is immediately clear from the origins of B to-

gether with the transformation formulas SF (3.3).
From the definition (3.1), we now obtain

OV =B+ o B 4

+ [a2 + 2b2(E — z wa; — bo) — (b, + 6)2] b’
+ [a, b, + e)(E ~Y v, — bo)] 5,
_ (E — 3 v — bo)z, (3.6)
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with the last coefficients written out in detail for later use.
The highest nonvanishing coefficient £, may depend on sys-
tem parameters only, but often enough it will depend on
initial conditions as well. Consequently it may also go
through zero for certain initial conditions. This is not obnox-
ious in itself, but if a zero occurs precisely for those initial
conditions which also determine the c-a motion under con-
sideration, various arguments will be in jeopardy. We have
not found such cases, and possibly they are rare coinci-
dences, but they are conceivable and must be treated on their
own terms if and when they occur.

Thus we assume explicitly that £, has no zero within the
range of values of a,,...,a, ,E under consideration. As a con-
sequence, the number of roots of f( 7)) will be invariant
throughout this range. Furthermore, from the structure of
the polynomial (3.6) it is clear that the roots will be continu-
ous functions of a,,...,@, ,E and that their product cannot
change sign.

B. Use of roots in special cases

The (nonnegative) roots of f( j,) are the turning points of
F:(t), hence their behavior under perturbations determines
the orbital stability of the motion. Unfortunately, simple for-
mulas for the roots often do not exist. Some general stability
criteria based on roots can nonetheless be obtained for re-
stricted classes of c-a motions. We choose as example the
fairly common Case (I) motions in which one single d.f. re-
mains at rest [see SF Sec. V]. If the d.f. which does not move
has g, = 0, its amplitude is always constant [see SF Eq. (3.5)]
and orbital stability depends on the other d.f.; thus we take it
to be a resonant one with g; #0, and assume without loss of

generality that it is g,.
A glance at the exact equation of motion
b= 0H mawiq JdH,
= -5 = - 1wy, — —/—
' da a4,

shows that g,=0is possible (nontrivially) only if H, contains
no terms linear in ¢,. Then in Egs. (3.2) and (3.4) we must
have /,>2, and therefore @, = 0 in Eq. (3.6). Under these
circumstances it is seen that £ 5,) cannot have a simple root
at the origin, but will have a root of at least the second order
there iff

E—S o —b,=0. (3.7)

Motion at j,==0 requires such a higher-order root. Let
us assume for brevity of exposition that it is exactly double,
i.e. that the condition (3.7) holds together with

a, — (b, + €)*#0, (3.8)
and apply small perturbations to the motion. The condition
(3.7) which had to be fulfilled to set up the c-a motion will
now be violated and therefore the double root at the origin
disappears. In its place there must still be two roots close by,
because of continuity. The graph of f( 5} now passes below
the origin, because of the general condition (3.3); also, phys-
ical motion can only occur to the right and requires f( p,)>0.
It follows that at least one of the new roots must be (real and)
positive.
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Both roots may have moved towards the right. They
may still coincide, or else they have separated and then f( 7,)
must be positive in between. Thus the motion occurs at or
between the displaced roots, and is orbitally stable because
the displacement can be made arbitrarily small if the pertur-
bations are taken small enough, satisfying the criterion (2.2).

The two roots may also have split with the origin be-
tween them. In this situation p, must increase from the posi-
tive displaced root up to the next root, which will be at a
finite distance from the origin, owing to condition (3.8), or
may not even exist, in which case p, must grow without
bound. Inequality (2.2) can not be satisfied and the motion is
orbitally unstable.

A formal stability criterion can be constructed from the
sign of the product of the two displaced roots. Since all other
roots are much larger, we can find the two small ones from
the last three terms in the polynomial (3.6); their product has
its sign opposite to the coefficient of 52 and therefore we find
stability iff

ay — (b, + €/ <0 (3.9)

(which can in an explicit case be transformed back into a
relation between the amplitudes).

C. Use of derivatives in general

Multiple roots of f( 7,) as needed for c-a motion can
occur in the four configurations sketched in Fig. 1. The order
o of the root R is even in Figs. 1a and 1b, odd (but not o = 1}
in Figs. 1c and 1d. Now apply small perturbations to
as,....a,,E; how will p,(t) change in the four cases?

It is important to recognize at the outset that p, is in
general subject to restrictions resulting from the values of the

o] b
R R
c d

FIG. 1. The four possible configurations of multiple roots of the polynomial

SUB)
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constants a,,...,a,, regardless of the nature of the polynomial
£. By virtue of the conservation laws SF (3.4), together with
Egs. SF (3.3) and the requirement p; >0, an inequality

—8b i <a;

must hold for every i = 2,...,n. For a near-resonant d.f. with
g; = 0 this is trivial. For a negative g;, however, an upper
bound to j, is implied; an example of some interest occurs
after Eq. (5.40) below. Likewise, a positive g; implies a lower
bound — a,<g;P;; there is the bound 0<p, at all events, but
it may be exceeded by one or more of the former. The closed
interval from the largest lower bound (including zero) to the
smallest upper bound we shall call the “domain of 5, result-
ing from the given a,,...,,; it may be finite or right-infinite,
and 7, can never lie outside at any time.

It can happen that the domain contracts into a single
point. A simple example in three d.f. occurs after Eq. (5.60)
below. In such a situation no amplitude variation is possible,
and if we perturb a,,..., a, alittle, the perturbed domain will
still be small. Hence any motion with a point domain is orbi-
tally stable, irrespective of other considerations.

We may now turn to Fig. 1 under the assumption that
the domain is a finite or right-infinite interval.

Consider Fig. 1a, the local maximum: regardless of
where under small perturbations new zeros appear near R,
the precondition f{ #,)>>0 necessary for physical motion can
only be met in the neighborhood of R, by continuity, and any
c-a motion at R is therefore orbitally stable.

Figure 1b, the local minimum: the opposite conclusion
results, for extended regions with f( 7,) > 0 always exist adja-
cent to R, so that certain perturbations will cause the ampli-
tude to evolve away from R. Of course, the evolution can
proceed only towards one side in case R lies at an endpoint of
the domain of 5,. The instability can be conditional, though.
For example, if R is fourfold and splits into a quartet of
distinct, real roots, then motion with a very small amplitude
modulation, between the two inner roots, may occur after
some perturbations.

Figure 1c: if R lies at an inner point of the domain,
instability follows as for Fig. 1b and is possibly conditional.
However, if R is a right domain endpoint, no finite evolution
of p, towards the right is allowed and orbital stability ensues.

Figure 14d: analogous to Fig. 1c. If R is an inner point,
there is instability, possibly conditional. If R is a left domain
endpoint, there is stability.

A summary of these results, expressed in terms of high-
er derivatives, is the

Theorem: With a point domain of j,, every motion has
constant amplitudes and is orbitally stable. When the do-
main is an interval, a c-a motion 7, = R at a root R of multi-
plicity 0>2 is orbitally stable iff
given o even:

(d°f/dp,%)a r <0,

given o odd:

(d°f/dp\") 20 and R uppe:_endpoint.

(3.10)
lowe
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In the principal case o = 2, a local minimum as in Fig.
1b could accordingly be stable if the domain is an isolated
point. Actually, if ¢ = 2 it is just for a point domain that this
configuration cannot occur in physical systems. For the
proof, assume the contrary, apply small perturbations and
note that in each of the alternative developments a contra-
diction follows. (a) If the real double root becomes complex,
thenf( 5,) > 0 holds afterwards in some finite interval enclos-
ing R and the motion 7 (¢ ) must become progressive, but this
cannot happen because the domain of 5, can be held as small
as we please. (b) If the root splits into two real ones, then
f(F,) <0 holds in between, the motion must be progressive
from one of the roots outwards and the contradiction is the
same. (c) If the double root never splits under any perturba-
tion, c-a motion would always resuit. Now for any c-a mo-
tion in our nonlinear system, R is determined by a,,...a,
from one equation, either F (R,a) = 0 or SF (5.5), and E then
follows from another equation, either SF (5.2) or (5.6). How-
ever, E is free for us to perturb independently of a,,....,a,,,
hence we may at will violate the latter equation, hence the
amplitudes are not necessarily constant, hence the root can-
not permanently stay double.

For a second-order root there is no further alternative
similar to the above-mentioned splitting of a fourth-order
root into a quartet with f( 7,) having a tiny bulge in the mid-
dle under which stable motion can continue. Odd-order
roots, too, can develop such bulges and indeed these are nec-
essary for continued stable motion in the vicinity of a point
domain, or of a domain endpoint. Having thus characterized
the special nature of the case o = 2, we can state the simple

Theorem: C-amotion §; = R at a double root is orbital-
ly stable iff

(d°f/dp\)a & <O

A simple example is the criterion (3.9); it effectively puts
the second derivative of the polynomial (3.6) in a very practi-
cal form which could be attained because we had some ex-
plicit knowledge of the nature of the case. Such knowledge
may not always be available, but it is still possible to develop
more detailed, yet general, criteria if the distinction between
Case (I) and Case (II) motions is introduced as in SF Sec. V.
We do so in the remainder of this subsection, but confine
ourselves to o = 2, as the treatment of higher multiplicities
will follow an analogous route. The required second deriva-
tive is obtained from the general formula (3.1)

f" =d>*/dp? = 29F /35, + 2F *F /35>
— 2(e + B /3p,)?

+2|E-Y wa, — ef, — B |#?B/3p?. (3.11)
2

Case (I) is defined by FR ,&)=0. Thus the second term
on the right of Eq. (3.11) will vanish at R except possibly if
the second derivative of F is not bounded there. It could
become unbounded, see Eq. (3.2), only if /;, = 1 or /; = 3 for
some /, together with g,p, + a; = Ofor 5, = R, which means
in terms of amplitudes that p, = 0 and in fact, p,=0 because
the motion is such that 5,=R. But ¢, =01is possible (indepen-
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dently of the other d.f.) only if /, >2, as we showed in Subsec.
Bfori = 1; hence we may discard the possibility /, = 1. With
IL = §=, on the other hand, each term in the product
F(6°F /3p?)stillcontainsg 5, + e, tosome positive power so
that when this factor vanishes the product also does. Now
from Eq. SF (5.2) it follows that the bracket in Eq. (3.11)
vanishes at R, and hence we have the

Theorem: A case (I) c-a motion at a root R of
multiplicity ¢ = 2 is orbitally stable iff

|0F /3P, & <|€ + 3B /3B, &- (3.12)

For the opposite sign there is instability, while equality can
not arise for o = 2.

Case (II) means sing,=0 and implies the relation SF
(5.5):

odd

€+ dB/dp, = + IF /dp,, ? ven

(3.13)
So now the first and third terms on the right of Eq. (3.11)
cancel. In the bracket we set 7, = R and then substitute

E-Y wa —eR - BRa)= + F(Ra), riﬁ

from Eq. SF (5.6). Hence we have the
Theorem: A Case (11) c-a motion at a root R of multi-
plicity o = 2 is orbitally stable iff

ven

FR,a)F /95 + PB/IF), x <O, ’de' (3.14)

Again, equality is impossible for o = 2, and > means
instability. In practice, the sign of F is often constant, e.g.,
when H (g} contains only one resonant term; then an obvious
further simplification is possible.

The two formulas (3.12) and (3.14) are remarkably dif-
ferent: first derivatives in one, second derivatives in the oth-
er. Also, € occurs explicitly in the former, while in the latter
it remains concealed in the relation between the amplitudes

R.a,,..,a, of the c-a motion; cf. SF Egs. (5.5) and (7.13) for
detail.

D. Existence surfaces and stability boundaries

We now introduce geometrical language'® in order to
interpret the analytical stability criteria of the preceding sub-
section. We represent every c-a motions as a point in an s-
dimensional space having the amplitudes as rectangular car-
tesian coordinates. Actually, coordinates p; will be more
convenient than the 4, themselves. In this p-space all c-a
motionsof a particular class will be represented by a geomet-
rical object which we call the “existence surface” of the class,
for brevity; it will be a union of locally continuous sets of
(generally) n — 1 dimensions, or bordered sheets of hyper-
surfaces, but we shall gloss over such details unless they mat-
ter to the purpose. -

Case (I) motions are defined by F ( 5,,a) = 0, a condition
which by means of the substitutions SF (3.3) and (3.4) trans-
lates back from Eq. (3.2) into

F(p)=Cp/' 5 "Q(p)=0. (3.15)
Thus the Case (I) existence surface is not complicated. It
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consists mostly of planes 7; = 0 (or rather, of hyperplane
wedges, because of the physical restriction p; >0 for all /) with
1;>2 (for I, = 1 a zero amplitude is usually ruled out as dis-
cussed in SF Sec. II); only the sheet Q = 0 can become
curved, but only if there are several resonant terms in H,(q),
and of sufficiently high degree, too.

If we now apply the criterion (3.10) at each point, this
existence surface will divide into subsets of different stability
type which are disjoint but still locally continuous because
f(p1) as apolynomial has continuous derivatives. There is no
need to deal with the points individually, of course; rather
ask first, where does f” vanish? In any connected region of
the existence surface where the second derivative does not
vanish, it must have the same sign throughout, by continu-
ity; therefore it suffices to calculate this sign at one interior
point in order to find the stability label for the entire region.
All stable or unstable regions with o = 2 can thus be recog-
nized, and this disposes of a good deal of the stability
problem.

The expression (3.11) for the second derivative can not
be employed for the present purpose as it stands because it
contains the energy constant E which is not an independent
one for c-a motions, see SF Sec. V, and must be eliminated,
but this is precisely what we have done already to arrive at
the criterion (3.12). In fact,

+ (OF /3P))s r = €+ (3B /0P \)us & (3.16)

is seen to be the condition to ensure that f” = O for a Case (1)
motion (at ;=R and with o> 2).
Consider more generally the equation

€+ 3B /3p, = + IF /9P, (3.17)

and translate it back into p-space. The set of all points in p-
space satisfying Eq. (3.17) will be called, for brevity, the “2-
stability boundary” of the Case (I) motion. It is in general a
curved hypersurface, somewhat reminiscent of a hyperbolic
paraboloid in three dimensions, as will be clear from a glance
at Eq. (3.2), and it usually has two distinct sheets because of
the + sign. The points on the existence surface (3.15) which
have f” = 0 are now obtained by finding the intersection
with the boundary (3.17). Note that the intersection may
sometimes be only a contact.

Case (II) motions are defined by the condition (3.13)
quoted above. This is seen to be identical with Eq. (3.17);
only the + sign needs to be interpreted as expressing the
two possible values of 7. Thus in p-space the existence surface
for Case (II) coincides with the 2-stability boundary for Case
(I).

There is more such reciprocity. If on the Case (II) exis-
tence surface we again seek the points having /' = 0, we
must again eliminate E from Eq. (3.11), but by the second
route which led to the criterion (3.14), and recognize that

cven

F(Ra)\PF /353 + B /3P3)u r =0, o

(3.18)
will make f” = O for a Case (II) motion (at p;=R and with
o> 2). Obviously we can deal with this result much as with
Eq. (3.16): we define a 2-stability boundary whose equation
factorizes into F = 0 and the supplementary
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which happens to be the p,-derivative of Eq. (3.17). The sec-
ond factor could have singularities or become a constant
(including zero), in which case we must not factor but consid-
er the product (3.18) on its own merits; exceptions apart,
however, the first factor F = 0 is merely the Case (I) exis-
tence condition (3.15).

It is this unexpected reciprocity which lends appeal to
the geometrical approach. Roughly speaking, a study of only
the two existence surfaces and their intersection, where the
motions which are simultaneously Case (I) and (II) are
found, will settle a major part of the stability question for
both Cases (I) and (II). Of course, there are possible complica-
tions from Eq. (3.18); then the 3-stability boundaries still
remain to be found in the intersection; and so forth. For
reasons of space, we shall not attempt to do any of this in full
generality, but refer instead to the specific examples in Sec.
V. Here we only append one more discussion of a general
nature.

The close connection between the stability problems for
Cases (I) and (II) suggests exploitations of geometrical trans-
formations. One example will suffice. Consider a system for
which F( p) is homogeneous while B is zero, and apply a
dilatation p,—y p; to p-space. Since F will simply multiply
with some power of y, the existence surface (3.15) remains
invariant. Now go from p to 5. The pertinent transformation
SF (3.3) is linear-homogeneous, hence F Fwill again be homo-
geneous, and its p,-derivatives must also be homogeneous.
Then in Eq. (3.19) the derivative will under the dilatation
multiply with some power of y, and the supplementary 2-
stability boundary is seen to be invariant. In Eq. (3.13) or
(3.17) for the Case (II) existence surface the dilatation will
also bring a power of y to the derivative, but we cannot can-
cel it out, we can only put it as a denominator under the €.
These last two arguments would obviously continue to hold
if B were not zero, but homogeneous and of the same degree
as F, so that under dilatation Fand B multiply with the same
power of y, and their derivatives likewise. The result can be
paraphrased thus: in a system with Fand B homogeneous
and of the same degree, or with Fhomogeneous and B =0, a
change of € is tantamount to a dilatation of p-space. This can
be helpful in drawing stability diagrams. At the very least it
follows that for € = O all o = 2 stability regions are invariant
under dilatation.

#F /95 + PB/9p? = (3.19)

E. Use of curvature boundaries in many cases

When the intersection of existence surfaces and 2-sta-
bility boundaries has been determined, the resultant 2-stabil-
ity regions must still be labelled, using Egs. (3.11) or (3.12)
and (3.14), according as f " <0. In many cases the mechanical
task of the calculation of the sign of £” can be profitably
linked to a more general, geometrical construction.

Suppose the polynomial B { 5,,a) is constant, or at most
linear in 5,; then the fourth term on the right of formula
(3.11) vanishes. In this case we call the set of all points in -
space satisfying

(OF /35,7 + F *F /3p?

—(e+dB/3F)=0 (3.20)
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the “curvature boundary” of f( 5,). It will in general be a
connected hypersurface of # — 1 dimensions which divides
p-space into a “‘right” and a ““left” part corresponding to
f"Z0. Calculation of the sign of /' at a single point thus fixes
the sign everywhere else, including the stability regions.

The benefit of this approach is that the curvature
boundary often helps in the classification of the system mo-
tions which are possible in some more extended vicinity of a
c-a motion under scrutiny. The projection of an arbitrary
phase curve from p,g-space into p-subspace is in slow-fluctu-
ation approximation a straight line segment given by the n
linear equations (see SF Sec. III)

P =8Py

pi=8p +ta, i=2..n (3.21)
in terms of the parameter p, (with g, > O but the other g; and
the a; possibly<0). The turning points of the amplitude
modulation, the segment end points, are determined by roots
of f( §,) = O, which are often enough awkward to calculate.
The equation f“( p,) = 0is of order 2 less and will usually be
more manageable. For instance, a segment may cross the
curvature boundary if and only if £( 7,) has a point of inflec-
tion between the turning points; if now we find for some
reason that this can not happen in a certain region, then we
already know a good deal about the roots of f{ 7,) in the
vicinity. Such perspectives can be developed ad hoc; we refer
to a few hints in Sec. V.

If B is of the second or higher order, then there is a
separate /" = 0 surface for every value of E. The family of
these surfaces is linear in the parameter E; thus it does not
have an envelope, but it follows from Eq. (3.11) that each
member passes through the intersection of the surface (3.20)
with thesurfaced>B /95> = 0. Evidently the structure of the
family may be complicated. Useful geometrical arguments
are still not ruled out for particular cases, but we have not
perceived useful generalities worthy of elaboration.

IV. LIAPUNOV STABILITY

We now seek c-a motions for which |8 *(t) — B;(¢)|

< 77" holds (uniformly in # ) in addition to the orbital stability
condition (2.2) (under all perturbations which at time ¢, pro-
duce || P*(t,) — P(t,)|| <p'). A c-amotion is purely harmonic
with constant periods, say o, + 3. The phase variations 8 *
(£ ) of the perturbed motion will consist of constant parts close
tothe B, plus (small) parts having the same period T * as the
amplitude modulations; see SF Sec. IV. Thus a phase vari-
ation change

Aﬂi =ﬁﬂt) _ﬁio (4-1)
will in general consist of a small constant part plus a small
part of period T *.

Perfect, uniform Liapunov stability would result from
Af,=0. This would require that all motions in an entire n-
dimensional neighborhood in p-space have the same, con-
stant period, including those off the c-a existence surface
which are (faintly) amplitude modulated. Physically speak-
ing, throughout this n-dimensional range of amplitude val-
ues the system would be required to exhibit an essentially
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harmonic character with some faint, essentially harmonic
coupling to account for faint, constant-frequency amplitude
modulation. Such conditions are hard to conceive in a sys-
tem with a polynomial coupling Hamiltonian.

The frequencies generally are not even constant inside
the existence surfaces because the frequencies of c-a motions
generally depend on the amplitudes. Only for Case (I) mo-
tions can they become constant, provided also B =0. They
are then identical with the normal frequencies w,, and the
system behaves as if it were exactly harmonic; see SF Sec. V.
This class of motions (and systems) may have properties
close to Liapunov stability.

Consider therefore a system with B = 0. The Case (I)
existence surface consists mostly of coordinate planes.
Choose one of those, and without loss of generality call it ,.
Thus the c-a motions to be considered have 5,=0 at a multi-
ple root of f( 5,), which for brevity we assume to be exactly
double; according to Eq. (3.6) this means that we must have
both £ — 3w,a; = 0 and

a, =0, (4.2)
a restriction on the system which happens to be included in
the orbital stability problem discussed in Sec. IIL.B. From
there we recall that after a perturbation f{ ;) has in the orbi-
tally stable case two roots at, or close to the right of, the

origin. To calculate them, we may exploit their smallness.
Neglect 5, and higher powers in Eq. (3.6) so that

SHB)=lat - ) F+ ZG(E* - wiar) 2

— (E =y w,-a;")z, (4.3)

where the star means “after perturbation”. A short calcula-
tion shows that two real roots require a¥ >0 and the roots
follow at once. The differential equation SF (3.10) can be
integrated with the quadratic polynomial (4.3) and yields the
elementary solution

E*¥ _Zw.a*

plt)= e

Xfe+ \/E sin [(€2 — a¥)'*(t + const)]}, (4.4)

where the argument of the sine is real on account of the
orbital stability condition (3.9).

We now take the general equation SF (4.2) for the phase
variations, set B =0, recall that B = Ofor the given c-a mo-
tions, and write Eq. (4.1) as

E* _Swa* —e€p, gF*

a4 Bi = —r , [=2,..,n.
F* dat (4.5)

Upon insertion of the explicit expression {4.4) into Eq. (4.5),
A B, isseentobein general a more or less complicated func-
tion of time, depending on the given F. Hence there is in
general no Liapunov stability; the best one could hope forisa
kind of “‘stability over one modulation period”” which would
result if by happenstance the time average of A4 £, vanishes
for all i so that the perturbed phase point oscillates hence and
forth about the unperturbed one.
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However, it is also possible for 5, to be time-indepen-
dent, namely if a¥ = 0, according to Eq. (4.4); indeed the
polynomial (4.3) becomes a perfect square for a* = 0. More-
over, the constant value is

pi=(E* =~ Soiar) /e (4.6)

provided €0, and if we substitute this into Eq .(4.5) the
resultis 4 B =0 for all /i = 2,...,n, regardless of F; an analo-
gous result follows for i = 1 from Eq. SF (4.3). This, then, is
the way for constant frequencies to become possible in entire
neighborhoods off the c-a existence surfaces: under pertur-
bations the crucial multiple root of f( 5,) must not split but
displace itself as one. A plausible result, perhaps, but it cer-
tainly was not obvious that systems of such nature are plenti-
ful. In fact, the two conditions (4.2) and a¥ = 0 are readily
met by /,>>3 [see Eq. (3.4)]. The simplest example is a system
in two d.f. with H,(q} = vq3 q,.

This argument rests upon the neglect of powers higher
than the second in the polynomial (4.3). If in a system with
coupling of type ¢; ¢, (or similar) it is permissible to neglect
41, it will indeed behave in an essentially harmonic manner.
Again a plausible result, but it no longer holds when the
third power is admitted back into f( p,): the double root will
then split under perturbations, ever so slightly perhaps, but
enough to bring some time dependence top, (¢ ), and withit, to
4 B,. Still we may call the motion “Liapunov unstable in the
third order only”.

Since the slow-fluctuation method is only an approxi-
mation one can hardly be disappointed at finding only ap-
proximate Liapunov stability. It astonishes one, on the other
hand, to realize how frequently it arises, and as it may be
relevant in many practical applications we believe that it is
worth looking for routinely. Our arguments are easily modi-
fied to suit particular cases.

V. EXAMPLES

The five examples in this section are partly culled from
the literature, partly invented, partly tangible, and partly
abstract. The selection was governed by a desire to present a
handful of graphs and a handful of ad hoc methods which
could fairly be called typical. In the same spirit we stopped
short of developing every item down to its ultimate subdivi-

sions, even though the results are mostly new.

All manipulative details are elementary and have been
omitted. However, we indicate enough intermediate steps to
enable the reader to follow the argument closely wherever it
becomes convoluted. As a safeguard against ambiguities we
have rigidly adhered to our elaborate, general notation.

A. Coupling of pure ¢3 gz-type
We discuss first two d.f. coupled by
H\(g) = 199>, (5.1)

the simplest of all nonlinear systems of more than one d.f."’
Only one resonance is possible:

20, +g0,=€, g= +1. (5.2)

With g, = — 1 the oscillator masses are positive and the

Marijke F. Augusteijn and Ernst Breitenberger 58



2w tw, =

-
- (e=0) P
even (cupls -~ T~ __
T

FIG. 2. Stability diagram for coupling ¥4 ¢,. (I) and (II) denote the existence
lines for the Case (I) and (II) motions; s and « mean orbitally stable and
unstable; even and odd refer to the parity of r; “curv. b.” is the boundary
between regions of positive and negative curvature, marked + and — ; the
supplementary stability boundary for Case (II) is also indicated. The two
important intersections are at 4 (0,40 %) and B(462, 46 7). The drawing as-
sumes 8 = €/¥ > 0; for & <0 interchange odd and even. At exact resonance
the parabola contracts into the straight line marked € = 0. The dot-dash line
is representative of motions at varying amplitude. For cup and cap, see Ref.
17.

Hamiltonian is positive-definite; this case represents a basic
approximation in the theory of the elastic pendulum and
many other, real systems.!” With g, = + 1 both m, and w,
are negative; this case is familiar in celestial mechanics.'® We
treat both in the same formulation so as to bring their differ-
ences to the fore.

In either case, the equation of motion

Py= —0H /g, = — mw3q, — 7q,
shows that ¢,=0 is not a solution unless also g,=0. The
slow-fluctuation approximation (i.e. the passage from Hto S)
becomes unreliable when the amplitude of ¢, tends towards
zero, because it cannot reproduce the required fast phase
variation; see SF Sec. VI. We accordingly crosshatch this
sensitive strip on the stability graph, Fig. 2. For all other
motions, as well as for the low-amplitude motions at times
away from the minimum, the slow-fluctuation solutions are
known to be extremely accurate, at least for values of y cor-
responding to an elastic pendulum.'’

There is no polynomial B, while F follows from the cou-
pling (5.1) as

F(Fua)=vFl2g. B + )] (5.3)
where

¥ = yimi i myw,) ~ ',

Pi=1Pn a=p,—igp: (5.4)

The Case (I} existence line follows from Eq. (5.3) to be
simply

P =0 (5.5)
(P, = Ois equivalent to the g,=0 ruled out above). The Case

(II) existence lines are found from Eq. (3.13) after transfor-
mation to p by means of Eqgs. (5.4):
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801 = —40F 9\/ 8p,,
for 7 0" with 6 = /7. (5.6)
odd
With g, = + 1 the equation can be satisfied for only one of
the two signs, given the sign of 6. On the other hand, at exact

resonance € = & = 0 the parabola (5.6) degenerates into the
straight line

8.0+ 49, =0, (5.7)
which can hold only for g, = — 1, and then » may be either
even or odd.

The supplementary stability boundary Eq. (3.19)
becomes

80 —8p,=0; (5.8)

this can hold only for g, = + 1. The curvature boundary
Eq. (3.20) is found after some reduction to be the straight line

8.0 +p,=140" (5.9)
for both values of g,.

Equations (5.5)—(5.9) are best studied and applied by
means of graphs. Note that they are all invariant under si-
multaneous change of sign of g, and p,. Hence we may in the
first quadrant draw the curves forg, = + 1, say, and contin-
ue them into the second to obtain a mirror image (or left-
handed rendition) of the graph for g, = — 1.

The equations contain € and ¥ only in the combination
6 = e/7. This is an obvious consequence of ¥ being an overall
factor in H,(g), and here as well as in other such cases reduces
the number of needed graphs by one half. The given H (¢) has
an additional property which entails a further symmetry: it
contains one of the variables, here ¢,, only in form of an odd
power as an overall factor. Thus a change of sign of ¥, or 6,
can be absorbed into this variable where it means a change of
phase by an odd multiple of 7; the sign of @ is therefore linked
with the sign of r, again halving the number of graphs. Last-
ly, we conclude from Sec. III.D that a change of € (or 8) is
equivalent to a dilatation; it follows, amongst other things,
that the axis of the parabola (5.6) is always parallel to its
limiting form (5.7).

We have drawn Fig. 2 for 9 positive. The pertaining
parity of » follows from Eq. (5.6). For negative 8 merely inter-
change  odd and even (together with the descriptions *“cup”
and “cap” which are reminders of the appearance of these c-
a motions in the type case, the elastic pendulum'’).

The sign of f” can be determined from Eq. (3.11) ata
single point, say the origin. The stability labels follow as
indicated. They are not affected by a change of sign of 6.

Motions at varying amplitudes are represented by
straight-line segments which according to Eqgs. (3.21) and
(5.4) all have the slope g,/g, = = 4, like the dot-dash line
drawn.

The polynomial f( 7,) itself is finally calculated from
Egs. (3.1) and (5.3) as

fUP1) =28,7°P7 + (27 *a, — €51
+ 26(E — w,a,) f, — (E — w,a,)%. (5.10)
Note the sign of its leading coefficient. It follows that of the
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c-a motions with ¢ = 3, point A in Fig. 2 is unstable for
g, = + 1 but stable for g, = — 1, while point B is always
unstable; cf. Figs. 1cand 1d. It also folows thatforg, = + 1
unbounded motion is possible, since there is no upper bound
on 7,. In fact, all unstable Case (I) and Case (II) motions are
then in the neighborhood of unbounded motion.

It is a rewarding exercise to sketch quickly and qualita-
tively the appearance of the graph of f( 5,) for the various
regions and dividing lines of Fig. 2.

B. Coupling of pure g2 g2-type
We now turn to the coupling

H\(q) =vqiq; (5.11)
which seems not to have received much attention in the lit-
erature.'® We present it here for contrast with the previous
example. There is still only one resonance:

20,+ 80, =€, g =12, (5.12)
but almost everything else has been altered by going from ¢,
tog; in H,.

First we calculate

B(pa) = 275\(g:B, + @) (5.13)

F(pna)=7¥p\(8. P\ + a)), (5.14)
where

¥V =v/m o myw,,

P =1p, ary=p,— &P (5.15)

From formula (5.14) we read off the Case (I) existence lines:

p,=0and p,=0. (5.16)
The Case (II) existence lines are, from Eq. (3.13),
16,5 +P,+10=0, r even,
le, Py +p,+6=0, r odd,
where 6 = ¢/7. (5.17)
2w 2w, = € §2 2w, t2w, = €
(II) odd
N (1)
s
b-'/
&
(II) even A o“\/Q’
s ///
/’ u S
,/ 8
./
e s N\
(1S 5 u s
8' A

FIG. 3. Stability diagram for coupling 74’ g>. Abbreviations as for Fig. 2,
but here there is neither a curvature boundary nor a supplementary stability
line. The intersections are 4 (0, — &)and B (0, — 16 ). The drawing assumes

8 = €/7 < 0; for 0> 0 the intercepts at 4 and B are below the p,-axis.
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There is no supplementary stability boundary because the
parenthesis in Eq. (3.18) reduces to a constant.

Equations (5.16) and (5.17) are again invariant under
simultaneous sign change of g, and 7,. Thus we again draw
the two stability diagrams in one graph, Fig. 3, with
8> = + 2 on theright and the g, = — 2 diagram being the
mirror image of the left side. Since the polynomial (5.13) is
quadratic there exists no energy-independent curvature
boundary. The stability labels must therefore be ascertained
oneby one. Atp, = 0, thesign of f” is quickly obtained from
Eq. (3.11) or from the second-power coefficient in Eq. (5.18)
below, but in the other cases we preferred to use Egs. (3.12)
and (3.14).

Fig. 3 is drawn for 8 negative. For positive 8, according
to Egs. (5.17) the two straight lines must shift downwards so
as to make negative intercepts on the p,-axis; there are then
no Case (II) motions possible for g, = + 2. At exact reso-
nance these lines coincide and pass through the origin; the
stability of the Case (II) motions for g, = — 2 then depends
solely on the parity of r. Note also the alternation of the
stability of the Case (I) motions, and in particular, how in-
creasing the amplitude leads from instability back to stabil-
ity (this still holds at positive ).

The dot-dash line again indicates the slope of the
straight line segments (3.21) representing motion at varying
amplitudes.

For reference we also quote the full polynomial

[P = — 1275} — 28,7 %26 + 3a,) B3
- [37 zag +4y 26“‘2 +ée— 48, VE — wzaz)] pi

+ 2{€ + 27 )(E — ,a,) fy — (E — w,a,)’.
(5.18)

Its leading coefficient is negative regardless of g,, hence there
can be no unbounded motion for g, = + 2 despite the nega-
tive m, and the appearance of the dot-dash line!

C. Coupling of g2 g,-type, with and without nonresonant
addition

We now pass from g7 in H,(g) to ¢;. We also insert a
second and nonresonant term; this could depend on the same
two d.f. but for clarity we let it be introduced by a third d.f.
Thus we take the coupling to be

Hi(q) = 7\q1q; + 729195 (5.19)
as in the detailed example of SF Sec. VII. There are several
resonances possible, but all interesting features will become
clear if we consider only
{5.20)

as in SF. The results will be similar whether m,, w, are posi-
tive or negative; only @, + @, must be significantly different
from zero, otherwise there will be a second near-resonance
due to the first term in H, (cf. SF, end of Sec. III).

First we take ¢, = 0, i.e., ¢, remains decoupled from ¢q,,
¢,. From SF Eq. (7.7) we read off

F(Bna) =73 ) — B, + a3, (5.21)
where

Jo,—w;=¢€
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5 _ 33 —1n2
V2 = vami oy myw;) s

2 =1py, az=p;+ip: (5.22)
The Case (I) existence line is
=0 (5.23)

{with 5; = Oruled out because g;=0is impossible unless also
¢,=0). The Case (II) existence line is found from SF Eq.
(7.13) after some remodeling:

492(173)”2 + (171)1/2(9133 _171) =0,

for 7" with 6, = €/7,- (5.24)
odd

This is not a conic section. Take 8, positive, for the sake of
discussion: with 7 even, the parenthesis must be negative and
hence we obtain a branch approaching the origin at low val-
ues of p3, while with  odd the parenthesis is positive, so that
P, must sharply increase as 5,—0. At exact resonance the
two branches degenerate into the straight lines

(5.25)

The curvature boundary is best obtained from the polynomi-
al SF {7.9); it is the hyperbola

P, =0 and 9p;=p,.

Pt —3p 05 +403 =0, (5.26)
which at exact resonance degenerates into
P =0 and 3p; =p5,. (5.27)

The supplementary stability boundary is found from Eq.
(3.19) after some algebra to be a degenerate conic section of
which only the branch

Fi+(0—6/3)5;,=0 (5.28)

3w|—w3=6

NI)S.

FIG. 4. Stability diagram for coupling 3,4, ¢; in the resonance

3w, — w; = €. Abbreviations as for Fig. 2. The coordinates of point A4 are
both proportional to |, |. The drawing assumes 6, = e/7, > 0; for 6, <0
interchange odd and even.
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(I)+(m)
+ Curv.b
u

Swy-w3 =0

+

FIG. 5. The diagram of Fig. 4 degenerates into these straight lines at exact
resonance € = 8, =0.

is admissible.

Existence lines, curvature, and stability boundaries are
drawn in Fig. 4 for 6, > 0. The dot-dash line indicates the
slope of the straight-line segments (3.21) representing mo-
tion at varying amplitudes. For 8, <0, interchange r even
and odd.

We have drawn the case of exact resonance 8, = 0 sepa-
rately in Fig. 5 because it is starkly different. The upper part
of the curvature boundary (in addition to the unstable part of
the Case (1) existence line) has moved into the ordinate axis.
Hence c-a motion at g, = 0 now takes place at a third-order
root of f( p,). A glance at the formula SF (7.9) will show that
the fourth root of f{ 7,) is in this case R, = a;, and since
a; > 0 whereas f{ p,) eventually turns downwards it follows
that the p; = O motion is now orbitally unstable (cf. Fig. 1c)
although for € #0 it is stable. In fact, at €0 this motion is
nearly Liapunov—stable as shown in Sec. IV! This abrupt,
discontinuous change from a high degree of stability to orbit-
al instability carries a lesson: system behavior at exact reso-
nance is no unfailing guide to behavior off resonance, be the
detuning ever so small. Right at the origin, of course, all four
roots of f{ §,) coincide; the upper bound a, also retreats into
the origin and therefore the rest position of the system is
orbitally stable, as one should expect.

A harbinger of this remarkable change of stability prop-
erties as e—0 is the close proximity in Fig. 4 of the curvature
boundary to the two existence lines flanking it. Quite gener-
ally, such closeness foreshadows pronounced effects of finite
perturbations on c-a motions. Figure 2 contains another ex-
ample. The cap motion at small 7, is so close to the curvature
boundary that a clumsy attempt at setting it up in an actual
system may turn it into a motion in the vicinity of the unsta-
ble Case (I) motion nearby. Graphing f(5,) roughly will help
one to understand such p-space topographies better.

Finally let ¥, #0; g, then moves at constant amplitude,
although exchanging some energy with ¢, and g, via its
phase (cf. SF Secs. I1I and IV). The offshoot is a B-
polynomial

B(p,a) = 37.a:p.,
where

7 =n/momyw,, a,=p,. (5.29)
For the detailed derivation, see SF Eq. (7.2). This is quite
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different from the quadratic polynomial (5.13); the reason is
that in the present system ¢, does not resonate, hence

P, = const = a, according to SF Eq. (7.5), while p, is vari-
able according to Eq. (5.15) if », and w, resonate according
to Eq. (5.12). In the slow-fluctuation Hamiltonian SF (3.6)
this linear B adds to the term €p,. The effect is merely a
replacement in all formulas of € by € + 3¥%,a,, i.e. a numeri-
cal change of € which is equivalent to a dilatation of the
stability diagram Fig. 4. The three-dimensional stability
graph of the system of three d.f. can therefore be constructed
simply by stacking cross sections similar to Fig. 4 from a
bottom which is Fig. 5 and describes € + 3¥,a, = 0.

If we had added a term 7,¢% g2 to 7,41 ¢, instead of
v.4> 43, it would still not resonate; however, since p, is not
constant but varies according to Eq. (5.22), we then obtain a
quadratic polynomial B after all and the stability diagram
would differ markedly from Fig. 4.

D. Three interacting waves
The coupling in three d.f.

H,(q) = 79,995 (5.30)

has a diverse literature. In plasma physics, optics, and fluid
dynamics it serves as a basic nonlinear approximation under
the name of “the case of the three interacting waves.” Some
authors have attempted Hamiltonian formulations®®?! with-
out, however, exploiting them fully; other studies eschew the
benefits of the Hamiltonian approach.?> We consider only
the Case (II) motions because their existence has generally
been overlooked.*!

The exact equations of motion are

p; = —mwiq; — vq;q, and cyclic
Evidently ¢;=0 is not possible unless also ¢;=0 or ¢, =0,
and then the remaining ¢ varies harmonically. Each single
d.f. is therefore a possible motion of Case (I) type, but this
cannot be safely investigated in our approximation because
of the fast phase changes accompanying amplitude zeros
when the coupling contains only the first power, cf. SF Sec.

VL
Two different resonating systems are possible. One has

Cl)l +w2+a)3=6, (5.31)

50 that one or two frequencies must be negative, and corre-

spondingly one or two masses negative. The three ampli-

tudes vary in the same sense; explosive instability is possible.
The other system resonates at

(5.32)

with all masses and frequencies positive. The amplitudes of
¢, and g, {the two “partial waves”’} vary in the same sense but
in opposition to the amplitude of ¢, (the “sum wave”), ac-
cording to

W) — Wy — W3 =€

Pr+P=0a py+pi=as (5.33)
It follows that
a,>0, a;>0 (5.34)

(a2, = 0 or a5 = 0 is possible only for the Case (I) type mo-
tions, which we cannot safely investigate anyway). Next we
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calculate
F=7lyBila, — Billas — 1"
¥ = vim@ myw,mym;) ~ 2, Pi=n (5.35)
Simple as this F appears to be, Eq. (3.13) leads to the Case (II)
existence surface
3p — 2(a; +a;3) Py + axas
= F0[8p\(a, — Pillas — P))

]1/2
for » ZV(;’: with 8 = ¢/7, (5.36)

which is not easy to describe geometrically. We outline in-
stead how to calculate it point by point.

First, at exact resonance 8 = 0, Eq. (5.36) is quadratic
with roots

(5.37)

Under the two numbering conventions S, <.S, and a,<a,, it
is readily verified that

S, = Ya, + ;) + {la] —ayas +a3)”

(5.38)

From the conservation laws (5.33) it follows that for Case (II)
motions always

0<S, <a,<55a;.

(5.39)

( pr=a, implies p,=0 which is only possible if also p;=0,
and we are back at a Case (I) type, also @, = a, follows). Thus
P,=S, is not admissible, but p,=S, is and represents a
unique amplitude of g, for any given pair of constants

0 < a,<a;; the amplitudes of ¢, and g, then follow from Eqs.
(5.33).

When 6 0, Eq. (5.36) can be solved graphically
through the intersections of the left- and right-hand sides, set
separately equal to zero. The left always yields a parabola
intercepting the p,-axis at S| and S,; the right intercepts at 0,
a, and a,. Qualitative graphing in accordance with the mag-
nitude relations (5.38) quickly shows that for any pair
0 <a, < a, there are two distinct solutions of Eq. (5.36),
called R 'and R " in Fig. 6a, withO < R ' <S; <R " < a,; one

P, =D, =const<a,

odd R
odd

a b

FIG. 6. Three interacting waves; coupling ¥¢,4,4, in the resonance

®, — w, — w; = €. Graphical determination of the constant amplitudes of
Case (II) motions if @, < @, and if @, = @, = a, resp. For symbols, see text,
Eq. (5.37) et seq.
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occurs for  odd, the other for r even. In the degenerate case
a, = a,, R " could slide up into S, or even beyond, (see Fig.
6b) and then Case (II) motion is possible only at 5, = R ".

The polynomial f( p,) is of the third degree, and one
easily sees from Eq. (5.35) that its highest coefficient is posi-
tive. Unbounded motion is nonetheless impossible. The
product of the three roots is positive; they can easily be found
with the aid of Egs. (3.1) and (5.35) from

E — w0, — 030, — €0, = + 7[§p\la, — p))a; — p))] 2,

(5.40)

Solve graphically: the left side yields a straight line, the right
a curve like the one in Fig, 6, except for a scale factor. If
a, = a, there can be a double root at p;, = a,, but this is
again the Case (I) type motion referred to above. Under all
other circumstances the largest root of f( p,) is seen to be
necessarily real and larger than a,, which is an upper bound
on p, in any case. Thus there exist no initial conditions re-
sulting in motion beyond the largest root in any case. By
extension, physical motion can only take place between the
two smallest roots. Case (II) motions therefore arise only
from the configuration of Fig. 1a, and are always orbitally
stable.

Regarding the system with the resonance (5.31), argu-
ments can be fashioned along similar lines. However, o, and
a; are now not necessarily positive, nor is there an upper
bound on p,. Under these less favorable circumstances it no
longer follows that a unique Case (II) motion exists for any
pair @,,a;, nor can any quick conclusion be drawn about
stability.

E. An elastic double pendulum

Our last example is an idealized but not unrealistic sys-
tem from technical mechanics, a double pendulum with the
lower bob constrained to move in the vertical, the upper bob
constrained to move in a vertical plane, and the inextensible
threads replaced by linear springs. Mettler took it up in an
important study;>* he allowed the bob masses and spring
constants to be different and investigated the 1:2 resonances
between suspension and pendulum modes typical for any
elastic pendulum.'” On the other hand, we want to look for
resonances involving all three d.f. For brevity of presenta-
tion, we take the masses and spring constants to be equal, see
Fig. 7. Even so, the problem soon looks formidable because
we have to develop the Hamiltonian to terms of order four,
instead of three as Mettler did; however, physical and math-
ematical circumstances conspire to lead to a fairly simple,
final result which we think interesting enough to describe.

Let the springs have lengths /, (upper) and /, (lower)
under the static load of the two bobs, each of mass m; with
equal unextended lengths /, we therefore have & (/, — I,

=2mg, k{l,—l))=mg

L/, =201, — 1.

This determines the equilibrium position of Fig. 7 at
x =y, =y, = 0. The exact expression for the potential ener-
gy is

Vxyy,) = mgly, + ;)

(5.41)
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FIG. 7. The constrained elastic double pendulum with equal masses, equal
unstretched lengths, and equal spring constants. The stretched lengths are
{, and [, at rest; y,, y, are measured positive upwards from rest.

+ %k { [xz + (I _YI)Z]I/Z - lo}z

+ %k { [xz + -y, +y1)2]]/2 - 10}2~
(5.42)

At small amplitudes,?* binomial expansion and dropping of
irrelevant constants leads in the fourth order to the
Hamiltonian

H (x,p,.p,) = ym(x* + 37 +53)
+4dx* + byt + ks — kyw,
— dx%, — idx’y,
+ dx* — WXy

—1 4 w2+ B X%y (5.43)
A L
where
d,=k(2_’_°_’_°),
11 12
nmk(bk),
non
] Iy |
d3=k;‘21, d4=k([—‘;+l—‘;). (5.44)
2 1 2

If the upper bob where also constrained to move in the
vertical, x=0, we would have a strictly harmonic system
whose normal modes are therefore the proper coordinates to
introduce for the following. The appropriate transformation
is

X =4q
V1= —g,sing + g, cosd,

Y2 =g, cos¢ + g, sing, (5.45)
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and withtan2¢ = — 2, or ¢ ~ 58.28°, the Hamiltonian takes
the desired form

1
Hig) =7} +2} + 1) +%w%q% + i@ + 0lg?)

+dsqiq, +dyglg;
+ 791+ V49 + VG + Vedi 429, (5.46)
where
(l)% = dl/m,
W}, =23 4[5, indext,
2m
ds = id, sing — 1d, cosg,
ds = — id, cos¢ — 1d, sing,
vi1=4d,/8,
Y2 = —lid,sin’$ — % (1 cos’d + sing cosg ),
2
2 d3 tn2 5
Vs = — id,ycos’p — l—(% sin“g — sing cos¢ ),
2
Va=1d,sin2¢ + i3—(cos2¢ — 1 sin2¢).
5 (5.47)

The normal modes g,, g, are evidently antiphase and in-
phase motions, respectively, with the former having much
the higher frequency according to Egs. (5.47).

The terms with coefficients ds and d¢ can have the re-
sonances considered by Mettler.?® Using Eqs. (5.41) and
{5.47), it is easily calculated that

2w, — w, =0 requires ,/l, = 1.337, (5.48)

20, — wy =0 requires 1,/l, = 1.034, (5.49)
with /,/l, determined by Eq. (5.41). For comparison, in the
simple spring pendulum the resonant extension?’ is
1 /1, = 1.333. For completeness we also note that

®, — w; =0 requires /,/],=1.161, (5.50)
whereas w, — w, = 0 is physically impossible.

Now consider the last term in the Hamiltonian (5.46),
the only one coupling all three d.f.; can it resonate at an
extension safely different from those producing the other
resonances? As above, we calculate that the obvious

20, — w, + w3 = 0 requires 1,/l, = 1.097, (5.51)

while the equally obvious
20, —~ @, — 0y = 0 requires /,/l,=2.2,

which we discard at once as being physically too implausible.
Since w, is not vastly different from w, for plausible exten-

sions [see Eqs. (5.49) and (5.50)] the other combination fre-

quencies in g3 ¢,¢; cannot resonate either. Thus we adopt

as the only realistic possibility. As the extension required at
the exact resonance (5.51) is bracketed by the extensions in
Eqgs. (5.49) and (5.50), € should remain fairly small—not an
unreasonable restriction for a higher-order resonance.

20, —w, + @3 =6,
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For the near-resonance (5.52) we find in the usual way

B=237—V2+ 75) 51 + 272 + 7a23) By, (5.53)

F=7,plla, —F)le; + 51" (5.54)
where
7= 71/’"2‘0% s Vo= yz/mza),(oz, Vs = ys/m'e,ws,

Vo= 7’4/”72(01\/(1’2“’3, Pi= ipy,

a=p,+4ip, ay=p3—1p;. (5.55)
Note that the two third-order terms in the Hamiltonian
(5.46) (coefficients d ¢ ) are not represented in the slow-fluc-
tuation approximation because under the condition (5.52)
they fluctuate much faster than the resonant term represent-
ed by the polynomial (5.54); on the other hand, the three
nonresonant fourth-order terms (coefficients 7, , ;) all con-
tribute to the polynomial (5.53).

The equations of motion show that ¢,==0 is a possible
solution, but g,=0 or ¢,=0 is not possible unless also g,=0.
Hence the Case (I} existence surface is the plane

p=0 (5.56)
(i.e., the first quadrant of the p,,p;-plane with both axes in-
cluded). The Case (II) existence surface is
€+ (67, — V2 + ¥3) D1 + 272 D2 + 2V D5

=+ 774[(P_2P_3)1/2 - %51(53/52)1/2 + 5171(172/‘53)1/2] ’
even 557
r odd’ {5.57)
A study of the latter is beyond the scope of an illustrative
example. Instead, we ask only the practically relevant ques-
tion, is pure suspension motion stable?

The intersection of the existence surface (5.56) with its

2-stability boundary (5.57) is the conic

even
y T ’
odd

which can lie only in the first and/or third quadrant. Equa-
tions (5.47) quickly show that %,, 75, and 7, are all negative,
with ¥, being the smallest and 7, the largest in amount (in
fact, ¥,/¥,~=7.5 near resonance). It follows that the curve
touches the coordinate axes at their intersections with the
straight line

€+2¥,0,+273p5=0 (5.59)
and lies rather narrowly along that line; hence it is an ellipse.
For € = 0 it contracts into the origin (which is clearly stable
in any case). For € <0, it lies in the third quadrant; every
suspension motion is then stable.

For € > 0, the ellipse lies in the first quadrant, and, since
it does not enclose the origin, which is stable, its interior is
orbitally unstable. We know of no intuitively simple reason
why this instability should be there. The ellipse itself repre-

sents motion at a third-order root of f{ p,) at p, = 0. In order
to apply the criterion (3.10) to it, we calculate the coefficient

of 7} in fand find, using Egs. (3.1), (5.53), and (5.54):

fi =7Fila, — as) — 437, — ¥, + Ps)l€ + 271a, + 273a;5).
(5.60)

Since 7, is fairly small, it is clear that f; = 0 happens to hold

)1/2

€+2¥,P,+2¥3P3= F¥al P2 D3 {5.58)
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approximately for all points of the straight line (5.59) which
therefore represents approximately the 3-stability boundary.
This line also divides the ellipse exactly into an 7-even (left)
and r-odd (right) half, see Fig. 8; calculation of the sign of /;
in one half then shows that 7 even (left) is stable, except per-
haps near the points of contact where the argument is not
safe.

This last detail is easily clarified. The domain of 5, has
an upper bound determined by a,, hence it reduces to the
isolated point 5; = 0 when @, = 0. All points on the p,-axis,
where p, = 0, are therefore stable regardless of derivatives;
in particular, the (upper]} point of contact of the ellipse. Not
so the (lower) point of contact with the p,-axis, wherea; = 0
which merely duplicates the lower bound at 5, = O; the do-
main is then finite, and the contact must be unstable because
f5>0 there (see Fig. 1c). It now follows that the exact 3-
stability boundary f; = 0 is slightly rotated clockwise
against the line of contact (5.59).

For graphical display, we describe the system by the
single parameter

k= (1,/1,), (5.61)
with the range restriction inferred from Eq. {5.41). A conve-
nient detuning measure is the dimensionless

€=(e/o)=2—(k+1-={2/x)" "% {5.62)
thus at exact resonance we have xk = 1.088, and if € is in-

creased from zero to 0.05, the concomitant increase of « is
only 1%. Using also instead of p, and p, the dimensionless

l<k<?,

t |
€ 0.0l | €003

]
o

0.010

0.008

0.00s6 |

0.004 |

0.002 [€'

0004 0006 0008
\%

0] 0.002 0.010

FIG. 8. Orbital stability of the suspension motions of the elastic pendulum;
coupling ¥.4: 4,4, in the resonance 20, — w, + @, = €. Dimensionless am-
plitude squares »,w as defined in Eq. (5.63); dimensionless detuning param-
eter € = €/w,. The insides of the ellipses are orbitally unstable. For

€ = 0.005 the ellipse is too narrow to be printed; only the line joining its
points of contact with the coordinate axes has been drawn as for the other
ellipses. For €’ <0 there is no instability. The drawing has been cropped at
the top because larger amplitudes would vitiate the approximation (5.43).
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v=A2/12, w=A%/I2 (5.63)

(with A, , the amplitudes of the normal modesj the ellipse
(5.58) becomes

€lk+1—26" "2 —x)~*—(0.362c > + 0.947)

—(0.138x ~* 4+ 0.053)w = + 0.224(1 —x ) ‘/vw,
even
" odd’
We plot this in Fig, 8 for two realistic values of €'. The differ-
ence between the exact 3-stability boundary points and the
points of contact is too small to be visible on the graph.
Since F and B are in this example homogeneous and of
the same degree, the two ellipses in Fig. 8 should be related
by dilatation, but this is only approximately true because the
7-coefficients in F and B themselves depend on ¢, i.e., one
can not vary € independently. As a result, the coefficients in
the ellipse (5.64) depend slightly on € via the parameter «,
and the two ellipses in Fig. 8 are slightly rotated against each
other. However, the tilt is too small to be seen, and for most
practical purposes the dilatation property still holds good.

(5.64)
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It is conjectured that the particle states of quantum mechanics are represented by functions of
independent variables. These functions obey a linear differential equation which has an invariance
group homomorphic to the inhomogeneous Lorentz group, thus giving a linear, Lorentz-
invariant theory. Simple one-particle examples of equations which lead to a discrete particle
spectrum are given, using both space-time variable, x,,, and sets of spinlike variables (pairs of
complex numbers). Some of the examples have internal symmetry. No examples of realistic
“many-body” particle theories are given, but we can deduce general characteristics. The
differential equation must be of second or higher order to give an interaction. Products of single-
particle states will be solutions of the equation and will form a complete set for widely separated
particles. But products of one-particle states are not solutions of the equation for strongly
interacting particles, and this permits the creation of particles. The origin of antisymmetry in such

a theory is not clear.

PACS numbers: 03.65.Bz

1. INTRODUCTION

The problems to which the theory of quantum mechan-
ics is applied can be ranked according to how much informa-
tion is put in, @ priori about the properties of the particles
involved. The least fundamental ones, in which the mass,
spin, and basic particle interactions are assumed known,
would include the calculation of energy levels of the (Dirac)
hydrogen atom and of electrons in crystals. At the other
extreme, the most fundamental level, we have the “elemen-
tary particle” problem in which the goal is to derive the
properties of the particles and their interactions from as few
principles and/or equations as possible.

The less fundamental problems can be set up in two
ways. One is the “first quantized” formulation in which the
Hamiltonian is expressed in terms of functions of, and differ-
ential operators in, the “‘independent variables”—the posi-
tion coordinates of the individual particles. The other is the
“second quantized” formulation in which the Hamiltonian
is expressed in terms of creation and annihilation operators
for “particles”. The first formulation is the primary one,
from our point of view, while the second one is derived from
the first and is used because it provides a compressed elegant
notation which makes computations much easier.

The more fundamental problem is normally expressed
only in the second quantized langauge of field theory. It is
our purpose in this paper to explore the possibility that there
is a first quantized formulation of the elementary particle
problem which underlies quantum field theory.

There have been a number of first quantized theories of
quantum mechanics proposed. Some of these deal only with
single-particle equations' which may be second quantized to
deal with many-particle systems. Others, like those of Baka-
mijian and Thomas,? can deal with many particles (or, at
least variables) but either have difficulty with the separabil-
ity of the interaction, or are only approximately relativistic.>
None of these however is intended to be a theory underlying
quantum field theory.

And, in fact, the many successes of QFT require that
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some justification be given for looking for such a theory. A
partial justification can be given by observing that successful
results are not always an indication that a theory is the “most
fundamental” one, as the hydrogen atom attests. In addi-
tion: (1) There are those* who believe that the infinities en-
countered in S-matrix theory are an indication that a differ-
ent formulation of the problem is needed. (2) According to
the ideas of Weinberg® and Salam,® the vacuum state sponta-
neously breaks the internal symmetry of the original prob-
lem and thus contains a good deal of physical information.
But there is no handle on |0) in field theory, i.e., no equation
exists from which we can solve for its properties. Thus, if we
believe these properties are subject to derivation, the Wein-
berg—Salam conjecture implies a deeper theory. (3) Even
though QCD has made great strides in unifying the various
forces of nature,’ it is not clear that a/l the quantities we
would like to calculate can be obtained from field theory. (4)
Finally, the analogy between the less fundamental and more
fundamental problems is suggestive. Suppose we are able to
carry out our theory and that antisymmetrized spin } parti-
cles emerged from it. Then, just as in the less fundamental
problems, we would undoubtedly switch to field operators in
order to do calculations efficiently. These creation operators
would be labeled by space-time variables and spin indices,
¥%(x, ), just as the usual creation operators are, because that
is how particle states are (or can be) labeled. Thus, the opera-
tors of field theory are labeled as if they came from a deeper
theory, which makes one suspect that that indeed might be
the case. These reasons, we feel, are sufficient to justify the
search for an underlying theory.

Such a theory must be able to take into account the
three fundamental principles of the elementary particle
problem—oparticleness, linear vector spaces, and Lorentz in-
variance. That is, there should be some mathematical princi-
ple which explains why we can describe nature in terms of
particles, and the mathematical representative of these parti-
cles must be vectors in a linear vector space. The set of all
vectors associated with a particle of mass m, spin S, are to
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form a basis for the (m, ) irreducible representation of the
inhomogeneous Lorentz group, ISL(2). In addition, a theory
of elementary particles must be able to take into account the
creation and annihilation of particles, and the antisymmetry
of multifermion states.

The vectors assiciated with particle states in our formu-
lation of quantum mechanics will be functions of a set, U of
independent variables. We must not confuse these functions
with wavefunctions, nor labels with independent variables,
so we explicitly make the distinction here. If ¥ (p, 0: U ) repre-
sents a particle with momentum p and z-component of spin,
0, then a general state of the particle can be written as a linear
combination, 2 _ fa’p ¥{p, o} ¥(p, o:U); ¥(p, o) is the wave
function and the p, o, are the labels.

Neither these labels p, o (or x, o, if we make a Fourier
transform) nor the states themselves, tell us anything direct-
ly about the nature of the independent variables, so our first
task is to examine possible choices. This is done in Sec. 2,
where we start by examining the construction of basis vec-
tors using sets of space—time variables, x,, (used here as inde-
pendent variables, not labels). Two sets of x,, are found to be
sufficient for the construction of basis functions for integer
spin representations, but three sets are required for spin 1
representations. The “intuitive” x, are not the only possible
choice for independent variables, however. To illustrate this,
we use a hybrid set in which the momentum part is a function
of one set of x,, while the spin part is a function of “spinlike”
variables, which are pairs of complex variables. A relativisti-
cally invariant scalar product is given for these functions.
The possibility of using only spinlike variables is tentatively
explored by giving momentum operators constructed from

first order differential operators in the spinlike variables.
The ability developed in Sec. 2 to construct basis func-

tions for any positive mass does not give us 4 physical theory.
What we need is some way to *“‘pick out” the physical states.
This is accomplished in our theory by assuming that (1)
there exists an equation

oY =0, m

in which & is a linear differential operator in some set of
independent variables, and ¥ is a function of the indepen-
dent variables; (2) there exists a continuous group of trans-
formations, homomorphic to ISL(2), which leave ¢ invar-
iant; and (3) the mathematical entities representing physical
states are to be solutions of the equation. This formulation
assures us of a linear, Lorentz-invariant theory. We will call
Eq. (1) the A equation, and its solutions will be called A
functions.

Examples of A equations are given in Sec. 3. These have
relatively few independent variables and can be considered
as single-particle theories. The first example is the relativis-
tic harmonic oscillator of Feynman et.al.,® in which two sets
of x,, are used as the independent variables. All representa-
tions (m, S') of ISL(2) are allowed by the A equation for
which Sis a whole integer and m? = 2, 4, 6, .... There are also
imaginary mass solutions which cause unitarity trouble in
the many-body problem. The second example used one set of
x,, for the translational part of the basis functions, and two
sets of spin variables for the spin part. The A equation is
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Klein-Gordon-like in the x,, and harmonic-oscillatorlike in
the spin variables. The masses allowed by the A equation are
2, 6, 10.... for odd half integer spin, and 4, 8, 12, ... for whole
integer spin. The third example uses one set of x,, and four of
spin variables, and is Dirac-like. There is an internal symme-
try group isomorphic to SU(2) so that the representatives
allowed by the A equation can be grouped into isospin
multiplets.

The many-body problem will be much more difficult
than the examples in Sec. 3, because there will be a very large
number of independent variables, and so we do not consider
specific examples here. Instead, in Sec. 4, we relate general
particle properties to the form of the operator in, and solu-
tions of, the A equation. We first find a large class of Lo-
rentz-invariant operators. Then we consider physical states.
There will presumably be a no-particle state, the vacuum
state, represented by a function, ¥,,. A single particle state
will be represented by a function times ¥, f¥,, and multi-
particle states by products of functions (i.e., f, /, ¥, for two
particles) when the represented particles are widely separat-
ed. The infinitesimal generators of the invariance group are
first-order differential operators and therefore cause no in-
teraction. But ¢ itself can cause interactions, if it contains
second-order differential operators, because a product is no
longer, in general, an exact solution.

The “particleness” of the elementary particle problem
is put in by saying the products of one-particle functions are
complete when particles are widely separated and therefore
not interacting. Or, perhaps better, products of one-particle
functions are complete in the far distant past and future.
When the interaction is nonzero, the one-particle functions
are presumably not complete, because products are no long-
er solutions. This incompleteness during scattering allows
for the possibility of creation and annihilation of particles.

The last general property we consider is that of anti-
symmetry. We speculate that it arises in an independent vari-
able theory because of the need to exclude negative mass
solutions of the A equation from arising during scattering.

Finally we note in Sec. 5 that a connection between the
Lagrangian equations of quantum field theory and our A
equation needs to be established in order to obtain guidelines
for choosing a physically relevant &, and to show that our
theory leads to the same results as QFT.

2. INDEPENDENT VARIABLES AND BASIS FUNCTIONS

We will explore possible types of independent variables
in this section, and show how to construct basis functions
from them. The physical states yield no clues on the nature of
the independent variables, so the procedure we follow is to
lay down general criteria and then find independent varia-
bles satisfying them. A suitable set of independent variables
is one from which we can construct basis funcitons for irre-
ducible representations of ISL(2). In order to solve for the
basis functions, we need ten infinitesimal generators which
obey the commutation relations

[, J,] = i€y Sy,
[V Kj] = e Ky,
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[Ji"]j] = i€ dy,
[V, K] = ie, K,

[KnKj] = —legudy,

[/:» P ] = i€ Py,

[P, K;] = —ib;P,, 2)
[P, P} =0,

[PO’JI] =0,

[Py P ] =0,

[POxK{]: _IP’

of ISL(2). The construction of a basis for the (m, S ) represen-
tation (m > 0) then proceeds by the method of the little

group; 25 +1 zeromomentum functions (¢ = -S,...,5) must
be found which satisfy

Py, =my,, 3

Py, =0, @)
and which serve as a basis for the spin S representation of the
“little group” SU(2).

We will examine the use of two different types of inde-
pendent variables here—space-time variables and spinlike
variables. There may be other suitable kinds, but it seems
most efficient to exhaust the possibilities of these two before
looking elsewhere.

The most obvious choice, based on our familiarity with
“wave” functions of x, y, z, t is a single set of space-time
variables, with the associated infinitesimal generators

P, =13, )
P= — iV, (6)
J=rxP, %)
K=rP,+tP. (8)

This set of variables is not suitable, however, because Py = 0
implies Ji = r X Py = 0, and hence, only spin zero basis
functions can be constructed. The reason for the failure is
that there are no “‘internal” coordinates from which to con-
struct the spin part of the functions. If we try two sets of x,,,
then it is not difficult to construct representations for any
integer spin—we could use exp[im(z, + 1,))(r, — r,), for ex-
ample as the three zero momentum basis functions for a spin
1 representation of the little group. But we run into trouble
again, because it is not possible to construct spin } represen-
tations—which we will surely need for a theory which de-
scribes electrons, etc.—from two sets of space-time varia-
bles. If we go to three sets, however, then spin }
representations can be constructed, although somewhat
awkwardly. Thus we could conceivably build our theory us-
ing only space—time variables.

On the other hand, there is no particular reason why the
independent variables must be space—timelike; it is only the
group structure and ability to construct basis functions that
counts. To illustrate this, and at the same time, avoid the
complications of spin } space-time basis functions, we will
show how to build basis functions from a combination of
space-time and spinlike variables.

69 J. Math. Phys., Vol. 22, No. 1, January 1981

The spinlike complex variables, u, v, are associated with
the group SL(2) which is the set of all homogeneous, linear
transformations

U =a,u+a,
v = ayu + axv, ®
G118y — G185 = 1,

with the @; complex. The infinitesimal generators of this
group are

J. =4ud, +vd, — uad; — vd;),
J, = 4i(vd, — ud, + vd; — ud;),
J, =3ud, —vd, — ud; + vd;),

(10)
K, =liud, +vd, + ud; + vd;),
K, = —lvd, —ud, —vd; + ud;),
K, =i{ud, —vd, + @d; — vd;).

Functions of u, v, #, D, can be used as basis functions for
representations of SL(2). For example, a basis for the (}, 0)
representation is u, v; for the (0, 1) representation, i, v; for
the (1, 0) representation, %>, uv, v*; and for the (}, 1)
representation,

Zy = Uil + vD,
zy =ub + av,
z, = i(uv — ud), (11)

Z3 = Ul — VU.

We can now use a hybrid system of independent varia-
bles—one set of (u, v) for the spin part of the wave function,
and one set of x,, for the translation part—for the construc-
tion of basis functions. The P, remain the same as in Egs. (5)
and (6) while the J, K are the sum of a space-time part [Egs.
(7)and (8)), and a spin part [Eq. (10)]. Zero momentum basis
functions for a spin § mass m representation can then be
chosen as

¥, = ue™,
_ (12)
U_ 12 =ve"™,

or as

¢1/2 — Eeimr

Y., = e, (13)
Spin 1 basis functions are constructed similarly,

¢l — uz eimt,

Yy = uve™, (14)

¢_1 — U2 eimr'

A general requirement for a theory of quantum me-
chanics is that there must be a Lorentz-invariant scalar
product defined for the vectors. In the case of the hybrid
variables, the scalar product breaks into two parts, and we
consider the spin part first. f we writewu = u, + iu,, v =v,

+ i, (u,, u;, v,, v; real), and if £, g are two functions of u, v,
i, v, then
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(f> 8 pin =”wf du, du, dv, dvifg=fd“ufg 15)

satisfies all the requirements of a scalar product. Further, if
we switch to new variables by means of Eq. (9), then the
Jacobian of the transformation is det(4 *4 ); and since
det(4 ) = 1for SL(2), thescalar productis Lorentzinvariant.
This scalar product poses a problem for the basis func-
tions of Eq. (12), because they have an undefined spin norm.
This problem can be circumvented by mutliplying the basis
functions by a function invariant under the little group,
SU(2). Such an example appears in the next section and is

uis + vp) yimt
(i + We ,

Yy =ue (16)

¢7 12 = pe — (uu 4 Umeiml.

These are still good spin | represnetations of SU(2), and now
have a well defined, finite spin form.

The space—time part of the scalar product may vary,
depending on the problem at hand. But if the basis functions
satisfy a Klein-Gordon equation, then we can use the usual
one’

oy =i dx(F.g—s]) i
or more generally
fey =i do( 78— g, (18)

where o is any spacelike surface, and f; g are positive energy
solutions of the Klein—-Gordon equation with the same mass.
It is proved in Ref. 9 that this scalar product is Lorentz
invariant and independent of ¢.

We have thus been able, by using hybrid variables to
construct basis functions from independent variables for any
spin mass > 0. And we have constructed a Lorentz invariant
scalar product under which the basis functions can be prop-
erly normalized.

We can also construct basis functions in the zero mass
case. In order to demonstrate this, we will use the little group
method again, this time for the energy-momentum vector
Do = P3 = p,P1 = P, = 0. The equations to be satisfied by the
single little group basis function, of spin .S, are then

V, — Ko ={—iyd, — 29, + y3, + 13,) + vd, — v3; }
Xy =0,
J, + K =1{—izd, — x3, — xd, — 19,) + ivd,
+ +iwd, =0,
Jp={—ixd, —yd,) + }ud, —vd, — @d; + v3;) ¥
= Sy (19)
These are solved by ¥ = v~ *f(vD)explilpt — pz)] or = 0%
[flvd)expli(pt — pz)], where fis any function of v. Now, howev-
er, since ¥ does not depend on u, i, the spin part of the scalar

product gives infinity. We do not see how to escape this
difficulty.

So far, we have used both space-time variables alone,
and a hybrid system, to construct basis functions. Another
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possibility is to use sets of spinlike variables alone. The con-
struction of normalizable basis functions looks quite difficult
in this case, because of the large number of variables in-
volved, so we will be satisfied here to take only the first step
and find 10 infinitesimal generators for ISL(2). The J, K are
simple enough—they are sums of operators like those of Eqgs.
(10). The P,, which are not “‘natural” in the spin variables,
must be Hermitian first-order differential operators which

transform like 4-vectors. They are therefore of the form
N N . — .
P, = z Y (6P, + b PL), (20)

i=l=1
where there are N sets of (i, v),

P8 = —v,d; +u9,,
Pi= — u,9; +v,6;

P =ilu,6; +0.9,), -
PY=0v,d; +u,d;,

and the b; are SL(2) invariants. If the b; are constants, then
the condition that [P,, P, ] = 0 implies

N -
Sbyby =0, ik=1,.,N. (22)
i=1

One solution to this set of equations is b; = f;g; with £g,/;
= 0. This turns out to be an unsatisfactory solution because
the resulting P, are not independent. That is, there exist four
functions, £, £}, f5, f3» of the (u;, v;) such that
JoPo + 1P + foP5 + f3P5 = 0. This condition implies there
is no solution to the little group equations and hence these
infintesimal generators would yield no massive representa-
tions of ISL(2). A better choice is to make a P, out of each
pair of sets of (u,, v;) and then add then together. If we have
four sets of (u, v), for example, we could construct

P,=P'+P; +ha (23)
These P, then commute and form an independent set.
One consequence of the commutativity and indepen-

dence of the P, is that there exist variables x,, conjugate to
them, i.e., they satisfy

[P.x,]=i8,. (24)

The x,, can be chosen to be

Xg = 5"{174111 + Ugv, — (Hatts + Da03)} /(U405 — V4U5) + c.C.,
Xy = }11.{174’44 + @0, — (Dot + U03)}/ (U0, — U4u,) + coc.y
X, = }J‘{a‘tlﬂ — Vgt — (U303 — 172143)}/(114U2 — V4lt5) + c.C.,
Xy = }si{itul — Ogv, — (fuy — 0303)} (g0, — vaus) + .,
(25)
but they are not unique, because there are 16 real variables in
the four sets of («, v), rather than just 4. With these x,,, we
suspect that we could construct basis functions for irreduci-
ble representations of ISL(2) in a manner not too different
from that used with one set of x,,, and one set of (, v). But it
is not our purpose here to develop the spin-variable-only
approach in detail. It has been pursued to the point of finding

suitable P, simply to show the feasibility of a theory with not
space—time variables, We will consider it not further at this
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point and turn instead to a consideration of independent
variable theories with 4 equations.

3. SIMPLE A EQUATIONS

As we indicated in the Introduction, the method we will
use to formulate quantum mechanics for elementary parti-
cles is to construct an operator & from differential operators
in the independent variables and then to require that the
mathematical functions associated with physical states of
particles satisfy the “4 equation”, & ¥ = 0. The theory is
made Lorentz invariant by requiring that there exist ten in-
finitesimal generators (first-order differential operators) of
ISL(2) which commute with &,

(4,31 =[0,K]=[0,P,]=0. (26)

A complete physical theory will have many, perhaps an infi-
nite number of, independent variables in order to be able to
describe systems of many interacting particles. Such a theory
will be extremely complicated, however, and so before con-
sidering it, we will give relatively simple illustrations of the
method in which only a small number of independent varia-
bles are used.

Our first example is one already in the literature (al-
though it is doubtful that the various authors viewed it as an
example of the method of independent variables), namely,
the relativistic harmonic oscillator proposed by Feynman,
Kislinger, and Ravndal,® and pursued by Kim and Noz,'°
and Blaha,'! among others. We will review the problem
here, because it illustrates several points.

In the simplest version, two sets of space—time variables
x,"' and x,,%, are used, with an 4 equation
ov(x',x)=13,'3," + £& + V(x', x)W (', x*) =0.

@7
The “potential”, ¥, chosen for the harmonic oscillator prob-
lem is

V', x) = — ix', —x* )x', —x%). (28)
If we switch to center of mass and internal coordinates,
X# = (x#l +x#2)/2, (29)

x, =, —x,9/2,

then the equation becomes

{-P.P, 48,0, —x.x, WX x)=0, (30)
where the momenta, P, , are

Py =i + %), 3y

P=i(V'+ VY.

The above P, plus a J, K which are sums of two sets of J, K,
like those of Eqs. (7) and (8), give us a set of ten infinitesimal
generators which obey the commutation relations ISL(2)
and commute with #, so the 4 equation is Lorentz invariant.

Because of the Lorentz invariance, we expect to be able
to catalog solutions of the equation by the representation of
ISL(2) to which they belong. We will use the little group
method in order to determine which irreducible representa-
tions (m, S ) are “allowed” by the equation. The zero momen-
tum, m > 0, solutions must satisfy Egs. (3) and (4), which
implies they can be written as
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¥(m,S;p=0,0:x,,X,)=e""f(m,S;p=0,0:x,),(32)
where the 25 +1 /s form a basis for the spin S representa-
tion of SU(2). If we put this form into the 4 equation, then we
obtain an eigenvalue equation for the allowed values of m?,
(azx., - azx, - azx, - azx, - 'x(}2 + xlz + x22 + x32)f= mz.f:

(33)
The solutions of Eq. (33) will be the product of four harmon-
ic oscillator functions in the variables x,, x|, x5, X3,

3
fno, nynyy )= [ ¥, X)), (34)
#w=0
with associated eigenvalues
m? =21, + n, + ny — ng) +2. 39

The functions ¢, are harmonic oscillator functions, i.e.,
Yo(x) = exp( — x?/2), ¥,(x) = x exp( — x*/2), etc.

The scalar product in this problem will consist of two
parts: fa*x on the internal variables, and a part like that of
Eq. (17) for the external variables.

There seems to be some confusion in the literature
about the form of the eigenfunctions. The tendency is to
assume that the “ground state” ¥, = f(0, 0, 0, 0), must be
SL(2) invariant, i.e., ¥, = exp[(x,” — x,2 — x,> — x,9)/2]. If
this is assumed, then severe difficulties with the norm result,
and much maneuvering'® must be done to salvage the the-
ory. But the ground state does nor—when we are dealing
with a one-body problem rather than the many-body prob-
lem—have to be SL{2) invariant in the little group method,
only SU(2) invariant. Thus the ground state we have implic-
itly used above, = exp[ — (xo> + x,% + x,° + x,%)/2], is per-
fectly acceptable.

If m® > 0, the internal norm will be finite, because of the
exponential ¥,, and states with different »,, (and therefore
different m?) will be orthogonal. If m? < 0, however, then m
is pure imaginary and the center of mass norm gives infinity.
Because of this difficulty, states with m? <0 are excluded
from consideration here. The negative m? states could not be
dismissed as easily by Feynman et al.® because they were
implicitly working on a many-body problem. There was no
way to exclude the possibility that the scattering of anm? > 0
particle would produce an m? < O state, because all solutions
of the 4 equation, including those with m? < 0, might be part
of the complete set of functions necessary to describe the
outcome. Thus the negative m? states are worrisome in the
many-body problem.

Ifm*=0,ie,n, +n,+n,—n,= — 1, we must
change the little group method, as mentioned in Sec. 2. It
turns out that the 4 equation has no m? = 0 solutions which
also satisfy the little group equations, so no massless repre-
sentations are allowed by (30).

Linear combinations of the m* > 0 solutions to Eq. (33)
can be used to obtain solutions of definite spin as well as
mass. For example, £(0, 1, 0, 0), £(0, 0, 1,0), and (0, 0,0, 1)
form a spin 1 representation, with a mass squared of 4, and
linear combinations of (0, n,, ny, ny) withn, +n, +n, =2
can be taken to obtain a spin 2 representation of m? = 6. A
more complete treatment of the mass spectrum is given in
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the references, so we will not pursue it here. We only remark
that all representations have integer spin.

Our next example uses one set of x, and two sets of (u,
v) as the independent variables and will allow spin } solu-
tions. The 4 equation for this example is chosen to be like the
Klein—-Gordon equation.

O¥=8,3, + ¥ =0 (36)

except that ».” will be a differential operator in the spin var-
iables rather than just a number. If we suppose that our P,

are those of Egs. (5) and (6) and the J, K are like those of Eq.
(10) except that two sets of (1, v) are used, then & commutes
with them and will be Lorentz invariant provided . is an

SL(2)-invariant.

The number of candidates to be considered for 2 can
be cut down, and an additional quantum number intro-
duced, if we assume that &, and thus 2, is to be invariant
under a space inversion operation, I,. The I, we choose is

Is(xO) = xO I:(x) = —X (37)
I(u)=v, IL(u)=v, Lu)=—v, IL(i)= —v,
Lw)=—u, LO)= —u, Lw)=u, L@)=u,

(38)

and it takes (P, P, J, K) into (P,, — P, J, — K), asit should.

We now choose an .2 which is harmonic-oscillatorlike
in the sense that it has second-order derivatives and quadrat-
ic terms in the (u, v),

m? = (U, — Uy, + 0, — 0,i,)/4
- (au, aU, - au, au, + 817. aﬁ, - aLT. aﬁ, ) (39)

It is not difficult to show that this operator is invariant under
SL(2) and /,.

Equation (36) can be solved by separation of variables.
This is done by using linear combinations of variables which
are eigenfunctions of I,

.=, + 5V,

b=, — i)/ V2, (40)
u = (u, — 172)/\/5,
v.=(, + 172)/\/5.

A bit of algebra shows that

o= = (0,05 + 0,0, — u.— v
+ (auai +d,0; —vv.— u.i)
(41)
= _52“A,+u2+r_82u“+u2+i_32””
+u,,—, 4V,
+d%, —u_,
+8, —uw 4+, 4P, =V,

where u, indicates the real part of u, etc. Not surprisingly,
~? splits up into eight harmonic oscillator operators.

To find the allowed values of (1, S'), we follow the same
procedure as in the first example, where we considered only
zero momentum basis functions and separated out the time
dependence,
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C(m,S;p=0,0,x, U)=e""f(m,S;p=0,0;U).
42)
The A4 equation then becomes

mif = mY, (43)
Its solutions will be products of eight harmonic-oscillator
functions in the variables v _ ., u _ ;, etc. If we relabel (u  ,,
U VUl U0, 0 )by (91, s ...y Jg), then
the eigenfunctions are f(n,, ..., ng) = I15_ | ¥, (v;) witheigen-
values m* = 2(n, + ... — ng). We see that there are an infi-
nite number of different eigenfunctions associated with each
value of m?. The trick is to organize them into states with
definite spin and parity, and determine which S and P are
allowed for a given mass. The method is tedious, but the
results are fairly simple. A basis can be constructed for any
whole integer representation of either parity if m>
=0 mod (4), and for any odd half-integer representation of
either parity provided m?=2 mod (4).

It is interesting to examine the structure of the basis
functions for the m =172, § =}, P = 1 representation. We
note that ., v. form a basis for a spin ] representation of
SU(2), with J,u, = lu., J,v. = — Jv.. And since
u. =y, +iy,, v. =y; + iy,, we have

w(V2,1, ,p=0,0=1)
= [, DYe(2) + i¥ ()Y, ()] f[ Yo )e™,  (44)
i=3

vV2, L 1p=00=—}
= '/’0(V1)¢0(YZ)[¢’1(}’3)¢0(V4) + i¢0073)'/’0(y4)]‘
X f[ lpo(yi)eim’-

Or, if we convert back to u, v notation and let

8
Y= H Yo;) = expl — (uyt, + 0,0, + sty + 0,0,)/2],
=1
(45)
then

VLY L p=0. D=+ 0™ o

YVLLL p=0, —) =0, —L)¥e™

The p#0 basis functions will be Lorentz transforms of
the above p = 0 basis functions. Hence the general form for
anm = /285 =1, P=1 function is

v(V2,11)
- fd b U@ + L0, + L@ + /D))

xexplip,x, — P, +2) o=V 245, (47)
with z,, defined as in Eq. (11). The f;(p) constitute the four
components of the Dirac wave function in the momentum
representation. Only two of the four can be specified inde-
pendently, for each p, corresponding to spin up and spin
down. Thus there is a dependence among the s which can
be expressed by the Dirac equation (y,.p, — \/2) S =0,
where fis a column vector with components f,(p), />(p),

£(p), f4(p), and
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0 0 0 1 0 0 —1 0
0 0 -1 o0 0o 0 0 1

“"=lo —1 o ol "1t o o o
1 0 0 o 0 -1 0 0
[0 0 i O o 0 0 1
00 0 i O 0 1 0

271 0 0 of "o -1 o of ©8
0 i 0 0 1 0 0 0

The scalar product for the solutions of Eq. (36) is like
that for the hybrid functions of Sec. 2, except that
§d *u,fd *u, replaces fd *u.

If m*> 0, the spin norm will be finite, because of the
exponential ¥,, and states with different n, (and therefore
different m?) will be orthogonal. If m* < 0, however, the spin
norm is still finite, but m is pure imaginary and the space-
time norm is infinite. Because of this difficulty, states with
m? < Qare excluded from consideration here. If m? = 0, then
we must change the little group method as mentioned in Sec.
2. It turns out that there are m? = 0 solutions, but their spin
norm is not well defined, so we must also exclude m? = 0
solutions as not being physical.

Our second example still had imaginary mass solutions
because the eigenfunction equation was quadratic in m. Qur
third example, which uses one set of x,, and four of (x, v),
avoids this problem by employing a Diraclike equation
which is linear in the eigenvalue m. The 4 equation is

OV =(D,d, —m)¥ =0, (49)
where
e = (U3 — U U3 — U0, — Uo,)/4 + c.C.

-@.9d, —9.,9., +9.9, —3,4.)+ha,
(50)

and the differential operators

Dy = u,d;, —v,di; + u,d;, —v,d; + ha,

Dy = —ud; +vd;, —ud; +ha, 6]

D, = + i(u,d;, + v,0;, + u,d;, +v,9;)+ha,

D; =u,d; +v,0; + u,d; +v,9; +ha.
have replaced the Dirac matrices y,,.

To find the allowed values of (m, '), we again look only

at the zero momentum solutions and write ¥
= exp( — imx,)f to obtain the eigenfunction equation

mD, f= ~f, (52)
for m, f. The operators D, and »»» commute, so we can dia-
gonalize them separately. The diagonalization procedure for
2 is quite similar to that followed in example 2; we define
two sets of + variables
u = (u; — 173)/\/2,
o=@+ @)/ V2, (5
uy =, —5)/V2,
0y =+ 2)/V2,
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ut= W, + 173)/\/5,
vy =, — @)/ V2,
uy' = Gy + 5/ V2,
vy = (v, — LT4)/\/ -2-,

which are eigenfunctions of the space inversion operator [,
ie.,

Lu=*,)= tu*,Lv*,)=+v*,. (54)
We then find that
8 16
7t = = 2(82)1, —yi2)+ z(azy, _yiz)’ (55)
i=1 i=9
where

Girer J16) = W'y, W'y, U, VY, U, Uy Uy, Uy Uy, ).
’Ijhe eigenfunctions are f(n, ..., #,s) = Iy, (y;) with
eigenvalues

m=2(n; + = + ng — Ng-nyg).

If we re-express D, in terms of the + variables, we get
Dy=wu;d,. +vid, —u.d, —vd
+u, 59, +v,79,, —u, 9

—v,d,. +ha
(56)

This operator acting on the ground state, ¥, = (0, --- 0,)
gives zero, so D, essentially acts only on the spin part (f/¥,)
of the basis functions.

It is interesting to observe that the & of this example
has an “internal” symmetry group, isomorphic to SU(2),
which rotates sets of (u, v) into each other according to

uy

(u;; U;) a“ a12 0 0 (ub vl)
(u%) Ué) — 021 azz —0 .—O (uz, U2) , (57)
(u5, v3) 0 0 a,;, ap,|| W)
(u, vs) 0 0 & anl Lug,vl)

(thatis, u; = a;, u; +a,, u,, V] =a,, v; + a;; v,, €tc.),
where the matrix is unitary with a determinant of one. The
ISL(2) and 7 -invariant infinitesimal generators of the inter-
nal symmetry group are
2, =ud,, +ud, —usd, —ud,,
+v,d,, +v,d,, —vsd, —vd, +ha,
2, =i(u,d, —ud, +ud, —ud,,
+ 0,8, —v,d,, +vd, —v4,)+ha, (58)

2I, =ud, —u,d, —ud, +ud,
+vd,, —v,0,, —v30,, + 49, +ha,
=u"d, —u'd,, +vd, —v,d,
+u 0, —u, 9, +vd, —v; 9, .

We will denote 2/, as the “charge” operator and can then
label the representations by mass, isospin, charge, and par-
ity. As an example, there will be 8 representations with

|m| =2,|Q| = 1,I =1.They can be grouped into four pairs,
with each pair being an isospin doublet. The basis functions
(f/¥,) and their associated mass, charge, and parity are
@ o2, LD, 002, — 1L, 0, (w7 ,0,7:2, 1, —1),
Wy 0y 02, =1, =)@, 0, —2, -1, 1); (@, 5 -
=2, L, )@@, 00 =2, 1, =), @@, 0, : —2,1,
—-1).

We are not certain which representations should be

considered the antiparticles of the first two. In the conven-
tional Dirac equation, the antiparticle has a negative energy.
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But in reality, the physical antiparticle has a positive energy.
So we would favor the fourth and third, as being the antipar-
ticles of the first and second, resp. But the question probably
does not have a clear-cut answer except in the context of a
many-body problem.

This example is “flawed” as an illustration of an inter-
nal symmetry because the & separates,i.e., 7 = & |5 + @,
One way to correct this is to introduce a term in the mass
operator, »2, proportional to the 7, of Eq. (58). This would
couple the 13 and 24 variables and break the SU(2) symme-
try. The eigenfunctions of & would then be those linear com-
binations of eigenfunctions of 7, which are eigenfunctions of
I, and the mass would depend on the eigenvalue, i.e., there
would be a mass splitting for the doublets.

It is possible to use six sets of (u, v) instead of four and
obtain an & with an internal symmetry isomorphic to SU(3).
We could then add terms to ¢ which break the symmetry in
such a way that the physical spectrum can be imitated fairly
well. But more representations of SU(3) occur in the solution
space than occur physically; states of all triality'” occur,
rather than the physical triality of zero. In addition, the simi-
larity of this spectrum to the physical one seems to be due
solely to the group structure. Hence, we do not believe these
results are significant.

And in retrospect, we do not really expect physically
significant results at the single-particle (i.e., few independent
variables) level, because, although the mass spectrum is a
kinematic quantity, it is evidentally tied to the many-body
problem. We are therefore led to discuss this much more
complicated problem in the next section.

4. THE MANY-BODY PROBLEM

We now turn from the relatively simple, but unphysical,
single-particle theories of Sec. 3 to the more realistic many-
body problem. The 4 equation will be extremely difficult to
solve in detail in this problem, because of the large number of
independent variables—at least one set for every fermion in
the universe. Because of this, we will not examine the content
of a particular equation here. We will instead only “rough
out” the problem by looking for those general properties of
the A equation and its solutions which correspond to the
physical properties of particles.

A very general property of nature is its Lorentz-invar-
iant character. We can build this into our theory by requiring
that the mathematical representative of a physical state sat-
isfy the 4 equation, & ¥ = 0, where & is a linear differential
operator with an invariance group of transformations of the
independent variables, homorphic to ISL(2). The first step,
then, is the construction of classes of Lorentz-invariant &’s
from which we will eventually, by the use of more powerful
heuristic techniques than we have now, choose the “phys-
ically correct” operator.

A related problem is the construction of the infinites-
imal generators of the invariance group. In some methods of
setting up quantum mechanics, it is this construction which
is all important, because the Hamiltonian is responsible for
the interaction. But the fact that the group is a transforma-
tion group implies that the infinitesimal generators are first-
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order differential operators, which in turn implies that the
infinitesimal generators are not directly responsible for the
interaction in our theory. It is caused instead, as we shall see,
by a suitable . Because of this, our procedure will be to
choose the infinitesimal generators and therefore the invari-
ance group to be as simple as possible. It is then a relatively
easy job to construct classes of ¢’s which commute with the
infinitesimal generators, thus obtaining relativistically in-
variant theories.

We consider first the case where the independent varia-
bles are space-timelike. In this case, the infintesimal gener-
ators will simply be chosen as sums of operators like those of
Eqgs. (5)-(8), e.g., P, = iZd, , where we have assumed a finite
number, N, of variables. Then a class of “Klein~Gordon-
like”” operators which commute with these ten infinitesimal
generators, and are therefore Lorentz invariant, is

£=33,m3,m™ 4V, (59)
m=1
with the “potential” ¥ being a function of the (x, ™ — x,, )
(x, ™ — x,). On the other hand, if the variables are spin-
like, the J, K will be sums of the spinlike J, K of Eq. (10), and
the P, will be

P,=Yp, m (60)
m=1
with the p, ™ being operators like those of Eq. (21). An
example of Dirac-like ISL(2)-invariant operators in this case
is

=54d,™p, ™ +V, (61)

where the d, "™ are Hermitian operators, analogous to the
D, of Eq. (51), which must commute with p,, x, ™ for all
n, v. The potential could be constructed, as before, from
functions of (x, ™ — x,,) (x, " — x,, ), but could also
include ISL(2)-invariant functions of the spin variables. We
note that the operator of Eq. (61) is also suitable when a
hybrid system of variables is used.

Since we are now able to construct a large class of 4
equations which are Lorentz invariant, we can begin an anal-
ysis of how other physical properties of particles bear on the
form of the 4 equation and its solutions. A second general
property is that physical states are catalogued according to
the number and kind of particles present (if the interactions
are not too strong). The lowest state will be one with no
particles present. This ground or vacuum state ¥, will be a
function which satisfied the 4 equation, and which is an
ISL(2) invariant. According to the ideas of Weinberg® and
Salam® ¥, is not simply a “background” but contains a good
deal of physical information. That is, they argue that the
original problem (the 4 equation in our case, the Lagrangian
in theirs) is invariant under the internal symmetries, with the
broken symmetry arising from spontaneous symmetry
breaking—a “‘crystallizing”—in the vacuum state, (in anal-
ogy to an asymmetric Ising model vacuum state arising from
a symmetric Hamiltonian). Thus, our theory holds out the
possibility of being able to show why the symmetry is broken
as it is, because we have an equation for the vacuum state.
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The next states of physical interest are the one-particle
states. In many-body problems such as phonons in crystals,
and “He, functions representing “particles” are the product
of the ground state and an “excitation function; we will as-
sume the same thing here. That is, the function representing
a single particle of mass m, spin S, momentum p, and z-
component of spin o is

Y(m,p,s,o)=f(m,p,s o)¥,. (62)
where the f’s form a basis for the (m, 5) irreducible represen-
tation of ISL(2).

There are two interesting points about the equation for f
obtained by putting this ¥ into the A equation. One is that
the potential ¥ never enters. If we write ¥, = exp(®P,), then
Eqs. (60) and (61) become the equations

3. . " +2p, "0, Do) = 0, (63)

z(dl‘ (M)Pu (m?f + d# ("')fp,, (m)¢0 + Pu (medlu (m)¢0) =0,
(64)

resp., for f. Thus even though the vacuum problem may
prove to be too difficult, we can still calculate with the theory
by choosing ¥, as a real normalizable, ISL(2)-invariant
function and starting the problem from there.

The other point is that the 4 equation can be made into
an eigenvalue equation for the mass, or the mass squared. In
order to see this, we write

f(m,0,s,0)=e~"%f (m,0,s,0), (65)
where
[pﬂ‘m', X, ] = 5”0/]\7 (66)

for the zero momentum basis functions of an {m, S ) represen-
tation of ISL(2). The “internal” functions must be transla-
tionally invariant,

P fi =0, 67)
and satisfy
mz./;n! + Z(py (M)[)y. (m?fi'nt + 2py (m?/;ntpy (M)¢0) = 07
(68)

or
m(gﬂfi‘m +./i‘nt “@0¢0)

+ Z(du(m' ix)tp;l‘m)¢0 +p;L(my;md#(M)¢0) = O’
T o= g™ (69)

obtained from Eq. (63) or (64), resp., by the use of Eq. (65).
The m? of Eq. (68) and the m of Eq. (69) must be real

since all operators involved are Hermitian, but until we solve
a particular equation, we do not know whether they will be
positive or negative. We would like to avoid those &, ¥,
which give negative m? solutions to Eq. (68), if that is the
form we choose for the 4 equation, because of the unitarity
problem alluded to in Sec. 3. There will most surely be nega-
tive mass solutions to Eq. (68), and, we suspect from the
examples of Sec. 3, there is a good chance of having negative
mass solutions to Eq. (69). These negative mass solutions are
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unphysical, because such particles are never observed, and

must somehow be eliminated from the theory. There are two
possibilities. One is to use Eq. (69) and search for a ¥ (or a

¥,) which gives no negative mass solutions. The other is to
construct the many-particle solutions so that, even though

negative mass solutions exist and are part of a complete set,
they are not “activated” in a scattering process between posi-
tive mass solutions. Without further detailed investigation,

there is no way of knowing which, if either, of these remedies
will work.

We now consider those solutions of the 4 equation
which correspond to several particles, ignoring symmetriza-
tion properties for the time being. Our initial expectation is
that a many-particle state is mathematically represented by
something like a product, e.g., the solution of the 4 equation
that corresponds to one particle with momentum p,, and
another with momentum p, is

v=f15% (70)

Now if & contained derivatives no higher than the first, then
the ¥ of Eq. (70) would be an exact solution of the 4 equation
provided ¥,, f, ¥,, and f, ¥, are. But such a theory would
be one without interactions, because, since the time evolu-
tion operator is a first-order differential operator,

exp(iPX,)f, Jo. W= exp[i( pro +P20)x01f;;,f;;, Yo, (T1)

which says mathematically that there is no energy of interac-
tion—each particle evolves in time as if the others were not
there. A similar analysis would show that & must not be a
separable operator. The implications of this argument are
that ¢ must not be separable, and it must contain differen-
tial operators of at least second order. Conversely, we see
that if & does have second-order derivative terms, then the
cross terms—in our examples, these would be

2.0, "f,, ord,™f, p,™f, —imply that the product
is, in general, no longer an exact solution.

Suppose, on the other hand, that we use “localized”
states, /. = §d °p g(p)e””f,, with the precise form of g(p) de-
pending on spin and the properties one wants for £, . Then for
any reasonable theory of quantum mechanics, we expect the
“interactions” between localized particles to go to zero as
their separation goes to infinity. In our theory, this would
imply that the cross terms go to zero. But then, the product
of “distant™ particle functions,

V=ft. Y (72)

is a solution of the 4 equation.

We can illuminate these ideas, and expand on them
somewhat if we consider a scattering process. Suppose we
start out with two widely separated electrons at a large nega-
tive time, say — £, Then the solution corresponding to the
electrons will be a product like Eq. (72). As time progresses
and the electrons get closer, the interaction cross terms will
no longer be negligible, and so the solution will not be as
simple as a product. If the interaction is weak, we would
expect that the solution at time f might be something like

Vo () = explilt + 1Py ¥~ 1)
— fd 3x.fd ey Y X 1 S Vo (T3)
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i.e., a sum of products, with i being the conventional wave-
function of quantum mechanics. But the above would not be
exactly correct; there will be an *“extra” part to the solution,
outside the vector space spanned by products of one-particle
solutions, corresponding roughly to particles (photons, vir-
tual pairs, etc.) “off the mass shell.” After the scattering is
finished, and the constituents have widely separated from
each other, we again expect the results to be describable as a
sum of products of one particle states, even if there are pho-
tons and/or particle-antiparticle pairs present, i.e.,

Vit) = [dx, dx x5 S
+ fd 33‘1 d3x2 d 3)‘3 alx ), X5 X3, ¢ )f;,f;,fg?q/o
+ Jd3x, d3x,d3x,d*x,W(x,, x5, X3, X4, 1)

XSS oS Wo

o (74)
where f¢, £, f™" identify functions corresponding to single
electrons, positrons, and photons, resp. So in this scheme,
products of one-particle states are complete for systems of
widely separated particles, but are not complete when the
particles are interacting significantly. The incompleteness
provides for the possibility of creation and annihilation of
particles, while the “asymptotic completeness” is the math-
ematical principle corresponding to our description of na-
ture in terms of particles.

Thus we have a theory which, in principle, is Lorentz—-
invariant, is capable of describing nature in terms of parti-
cles, and which can account for the creation and annihilation
of particles in a manner which does not seem overly con-
trived. The last principle, however, that of symmetriza-
tion—and antisymmetry in particular—is not a “natural”
one in an independent variable theory. In fact, part of the
motivation for using field theory is that antisymmetry is con-
sidered to be a “basic” principle which can be put in only by
the use of antisymmetric operators as the building blocks of
an elementary particle theory.

On the other hand, there is no reason why antisymme-
trization should be impossible to include in an independent
variable theory. One possible reason for its occurring might
be that only antisymmetric solutions of the 4 equation are
stable. That is, suppose our A equation has both positive and
negative mass solutions for fermions, but only positive mass
solutions (or else positive and negative solutions, but the
negative solutions are never brought into play in a scattering
process) for bosons. Then one could imagine that if fermion
states were not antisymmetrized, the scattering of two posi-
tive mass fermions would produce a cascade of positive and
negative mass pairs. The only way to obtain stable many-
particle states would be to antisymmetrize, thereby exclud-
ing the scattering to negative mass states.

The actual form for symmetric and antisymmetric solu-
tions cannot be known until we solve a particular problem.

But we can give examples, in order to have some idea of what
sort of solutions to try. The symmetric case is very simple; we
can just use a product like that of Eq. (70), provided the two
/s are functions of the same variables [not £, (u,)f, (,), for
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example]. The constructions are so simple, in fact, that one
hardly feels compelled to “explain” why symmetric solu-
tions occur.

The antisymmetric case requires a more complicated
construction. Let us suppose that, as in the *“He example, a
one-particle fermion state is of the form

Yy = | Stnetw)| o 5)

where the u; represent different sets of independent varia-

bles. (Actually, the g’s will depend on more than one set of
variables, as in the Feynman wavefunctions that take back-
flow into account,'® but the main dependence is on #;.) Then
a function antisymmetric in the two sets of labels (p,, 5,) and

(P2 57) is
Wp, 51:P2.52 = ZZ [gp. S (ui)gp,,s, (uj) - gp. ,8y (uj)gp,,s, (ui)] WO'

(76

In a way, the function of Eq. (76) is interesting for what)
is left out; nothing is said about the symmetry properties of
¥,. The reason is that the only thing we know about particle
states is that they are antisymmetric in the labels, i.e.,
|x5, %4} = — |x},x,). We know nothing at all about symme-
try properties with respect to the independent variables. In
particular, we do not know whether ¥, must be antisymme-
trized in the independent variables in order to “exclude”
negative mass states. We suspect that the picture of every
negative mass state being occupied in ¥, is naive, because
there are a continuous infinity of states and that makes for an
extremely messy theory.

In summary, we see that the idea of spin } solutions of
the A equation being antisymmetric in the labels can, in prin-
ciple, be fit into the independent variable approach. But it
does not fit in naturally. We must await more detailed work
on a specific example in order to see how, or whether, anti-
symmetry occurs.

5. SUMMARY AND CONCLUSIONS

We have proposed a theory of quantum mechanics in
which physical states are mathematically represented by
functions which are solutions of a Lorentz-invariant differ-
ential equation in some set of independent variables. In Sec.
2, we explored different types of variables and concluded
that either space—timelike or spinlike variables were suitable.
We then used these variables in Sec. 3 to give examples of
different types of simple one-particle 4 equations with dis-
crete mass spectra.

Consideration of the many-body problem in Sec. 4 was
initiated by showing how to construct large classes of Lo-
rentz-invariant differential equations in either type of vari-
able. Then we made several assumptions, based partly on
analogy with many-body problems, about the form of solu-
tions of the A equation, in order to be able to explain particle-
ness, interactions, and creation and annihilation. (1) We as-
sume there exists an ISL(2)-invariant vacuum state. (2) We
assume there exists one-particle solutions of the form f¥%,,
where f'is a function which has a definite mass and spin. (3)
We assume multiparticle states are “something like” pro-
ducts, i.e., ¥ = £/, ¥, Second-order differential operators
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in the 4 equation will then cause an interaction. (4) We as-
sume that if the /s corresponding to localized particles, then
the “interaction” goes to zero as the separation goes to infin-
ity. Thus if the single particle functions, f¥,, are complete
for one-particle states, the widely separated functions will be
complete for widely separated many-particle states. (5)
These states will presumably not be complete for interacting
particles, however, and this appears to allow for the creation
and annihilation of particles. (6) Finally, we assume that
antisymmetry in the labels of the solutions is made necessary
by the need to exclude negative mass solutions from the
theory.

It is obvious from the number of assumptions we have
made that what we have here is not a physical theory, but
only the suggestion for the form of a theory. Thus, although
the theory has the possibility of satisfying all requirements,
we cannot properly judge it until we choose a specific 4 equa-
tion and see if our assumptions about the form of the solu-
tions are valid. It is particularly crucial to investigate wheth-
er and how antisymmetry arises, since that concept seems
“forced” here.

One last remark. Since the Lagrangian equations of mo-
tion of quantum field theory yield so much correct informa-
tion, we would expect those equations, perhaps in some ap-
proximation, to follow from our theory. This essentially
means there must be a connection between our 4 equation
and the Lagrangian equations. Some inkling of such a con-
nection can be seen if we assume the general form of a solu-
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tion to the A equation is like that of Eq. (74), only the func-
tions for the various particles, in particular the phonon and
electron—positron pair, are not necessarily the functions for
physical particles, but rather may be “off the mass shell.”
This idea will not be pursued further here, but its develop-
ment is crucial both for choosing a physically relevant 4
equation, and for examining the physical content of the 4
equation.
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The energy, position, and momentum eigenstates of a para-Bose oscillator system were

considered in paper I. Here we consider the Bargmann or the analytic function description of the
para-Bose system. This brings in, in a natural way, the coherent states |z;a) defined as the

eigenstates of the annihilation operator 4. The transformation functions relating this description
to the energy, position, and momentum eigenstates are explicitly obtained. Possible resolution of

the identity operator using coherent states is examined. A particular resolution contains two
integrals, one containing the diagonal basis |z;a) (z;| and the other containing the
pseudodiagonal basis |z;a) { — z;a|. We briefly consider the normal and antinormal ordering of
the operators and their diagonal and discrete diagonal coherent state approximations. The
problem of constructing states with a minimum value of the product of the position and
momentum uncertainties and the possible a dependence of this minimum value is considered.

PACS numbers: 03.65.Ca

1. INTRODUCTION

In paper’ I of this work we have given a detailed study
of the energy, position, and momentum eigenstates of a para-
Bose oscillator system characterized by the commutation
relation

[i(@%a +aah,a]l = —a (.Y

and by a parameter a denoting the minimum eigenvalue of
the Hamiltonian §(4'd + d4") (a = | being the normal Bose
case). We had in particular considered the relationship be-
tween the matrix and the wave mechanical descriptions of
the para-Bose operators. In the present paper we consider
the Bargmann (or the entire function space) description, op-
erator ordering, and construction of states with minimum
value of the product of uncertainties in position-momentum
variables and related matters. We begin in Sec. 2 by con-
structing the Bargmann representation using a suitably de-
fined Hilbert space of entire analytic functions for the
SL(2,R ) Lie algebra relevant to us, and then for the para-
Bose system. This brings in, in a natural way, the coherent
states, i.e., the eigenstates of the para-Bose annihilation op-
erator. The transformations relating this description to the
energy, coordinate, and momentum descriptions will be ex-
plicitly obtained. Possible resolution of the identity operator
using coherent states is examined. As is well known, in the
normal Bose case a diagonal resolution of the identity opera-
tor does exist, viz.,

1= 717— ﬂz;%) (z1d*z. (1.2

However, it turns out that for other values of @, no such
diagonal resolution exists. This is because a certain moment
problem has no solution in the general case. An alternative
resolution of the identity valid for all @ will be developed and
its uniqueness discussed. This resolution contains two inte-
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grals: one consisting of the diagonal basis |z;a) (z;e| and the
other consisting of the pseudodiagonal basis |z;a) ( — z;a|.
This second integral is of course absent in the normal Bose
case a = . In Sec. 3, we discuss the possibilities of various
operator descriptions such as the normal ordered, the antin-
ormal ordered, and the diagonal and the discrete diagonal
coherent state approximations. In Sec. 4, we consider the
problem of constructing states with the minimum product of
the uncertainties in position and momentum variables, and
their @ dependence. Section 5 comprises concluding remarks
and some general questions.

2. BARGMANN REPRESENTATION OF PARA-BOSE
OPERATORS

Para-Bose operators 4,4, and H = 1(@'a + aa") leave
the representation space & , invariant. This space is
spanned by the eigenstates |#;a),n = 0,1,--- of H with the
corresponding eigenvalues n + a. The parameter a denotes
the minimum eigenvalue of A Using the representation of
the operator a in space & ,, one can construct its eigenstate
|z;a) with eigenvalue z, where z is any complex number.” We
call such a state the para-Bose coherent state in analogy with
the normal Bose case. Instead of following this procedure for
obtaining these states, we show that they appear in a natural
way in the Bargmann description of & ,. We begin in Sec.
2A with the Bargmann® type description of the representa-
tion Dy of the SL(2,R ) Lie algebra, using a Hilbert space of
entire functions. This involves working with the eigenfunc-
tions of J_. This is used in Sec. 2B to construct a similar
description of the para-Bose representation & ,. We are
then directly led to the coherent states |z;a). One of the
outcomes of this procedure is a particular resolution of the
identity in terms of the coherent states. The possibility of
having a diagonal expression for the identity operator is ex-
amined in Sec. 2C.
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A. Bargmann description of SL(2,R) representation D,

In Sec. 2 of part I, we introduced the para-Bose opera-
tors and the relations satisfied by them. The para-Bose oper-
ator algebra is determined in terms of the Hamiltonian (12.2):

H = |(aa" + a"a) 2.1
and the commutation relation [Eq. (12.1)]
@H]=4a. 2.2)

We have seen that the operators jo, fl, and j2 defined as
Jo=1l, J, =)@ +d", L=@a@-a", @3)
obey commutation relations which correspond to the
SL(2,R ) Lie algebra [Eq. (12.8)]. The eigenvectors of J, viz.,
|n;B ), form a complete orthonormal basis:

JolmB) = (n +B)(m:B) , 2.4)

(n'BnB)=6,,. 2.5)
We ask for a realization of the representation Dy of the
SL(2,R ) Lie algebra in which the vector |#;8 ) is realized as
the nth power of a complex variable @ and J,=J, + iJ, is
realized as a simple multiplication by w:

|38 ) —p, 0" (2.6)
J—w . @7

A set of constants i, are introduced since J. has definite
nontrivial matrix elements. Equation (I12.13) leads to a re-
cursion relation for z,,:

By =[(n+D(n+28)1"u, . (2.8)

With the choice 1, = 1, we are led to a solution
r 1/2
n, = [ ___(2@_ . (2.9)
nl'(n +28)

Equation (2.4) implies that fo is realized according to

JB + o2 (2.10)

do

The formof J. = J. 1 — z‘fz in this realization is obtained using
Egs. (12.13) and (2.9):

d? d
dw? +2BE'

A general vector |g) in D now determines the function g(w)
as follows:

lg) = E} g.|mB)

J—w (2.11)

—g@) = 3 g0 @.12)
n=20

If |g) has a finite norm, i.e., if {g, } is [, the behavior of
n, forlarge n ensures that g(w) is an entire analytic function
of . Thus, D, has been realized in a Hilbert space of entire
functions. The inner product in this realization can be exhib-
ited in the form
€l = Y &g, = f d’0 K @B)*@)g@) . (2.13)

n=20

Here

d’o=dudv (w=u+ i), 2.19)
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and the integration extends over the entire complex » plane.
Taking |g) to be the vector |#;8) and using Eq. (2.7) along
with the orthonormality of |n;8 ), we find that K is a function
of |@| only and that it obeys the relation

f " dlolK (o B) 0" = @ty

=nl(n+28) (27 28)]".
(2.15)

In writing the last line (2.15), we have substituted for z,, from
Eq. (2.9). A solution for K (|o|;8 ) exists in terms of the Bessel
function K, (x) [see Ref. 4, p. 684, formula (6.561. 16)].

K(|o|8)=2aT 2B)) ' |w|* ' Ky5_, Qlo]). (2.16)
We show in Appendix A that this is a unique positive
solution.

Let us now view g(w) as the inner product of the ket |g)
with a ket |w*;8 ) labeled by w*:

g(@) = Ny(lo)){w*B |g) , (2.17)
where N, (|w|) is some real positive function of || to be
adjusted later for proper normalization [cf. Eq. (2.20) be-
low]. The action of J, given in Eq. (2.7) implies that the bras
(kets) are the eigenstates of J.(J.)

(@*BV. = w(w*B], LlwB) =oleB) . (@18)
Taking |g) to be |n;8 ) and using Egs. (2.12) and (2.17) we
find that

(@*B|nB) = p,o"[Np(loD] ",
which implies, on taking the Hermitian adjoint of this equa-

tion and substituting for i, from Eq. (2.9), that (cf. Barut and
Girardello, Ref. 3).

Vza)"]n;ﬂ) .
(2.19)

The ket ;3 ) is obviously a finite norm vector, and in fact
we may choose N;(|w|) such that |w;8 ) is normalized. Using
the orthonormality of |n;3) we find from Eq. (2.19) that

Blof) = 2§ LBl
(0BlasB) = [Ns(|w))] nzo AT (n +28)
= [NB(|“’|)]-2F(2B)|“"| 72B12371 Qlol),
where 7, (x) is the modified Bessel function. Hence, we take
Np(jo) = {rB)lo|' L, Qlo)}'?.  (2.20)

It may however be noted that the eigenvectors of J_are
not orthogonal. We find that

("B loB) = [Ns(|o'INy(l))} T 2B N *w)' />~ #
XLs  (2e™*0)'"?). (2.21)

The use of Egs. (2.16), (2.17), and (2.20) in the inner
product expression (2.13) leads to the resolution of the iden-
tity operator in the space of the representations Dj:

i, =2 f d%0 Iy, Qlo))Ky_ s Clo])oB ) (w8 |.(2.22)

The subscript  on 1 indicates the space wherein this resolu-
tion holds. It is shown in Appendix A that a resolution of the
identity in the form

@8) = V(D] 3 | 2B
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_ f F@)|wB ) (08 |d% (2.23)

is unique as long as we restrict F () to be a positive definite
function.

B. Bargmann description of &

There are two ways in which a similar description of the
para-Bose representation &, can be constructed. One is to
use the representation just constructed for D, and use the
fact that & , is the direct sum of D, and D, ,,, [cf. Eq.
(12.16)]. Alternatively, we may start afresh and require that
" be realized as multiplication by a complex number z while
|n;ax) is realized essentially as the nth power of z. We follow
here the first method.

“ , is realized in a space which is the direct sum of two
spaces carrying Dg and Dy ., :

D,=DgeD, ,,,, a=28
In each of the constituent spaces we can set up the eigenvec-

tors of J_. Equation (I2.19) shows that & acts on these states
as follows:

dloB) = [NB+1/2 (’wl)/Nﬁ(le)](Z/G)I/ZC‘)I(U;B+ %) ’
(2.24a)

dlasB +13) = [Ns(|o)/Np ;1 (l0))]2) 0,8 ) .
(2.24b)
The state |8 ) is orthogonal to the state |@',8 + }):
(BB +1) = (2.25)
An eigenstate |z,a) of @ with an arbitrary complex number z
as the eigenvalue
d|z;a) = z|z;a) (2.26)
can now be constructed as a linear superposition of |w;5 )
and |;8 + 1). Wefind that the |z;a) satisfying Eq. (2.26) is
given by
= (D[N, QP8
+N; WGPV + ] @2
The overall real positive factor .4, (|z|) is to be so chosen
that |z;a) is properly normalized:

|z;a)

(z;a|z;a) = 1. (2.28)
We therefore write
N o(lz]) = [{Nﬁ(2|z|2)}2 + {Nﬁ+1/2 (2|z|2)}2 = ]
(2.29)
and from Eq. (2.20) we find that
N oll2) = [2°7 ' T (@F (|2)] "2, (2.30

where # , (2) is the function introduced in paper I [Eq.
(13.16)], viz.,

F =2, @+ 1.(). (2.31)
On substituting from Eq. (2.19) into (2.27) we find that

50y =7 () $ {%]”?#)”

X[Inﬁ) + (2/2"2)(’1 +28Y"2nB+ 1. (2.32)
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Recalling from paper I [Eq. (I(2.17)] that
|8) = 2La) and |18+ 1) = |21+ La), (2.33)
we obtain the following expansion for the coherent state

|z;) in terms of the eigenstates |n;a) of the Hamiltonian H
(cf. Ref. 2):

r
Aolleh 3 | A O

+ (2/2"2)2’1 Y+ a)y'?2n + La)}

= (27 7o) )
+a)
(2.34)

<S5

n= 0
X (@/2V)) " |\ma) .

Here [K ] stands for the integral part of X i.e., the largest

integer smaller than or equal to X.

Equation (2.34) gives the coherent states of the para-
Bose representation & , . Several important properties read-
ily follow from here. These states are not mutually orthogo-
nal. The inner product of |z;a) with |z';a) is given by

=% @*/(F (z])F (2|D} . (2.35)!

It is interesting to note that the entire function % (x) also
appears in the momentum eigenfunction (x;a|k;a) Eq.
(IB.15)].

Finally, we derive the coordinate and momentum re-
presentations of the coherent state. From Egs. (2.34) and
(13.10) we find that

(x;at|z;a) = exp(— )

72
2 = | “1@r2apriana)

(zsa|za)

) x|e 1229\ F L (|2}
zZn

X2 Ve 2T (n+a)

X[Lﬁ“‘(x2)+ F(” +a)] L3, (236)

where L ¢ is the associated Laguerre polynomial. On making
use of the generating function relation [Ref. 4, p. 1038 for-

mula (8.975.3)]

(2~ T, Qa2 ) = 3 (Fr+a+ D 'Li@z,

a=0
2.37)
and on simplification, we may rewrite Eq. (2.36) as
(xa|za) =297 |x|*~ VPexp[ — Lx* + 2%)]
X (F (22T (V2x2) (2.38)

Again, from Egs. (2.34), (2.37), and (13.13) we obtain on
simplification

(kialza) = 2|k |* = Pexpl — 4k + 2]
X (F (|2} AT L (V 2ika).

To set up the representation & , in a Hilbert space of
entire functions, we must associate with every vector |/} an
entire function f(z). This is achieved using coherent states in
the following manner:

FY=f @ = [2° 7' T @F (|21)]"*z*elf) - (2.40)

In particular, from Eq. (2.34) we find that the vector |m;a) is
realized as

(2.39)
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R I I
X@E/V2)". 241)

Further, since the coherent states are the eigenstates of 4, or
equivalently
(2.42)
it is evident that @' is realized as multiplication by z. In fact,
this requirement along with the relations [Eqgs. (12.20 c,d)]
d'2na) = 2n +2a)'?2n + L), (2.43a)
a'l2n +1;a) = (2n +2)"22n + 2;a), (2.43b)
would lead us directly to the numerical factors present in Eq.
(2.41). On the other hand, the action of 4 is different on even
and odd entire functions of z. From Egs. (2.41) and
(12.20 a,b), viz.,
é12nma) = (2n)'?2n — ;) ,
é2n 4+ L,a) = (2n +2a)"*2n;a) ,
we find that the action of d on an even entire function is
df (z)/dz whereas its action on an odd entire function is

[d 7dz) + Qa — 1)/z]f (). Hence, if we write f(z) as a sum of
an even part and an odd part

(z*%,a|@’ = 2(z*,a|,

(2.44a)
(2.44b)

f@=f@+/C), (2.45)
then 4 is realized by
ind @12 py, (2.46)
dz z
where Pis the parity operator
Bf@=f(-2). Q.47)
Alternatively, if we express £(2) as a column vector
ﬂ(Z))
s 2.48
(o @49
then @" and 4 are realized by matrix operators
0 0 di + Za_—l_
au(z z), é 2 (2.49)
0 d 0

dz

In the space &, a vector |f) is determined by the /,
sequence {f,, }:

=S filna).

n=20

(2.50)

Now since & , is the direct sum of Dy and Dy, , (),

B = a/2, the even members {f,, } define a vector lying in the
subspace carrying the representation D, while the odd
members {f, , , } determine a vector lying in the compli-
mentary space D , , »,. Each of these in turn gives an entire
function of w via Eq. (2.12) and a similar one with 8 + } in
place of 8. Thus, we have

)= Ii()f;l“;ﬂ) ® i Suri BB+ 1)
—>-f‘l(w)’f‘2(a)) >
fl(a)) = [F(a)]uz i fﬂ[n!['(n +a)]-1/2w1’
I=0

(2.51)

(2.52)
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fi@)=[T(a+1 )]1/2 ifﬂ " [nl(n + a +1 )]'1/2(01.
=0 .
(2.53)

From Eq. (2.27) and the relations (2.17) and (2.40) we read-
ily find that the pair of entire functions of /; and f;, are related
to the single entire function f(z) by the equation

f@ =102 + [2/22) 1 £,G2) - (2.54)
Thus, f| and £, determine the even and the odd parts, respec-
tively, of £
£ =£G27, (2.559)
f@) = (@/Qa) )02 . (2.55b)
We can now develop an expression for the inner prod-

uct in the Hilbert space of entire functions of z carrying the
para-Bose representation & ,. We begin with

I = szw[K(w;B)fi(w)*ﬁ(w)
+ K @B + 3 @)*@)], (2.56)

obtained using Eq. (2.13) within D, and a similar equation
with Dy, (/2. K (@;8) is given by Eq. (2.16). We now make
the change of variable
0=zY2 d’o=|z|’d’z, (2.57)
and also allow for the fact that o covers the complex plane
twice while z covers it once. Using Egs. (2.16) and (2.55), we
then get:
1—a
iy =( 2 ) [ dlelk, (2, @@
ol (a)
+ K, (2P @%@
1 J‘ 2 2a 2 2
= —— | d%z|*[(K,_,(z|» + K.(z]%))
e ) AR D K
Xf'@* @) + (K., (12]°) — Ko (2]%)

Xf' @ (—2)]- (2.58)
Substituting for £(2) and f'(z) from Eq. (2.40) and observing
that |f) and |[f') arearbitrary, we obtain the following resolu-
tion of the identity operator in & :

~ 1 o
L= [ d%le 7, (DK, (2] + Ko ()

X|za)(zal] + (K, _, (2] — K, (2]}
X|za) ( —za| . (2.59)

The appearance of the “nondiagonal” terms may be unex-
pected, but this formula has the virtue of being valid for all &
and that the functions appearing in the integrand are all well
behaved. For a = }, we observe that X ,,,(x) = K_,,(x) and
Eq. (2.59) reduces to the diagonal resolution of the identity
operator

N 1
i, —f lz51) (z3hld %z
ke

It is interesting to note as shown in Appendix A that a reso-
lution of the identity in the form

i, = fFl(z)lz;a><z;a||d2z+ f F@)za) — zald’
2.61)

is also unique as long as we require that F + F, are positive
definite functions.

(2.60)
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It may further be observed that the nondiagonal nature
of the representation (2.59) disappears if we rewrite it in
terms of the eigenstates of J = %éz, viz,, |08 )08 + 1.
Essentially, this appears in Eq. (2.56). Viewed differently, we
may define

lz, )= —\-/l{ {lz:a) + | — z;a)} (2.62)
and rewrite Eq. (2.59) in the form
- 1 o
-~ f 2|z F (12K, (2)|zsa) (zsal
+ Ko (2P)zs5a) zal ], 2.63)

which is essentially a “diagonal” representation. The states
|z, ;&) are orthogonal to each other, but are not properly
normalized. They are in fact proportional to |w;8 ) and
|w;B + 1), respectively. .

One may observe that the operator R | introduced in Eq.
(12.22) has the effect of changing |z;a) to | — z;a):

R\|za) = | —za), 2.64)
so that
I€,|zjt ay=+lz_;a). (2.65)

C. Diagonal coherent state representation of the
identity operator in &

We now consider the question whether a diagonal reso-
lution of the identity in terms of the coherent states exists in
g .

a*

i, = Jd2z Y@o)|za) (zal . (2.66)

On taking the matrix elements of Eq. (2.66) between the
number states |m;a) and |n;a), it is readily seen from the
orthogonality of these states that y (z;a), if it exists, depends
on z through |z| only and does not depend on the phase of z.
We write

p= %lz'z 2.67)
and take y to be a function of p. We also write
H(pay=2""m{[ @F )} 'x (pa).  (2.68)

For m = n, we then obtain using Eq. (2.34) the following
moments of 7"

[ o = ran] 2 pr([2EL ] +a).
={r}"Nri+a), n=2I,
={Fr@}'N"rd+1+a), n=2 +1 .

(2.69)

If Eq. (2.69) has a solution, then Eq. (2.66) is established. It

follows from the results of Appendix A [uniqueness of repre-

sentation (2.59)] that Eq. (2.69) has no solution if %" p;a)

was restricted to a positive definite function except for the

case @ = }, (when %" = 2e ~*). Hence, in Eq. (2.69), we
have to give up the positivity of .%".

Introducing a new variable o, we may convert the mo-
ment conditions (2.69) into the equation

fo H(pakdp = (M)~ | [ ”L(‘Z’”T—“’(ia)”

Irl+1+a),
— (i
27+ 1y
valid within the radius of convergence of the power series on
the right hand side, i.e., || <2. We rewrite Eq. (2.70) using
the hypergeometric function

'@ Ilr@+dre+!

P ‘] , (2.70)

F(a,bic;u) = 2.7
@hen) = Cor®) & et @70
in the form
j K (p;a)e® dp = h (o;a), 2.72)
0
where
h(osa) = Fa, 13} — }0°) + iaoF (@ + 1,1; §; — 10?).
(2.73)

We can now state a precise condition that will deter-
mine, for each , whether ¥~ exists. Equation (2.72) allows
us to analytically continue the right hand side of Eq. (2.70)
outside the circle |o| = 2. Since the integral on the left hand
side of Eq. (2.72) runs from 0 to o, a solution to our problem
exists if and only if the right-hand side of Eq. (2.73) is free of
singularities in the upper half of the complex ¢ plane. In
general, the hypergeometric function (2.71) has a branch
point at u = 1, with a cut conventionally drawn along the
real axis from ¥ = 1 to ¥ = w0, and in the cut plane it has no
singularities. Thus, the function on the right hand side of Eq.
(2.73) in general has a branch point on the positive imagi-
nary axis at ¢ = 2i, with a cut from o0 = 2i to 0 = i . (The
branc point at ¢ = —2/ is not relevant to us here.) Let us
first calculate the discontinuity across the cut.

We must evaluate the limits of & (0,«) as 0 approaches a point on the positive imaginary axis beyond 2i from the right and
from the left half-planes. For this we must use standard continuation formulas to deal with the hypergeometric function
outside the circle of convergence of its power series definition. For the moment, assume a 5 1,2,3,--- . Then the relevant

formulas are [Ref. 4, p. 1043, formula (9.132.2)]

Fla,Lju) = [7'°T(1 — a)/T (} — @)} — u) " °F(a,@ + ha;1/u) + [2u(l + @)} T'F(1,§;2 — a;1/4),
Fla+ 1L, 3w =ir'"?[(—a)/T—a)l(—u) *"'Fla+la+La+1;1/u)

5 20

— Yua)'F (1,51 — a;1/u),

|arg( — )| <7 .

(2.74)

We can now calculate the jump of 4 across its cut. With y a real number greater than 2, we find that

h(y —ea) —h(iy + 6a) = [7 T (1 —a)/T (§ —a)}(e™ —

e ") */4) " °F (a,a + Lia; 4/y*)

—ay(r"’C(—a)/{2C 4 —a)}1(e™@tD —e~ ™+ (p*/4) *~'Fa+la+La+1;4/y)
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(2.75)

= [2ir*/{C (@ (4 —a)} 1W?) (1 — 2/y )F (a,a + La; 4/ ) .

It turns out that this final result is valid even if @ = 1,2,3,..., though to obtain it in these cases one must use formulas other
than Eq. (2.74) to perform the analytic continuation. So Eq. (2.75) is valid for all @ > 0 (and, of course, y > 2). It follows that for
all values of @ other than 4,3,3,-- , & (0;) certainly has a branch point at o = 2/, with a nonzero discontinuity across the cut, so
no solution exists for the moment problem (2.69). Thus, in the para-Bose representation &, with @#}4,3,3,-- , there is no
diagonal coherent state resolution of the identity.

If @ = m + ] with m = 0,1,2,---, the expression (2.75) vanishes, so & (o;m + }) has no branch point in the upper half &
plane. We must now check whether it has a pole at o = 2i. As mentioned earlier, it definitely has no singularities anywhere else
in the upper half ¢ plane. It turns out that we are able to express 4 in quite elementary form for the set of values of & being
considered. One has, in fact, the results

F(m+ LG5 = —i[F(m +1)/{T(m + DA — I'(n— 5)(1 -

w1 S

n=0
F(m+ 3, 5u) = L(m+1) i Lot PA=w) 012, (2.76)
2r(m+3/2)(1 —w)"*' <o n!
[See, for example, Ref. 5, p. 110, formula (14)]. This leads to the following explicit expression for A:
hioym +3) = —i[mY/T'(m+ )1 + i) """ i Ln—Y[1+i} — n)ol(1 + L?)/nl, m=0,1,2,- (2.77)
n=0

For the normal Bose case m = 0, the potential pole at o = 2i due to the factor standing ahead of the sum is killed by the sum
(actually just one term) and

h(op) =(1 - Lio)", (2.78)
so the moment problem has a solution and we get ¥ inverting the Fourier transform in (2.72):
| S . 2e~%,p>0
Hio= = [ doesst—ipots i ey @.79)
(ps}) vl p( — ipa)h (o3}) 0, p<0.
This, when used in Eq. (2.68), leads to the known diagonal resolution of the identity for the normal Bose case:
A 1
l,,= - f d’z|z) (z}] . (2.80)

However, fora = 3,3, ,i.e., m = 1,2,k (o;a) always has a pole, of order m, at o = 2i. Thus, except for the very special case
a= 5 h (o;) always has a singularity at o = 2i in the upper half-plane, this being either a branch point (@ #3,3,-+) or a pole
(@ = 3,3,-+). We conclude that the moment problem (2.69) has no solution if a #4.

A quick way to reach this conclusion avoiding an analysis of singularities in the complex o plane is to note that the

Fourier inverse transform of 4 (o;a) is explicitly calculable [Ref. 4, p. 853 formulas (7.531.1), (7.531.2)]:
F(pic)= 31- J exp( — ipo Yh (sa)dor
T - ¢

=2|p|* [ (@] (2.81)

K. QlpD) + e(p)KQ2lpD)}, —o<p<o.

Thus, if Eq. (2.69) or (2.72) has a solution, it must be given by Eq. (2.81), which should automatically vanish for p < 0. This
happens only when o = 4.

Hence, we find that a diagonal coherent state resolution (2.66) of the identity operator does not exist, even if we allow ¢ to
be a distribution (as usually defined ) in any para-Bose representation & , except & ,,,.

3. PARA-BOSE OPERATOR DESCRIPTION 3
We now consider some aspects of the description opera-
tors acting on a space carrying the para-Bose representations
& . We first recall the situation in the familiar ¢ = i case
and then consider the problem of generalizing those results.
In the &/, space we can write the coherent state |z;})
in the form

— e—(1/2)|zwezé*

01 . 3.1)

A fairly large and important class of operators can be de-
scribed by the Weyl representation

A= f dz F(2)e —=, (2)

which is analogous to a Fourier representation with a c-num-

lzsi — eza* — 2‘6‘0.1)

2
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ber weight function F (z). We also have the diagonal coherent
state representation valid for a certain class of operators
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A= (@, 3.3)
There is close relationship between a particular ordered
form of 4 and the various representations of AsuchasF (z)or
# (2).° From the commutation relations of @ and 4" one ob-
tains the operator relations

24" 7'a 2z'/2

=g e e
=ez ezaefzz'/l’ (34)

with z,2’ any two complex numbers. Such relations when
used in Eq. (3.2) allow us to express A in normal ordered
form with dependences on 4" standing to the left of the de-
pendences on d, or in the antinormal ordered form with the
dependences on 4 to the left of the dependences on 4'. Put-
tingz’ = — z* in Eq. (3.4) we find that the normal (antinor-
mal) ordered description involves better (worse) behaved
weight function relative to that of Weyl representation.
Thus, for example, we obtain the following normal and an-
tinormal ordered forms of 4 from Eq. (3.2):

2d" + Z'd

e

A= JF(z)e S~ i 2 (3.5)

= J F(2)e(\/Dele —agid' g 2z (3.6)

Using the resolution of the identity (2.60), one can immedi-
ately obtain the diagonal coherent state representation 4
from its antinormal ordered form

,i = ifF(z:)e(1/2)|z'|ze_z..ﬁ
T

= Jd z J d’z'F(2)exp{}|z'|? — 2'*z + 2'2*}|z1) (4] -
G.7)

z1) (z;%|ez'ﬁ*d 22d%z

Thus, we find
()= L J d 2’ F(2)e"/P=" exp(z*z’ — zz'*). (3.8)

Similarly, the normal ordered form of A is related to the
diagonal matrix elements of A in the coherent state:
(zlAA |z) = Jd ' F@)e VP exp(z*z’ —22'*).  (3.9)

It is unfortunately not easy to obtain generalizations of
these results in the para-Bose representation &, for a #}.
For example, we have seen in Sec. 2 that even the identity
operator does not have a diagonal coherent state representa-
tion for a #}. Most of the statements we can make about
operator descriptions in &, rest on general arguments and
not on any explicit calculations.

From Egs. (12.20) and (2.34) we obtain the following
generalizations of Eq. (3.1):

lza) = A (2D (@27 ' F (2dD)|0a)
F . are given by Eqs. (2.30) and (2.31),

(3.10)

where 4", and
respectively.

We now consider whether we can express an operator in
normal or antinormal ordered forms for general @. An oper-
ator A is clearly determined by the values of its coherent state
matrix elements
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(z:a|d |z;a) (3.11)
in the sense that if this matrix element vanishes for all z and

z', then A must vanish. Now that bra and ket vectors in-
volved above depend on z and z’ such that the function

(zia|d |za) /(2 a|za) 3.12)
is analytic in z'* and z. This is evident from the relation

(2.34). We may thus define an analytic function f(z'*,2),
which does not depend on z" and z*, as

f@*2) = (Z5ald |za)/(Z5alze) (3.13)
Ifin fwe set @' in place of z'* and 4 in place of z, and always
keep the former to the left of latter, we obtain an operator
:A@"|4): in a normal ordered form all of whose coherent state

matrix elements coincide with those of 4. The two operators
must then be equal

A= f@"6):. (3.14)
We have used a bar rather than a coma to separate the argu-
ments of fto stress the normal ordered nature of this opera-
tor. Thus, in principle, every operator is expressible as some
normal ordered function of 4" and 4. It is perhaps important
to stress that this argument rests on the properties of coher-
ent states and not on a recipe for moving 4" and 4 past each
other.”

One can show that any normal ordered operator can be
rewritten as the sum of two parts in the form

f(@'a): = “g@lah" + R,"h @|a"h,” (3.15)
where R , is defined from the relation
[46'1=1+Qa—-1DR,, (3.16)

and g and A are both antinormal normal ordered and unique-
ly determined by f. One reaches this conclusion by working
with simple monomials and obtaining results such as

316 = gPlat —2at ", (3.17a)
52+ __621+1AT Q@+ 1) — (Za—l)R 2, (3.17b)
at¥g = aa*t — 216", (3.17¢)
GG =gat ' — 2l +1)a™ — Qa —l)R el
(3.17d)

These relations can be established by induction. Using these
relations, one may verify that the general expression

5+ man

a a

can be systematically transformed to finally assume the
form of the right-hand side of Eq. (3.15). Unfortunately, no
simple analytical expression can be worked out for general m
and n; if it were, one could try generalizing Eq. (3.4) for a #}
(but with R , present in the expressions). Thus, we see that
any operator has, in addition to the normal ordered form
(3.14), the possibility of being expressed in the form (3.15),
which way be called a quasi-antinormal ordered form. This
result of course neither confirms nor denies the possibility of
achieving a true antinormal ordered form, which is possible
if R , itself is expressible in antinormal form.

Using the structure (3.15) and inserting the resolution
of identity (2.59) in between 4 and 4 and also using the
obvious result
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(3.18)

we readily see that every operatorAA posseses, in principle, a
representation

A= 7@~ [ 82z mald’s

R\|za) = | -za),

+ f¢2(z,z*>|z;a>< —zaldZ.  (3.19)

Here
$,(2.2*) = F\(z|")g(z.2*) + F(|z|)h (— 2,2%) , (3.20a)

¢:(22*) = F)(|2|)g(z, — 2*) + F\(lz|Dh ( — 2z, — z%),
(3.20b)

and
Fi(x) = ~—21 xF OIK,_,x)+K,(x)}, G2la)
T

1

Fi) = ——x"F (0K, () = K,(9) . (321b)

Thus, we find that if we are given g and & we obtain ¢,
and &,. Conversely, knowing a representation of the type
(3.19),i.e., ¢, and ¢,, we may determine g and 4. For this, we
regard ¢, &,, g, and A as functions of two independent com-
plex variables. We rewrite Eq. (3.20b) by replacing z* with

—z*:

$:(z, — 2*) = F( — |2|°) g(z,2*)

+ F(—lz)h(—22%). (3.22)
We then obtain, from Egs. (3.20a) and (3.22) the following
expressions for g and A:

Fi(— 121)¢,(2:2*) — F(|z*)pa(z, — 2*)
Fi(lzFy(~ [2|) — Fy(lz|)F( — l21223’23

gzz*) =
)
h(— 2% = P 28,@2% — F((z[ )8, — 2%

Fy(|zP)Fo — |217) — Fi(|z[)F(~ |z|2>(

3.24

Lastly, we discuss the existence of diagonal and discrete
diagonal coherent state approximations (not representa-
tions) to operators. For definiteness let us restrict ourselves
to the family of Hilbert-Schmidt (H-S) operators 4 for
which

Tr(d '4) < » . (3.25)
The expression
(4,B) =Tr(4 'B) (3.26)

serves as an inner product among such operators, making
them elements of a Hilbert space. Condition (3.25) can be
expressed in the basis |#;a) as

>y [(m;a|d |ma)|? < o , 3.27)
so that these matrix elements of A are surely bounded, and in
fact go to zero for large values of m and n. Using the argu-
ment used in Ref. 8, it now follows that the diagonal coher-
ent matrix elements of 4 are separately analytic, in fact en-
tire, in the real and imaginary parts of z, the eigenvalue of d.
Thus, using Eq. (2.34),
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(z:al|d |za) = AT () i g-m—1

Im=0

X [mU (o + m)[ (@ +1)] /2
X [(x — )7 + ) Ay

(X _ l:y)Zm(x + iy)2l+ 1

(2{1-}-21)”2 ¥ Yy
(x — iy)Zm + l(x + l-y)2l
(za +2m)]/2 2m + 1,21

Y
2[la + m)le + 1)]'?

2m 4+ 1204 1 }
(3.28)

is the boundary value, for real x and y, of an entire analytic
function in two complex variable & and 7, say, defined by the
replacement x—¢ and y—» on the right hand side of Eq.
(3.28). This allows us to assert that an (H-S) operatorAA is
fully determined by its diagonal coherent state matrix ele-
ments since by the principle of uniqueness of analytic
continuation

(z;a|/f |z;a) =0forallz=4 =0. (3.29)

Using the inner product notation (3.26) we could state this
result as

(za)(zal,d)=0, allz =4 =0. (3.30)

However, this has the interpretation that in the Hilbert space
of all H-S operators, “linear combinations” of the (continu-
ous) family of Aelements |z;a) (z;| form a dense set, so that
any operator 4 can be approximated arbitrarily closely by
such linear combinations. We can therefore assert that the
diagonal coherent state approximation to a given operator/f :

A~ J-dzmp @)|z;a) {z;a (33D

can be found to arbitrary accurary.

Actually, it is possible to replace Eq. (3.29) by a much
more economical one. It is well known that an entire func-
tion vanishes identically if it vanishes on a suitably chosen
infinite sequence of points in the complex plane. For exam-
ple, a sequence with a finite limit point has this property. In
general, a set of points in the complex plane with the proper-
ty that the only entire function (out of the class of entire
functions under discussion) that vanishes on this set is the
zero function is called a characteristic set. For entire func-
tions in two variables, characteristic sets are defined in the
product of the complex plane by itself. We can now replace
Eq. (3.29) by the following one: choose two characteristic
sets {x;}, {y,} in the complex plane, both restricted to the
real axis. Define the set of points z; by

Zy =X; + iy . (3.32)
Then . )
(zj;a|4 |z ;a) =0, all j and k=4 =0. (3.33)

Alternatively, A .

(|zy;a)(zy;a|,A) =0, all j and k =4 =0. (3.34)
Thus, such a denumerable sequence of coherent state projec-
tion operators already yields via its linear combinations a
dense set in the Hilbert space of H-S operators, leading to
the existence of discrete diagonal coherent state approxima-
tions to a given A:
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A~ ulzi;a) (zal (3.35)
.k

to any desired accuracy.

4. POSITION-MOMENTUM UNCERTAINTY PRODUCT

In this section we consider the problem of constructing
states with a minimum value of the product of the uncertain-
ties in position and momentum variables. It is well known
that if

[4,B]1=iC, @.1)
where 4, B, and C are Hermitian operators, then one has the
inequality

(@A) (@BY) >, 42)
where

(@A) =X A— AW =) - ), @3
and the sharp brackets denote the quantum expectation val-
ues in the given state. Relation (4.2) reduces to an equality if
and only if the given state is an eigenstate of (4 + iAB),
where A is some real number. Let us now identify 4 and B as

the position and momentum variables respectively of the
para-Bose system

A=g= “;;T, B=p-— ‘(";2‘;: (4.9)
so that

(4,B1=il64"]=i{1+Qa—-DR,}, 4.5)
where [cf. Eq. (12.22)]

R|ma) =(~1)"|ma) . (4.6)
We then find that

(@HHEp>1([a.d'])?. 4.7

We may readily verify that relation (4.7) is an equality for the
para-Bose coherent states (being the eigenstates of the opera-
tor § + ip). However, since [d,4'] isin general nota ¢ - num-
ber, the right-hand side of (4.7) itself depends on the given
state. Hence, the para-Bose coherent states do not minimize
the product of the uncertainties in 4 and g in the absolute
sense, except for the ordinary Bose case where o = 1. Rela-
tion (4.7) gives the minimum value of the product of the
uncertainties only in a restricted sense. Consider all those
states for which 1{[4,4"1)? is a given definite number. The
uncertainty product in any of these states is greater than or
equal to this number. There is no guarantee that such states
would include any coherent state.

In order to determine the minimum value of the uncer-
tainty product, we consider the casesa <}, a =4, anda >}
separately.

Case 1: a <}. The commutator [4,47] can be expressed
in the form [cf. Eq. (4.5)]

[4,4'] = 2aP, +2(1 — )P, , 4.8)
where }Se and 13,, are the projection operators on the even and
odd number states respectively:

B = i [2ma) 2ma| ,

n=0

(4.92)
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130 = i |2n + L;a) 2n + L;] .

n=0
Since ﬁe + }30 = i, we readily find from Eq. (4.8) that
2(1 — @) =2(1 —2a) P, = [4,6') = 2a +2(1 —2a) P, .
(4.10)

Further, a <} and both ﬁe and P, are positive definite opera-
tors; we have

(4.9b)

2(1 —a)>(14,6")>2a . 4.11)
From the equalities (4.7) and (4.11) we the obtain
(49> (@p*>a?, (4.12)

giving us a lower bound to the product of the uncertainties in
g and p. In order to search for the states for which this lower
bound is actually reached, we observe that for such states we
must have [cf. relations (4.7), (4.11), and (4.12)]

(@HH(Epyy = Kla,aly?
and

([4,6"]) = 2a (4.14)
separately. For Eq. (4.13) to hold, the given state must be an
eigenstate of § + idp for some real A (in fact A >0, since there
are no eigenstates of § + iAp for A <0). Also, from Eqgs.

(4.10) and (4.14) we find that such a state could contain only
the even number states and hence

(§+idp) =0, (4.15)
which follows from the fact that § and  have nonzero matrix
elements between the neighboring number states only {cf.
Eq. (12.20)].

We thus conclude that for a < 1, the minimum value of
the product of the uncertainties {(44)*){(4p)*) is @?, and
that this is achieved for the states which are the eigenstates of
g + iAp with eigenvalue zero. One may readily see that this
state is given by

o-[ 5T (1))

n=10 n!
© I'@+n) )1/2(,{_1 )n ]
X ( 2ma) i, (4.16
which in fact contains only the even number states.
For such a state, we find that®

(4.13)

(49)") = Aa, (4.17a)

(4py") = a/A. (4.17b)
We also have, therefore,

(49 + ((4p)*)>2a, (4.18)

with equality holding only if A = 1, i.e., for the ground state
1G).

It is interesting to note that the minimum uncertainty
state (4.16) may also be written directly as

|¥) = exp{ilogh (4" — d)}|0;a),
which follows from the fact that

e(l/4)10g/l @' — ‘i')t'ie — (1/#)ogA (4" — a%) — q»\ + ilﬁ, A > 0 ,

(4.20)

and that |0;a) is an eigenstate of @ with eigenvalue 0.

(4.19)
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Case 2: a = }. This is the familiar case of the ordinary
Bose oscillator. In this case the commutator [4,4'] isac —
number, and the situation is very simple and in fact well
known. The minimum uncertainty product {(44)*) ((45)*) is
now } and this is achieved for the eigenstates of the operator
g + iAp, A > 0. Again, here also, we find that
((44)*) + {{(45)*)>1 and the minimum value 1 is reached
for the coherent states, i.e., the eigenstates of § + if.

Case 3: a > }. Consider first the case when }<a<1.
From Eq. (4.10), we find in this case that

([a,6")>2(1 — a)
and hence

(AP (P >(1 — ). 4.21)

It may readily be seen that equality in (4.21) can never hold.
For if it does, the given state must be an eigenstate of § + iAp
and in addition we must have

{[a,4"1)=2(1-0a).

Equation (4.10) then shows that the minimum uncertainty
state should contain only the odd number states and such a
state can never be an eigenstate of § + iAp for any real posi-
tive A.

For the case when a1, we can have states for which
([4,6"]) = 0; however, such a state can never be an eigen-
state of § + iAp so that the product of the uncertainties in §
and p can never be made to vanish.

It is believed that when a > }, the lower bound of
((44)*){(45)*) is }, the same as in the ordinary Bose case.
This conjecture is based on the following observations:

(1) The coherent states are the eigenstates of § + ilp
with A = 1. For such states we have

(@PHH (AP =L (za|[d.d']|za)|?. 4.22)
Further, we find from Egs. (4.5), (2.64), and (2.35) that?
Ia —1 (|z|2) - Ia(’zll)
L (2 + Lz’
4.23)

(za|l4d"|za) = 1 + Q2a —1)

where 7, is the modified Bessel functions. Hence, for coher-
ent states we obtain

(@) (@p?) =41 + 2a - 1)

Ia—l(lzlz)_la(lzlz) ]2 (4.24)
Ly (P + L3z |
We show in Appendix B that
I, (2> 1|2, a>y, (4.25)

so that from Eq. (4.24) we find for a >} the inequality

(@9 (@p*r>1. 4.26)

It may be observed that there is no coherent state for
which the uncertainty product actually takes the value }.
However, by letting z be very large we may approach this
value as close as we like.

(2) Consider any stationary state represented by a den-
sity operator §. This implies that 5 commutes with the Ha-
miltonian, i.e., § is diagonal in the number representation
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p= 3 pulma)mal. “27)
n=0
For such a state we find that (§) = () =0 and
@ =@ =3 pn+a)>a, (4.28)
n=0

with equality holding only for the ground state (p,, =9,,).
Hence

((4§*)(@p)*) >a’. (4.29)

(3) From Eq. (4.10) we find that

([6,6']) =2(1 — @) +2Qa —1){ P,). (4.30)
Thus, if (£, ) >} (and a>}),

([6,6TH)>1. 4.31)
Hence, for all those states for which (ﬁe )>1 we find

(49 {(4p)") >} . (4.32)
Also, if (P,)<[a — (3/2))/Qa —1), we have

([a,d"])< —1,
and again we find that

(A9 ((4p)*) >}. (4.33)

Of course, it is not necessary that the lower bound is actually
obtained in these cases. Thus, we find that the Product of Athe
uncertainties cannot be less than { if either (P,)>1 or (P,)
<[a — (3/2)]/Qa —1). For a very large, it includes almost
the whole range.

In Table I below, we summarize the results of this
section.

It is interesting to observe that the ground state |0;ar) is
actually an extremum state for the uncertainty product
((44)*Y{(4p)*) for all a in the sense that it satisfies

S W@ — DYDY PE — B)[¥)) =0, (434

subject to the condition (/1) = 1. For a <1, the ground
state |0;a) is the minimum uncertainty product state as dis-
cussed earlier. For @ > } it turns out that |0;r) is actually the
maximum uncertainty product state. However, this maxi-
mum is only a local maximum, i.e., if we look into neighbor-
hood of the ground state, we get ((44)?) ((45)*), a maxi-
mum for the ground state. The inequality (4.29) is not a
contradiction, since any stationary state other than the
ground state is not in the neighborhood of it. It appears that
the general solution of Eq. (4.34) for |¢) is the eigenstate of
4 + iAp with eigenvalue O [except for the normal Bose case
a = 1, for which the general solution of Eq. (4.34) is any
eigenstate of § + iAp].

5. CONCLUDING REMARKS

We have considered energy, position, and momentum
eigenstates and the Bargmann description of the para-Bose
system with one degree of freedom. Using the coherent
states, a resolution of the identity operator containing the
diagonal and pseudodiagonal term has been obtained. Nor-
mal and antinormal ordering of para-Bose operators has
been discussed. We also discussed the minimum value of the
product of the uncertainties in position and momentum var-
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TABLE I. Lower bound of the uncertainty product {((44)*){(45)?).

Restriction Lower bound of
a on the state {49 p)* Remarks
a<}  Allstates o’ Lower bound is obtained
for the eigenstate of § + iAp,
with eigenvalue O (10).
a=1 Allstates i Lower bound is obtained
for any eigenstate of § + iAp.
a>}  Coherent >4 By taking z large, we can
states approach the value }
. as close as we like.
(P>}
R 1
(P.y< a 3/12 >4
Alle  Stationary a? Lower bound is obtained
states for the ground state
pH]=0 |0}
iables. We have tried to generalize the several known results We set
for the normal Bose case (@ = }) to the para-Bose case (gen- xX2=t, (A2)
eral a). We have found significantly different Its in th
al @) e found significantly different results in the AT @K () = (), (A3)

general case.

It is obvious that the coherent states form an overcom-
plete set. For the case @ = }, it has been shown'? that the
existence of a diagonal coherent state representation is anal-
ogous to the existence of an expansion of a given state in
terms of coherent states with imaginary eigenvalues, i.e., in
terms of the states of the form |ix), with x real. This is dem-
onstrated by introducing “super operators” whose action on
the space consisting of ordinary operators is suitably de-
fined. It will be of interest to see if such a formalism could be
generalized for the para-Bose system. It is necessary, for this
purpose, to consider first a para-Bose system with more than
one degree of freedom. Unfortunately, the algebra for sys-
tems with more than one degree of freedom becomes much
complicated'! especially because even the operators belong-
ing to different modes need not commute. One may then
naturally ask for the minimum value of the uncertainty
product ((44,)*){(45,)*) for the position and momentum
variables in different modes. It will also be of interest to
study the Weyl representation for para-Bose systems with
one or more degrees of freedom.

APPENDIX A: A MOMENT PROBLEM

In this Appendix we consider the moment problem

fmdx Kixap+' =nl(a +n/2rl(@), (Al

and show that if we restrict K (x,a) to be positive, it has a
unique solution. We further show that this leads to unique
resolutions of the identity operator in the spaces of the repre-
sentations Dy [Eq. (2.23)] and &, [Eq. (2.61)] as long as the
corresponding weight functions F (o) or F\(2) + Fx(2) are
restricted to be positive definite.
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and write Eq. (A1) in the form
f o@)ndt=nI(a+n). (A4
(4]

A solution of Eq. (A4) is given by
$(t)y=2“"P2K, (2", (A5)

where K, _, is the modified Bessel function of the second
kind.'?

Shohat and Tamarkin give a sufficient condition under
which the moment problem

J-w e dt=p, (A6)

is determined [i.e., ¢(¢ ) is unique as long as @(¢ ) is restricted
to be positive]. This condition is (Ref. 13, theorem 1.11, p.
20) that the series

z #"— 1/(2n) (A7)

n=1
is divergent. In the present case the moment problem (A4) is
determined, i.e., has a unique positive definite solution (A5),
if the series

$ (@ +n)] Ve (A8)

n=1
is divergent. It is readily seen that the nth term of this series
for large n behaves as #~' and hence the series is in fact diver-
gent. This establishes the required result.

Consider the resolution (2.23) of the identity operator
in the space of the representation Dy:

iy = [F@les)@Bld. (A9)
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One may readily show using Eq. (2.19) and comparing Eq.
(A9) with the relation
3 (nB)(mB| = 1p).
n=20
That F () must be a function of |»| only and that it must
satisfy the moment condition

[ B 1Pl - 2lol} o Yol djo

_ nl{a+n)
= 2 (A11)

Since I,; _, > 0for 8 >0, we conclude that as long as F (w) is
positive, it is given by

(A10)

Flo) = %12,3-,(2@!)&5_1(21@1). (A12)

Finally, we consider the resolution of the identity oper-
ator in the space of the representation &

ia = f [F1(2)|2) (2| + Fx2)|2)( _zl}dzz. (A13)

Again using Eq. (2.34) and comparing Eq. (A13) with the
relation

i,= 3

«= Y |ma)(mal,

n=20

(Al14)

one may readily show that both F; 4- F, must be functions of
|z|? only. This implies F, and F, must also separately be
functions of |z|? only. Further, one finds that

[ 1R + R 7 P d e

=7+ 20 (n + a) (A15)
and
fo " (F(2P) = B2} (F (2D} )+ d |2]
=gt i N(n+a+1). (A16)

Setting |z|* = 2x, Eqs. (A15) and (A 16) may be written in
the form

fw {Fi(2x) + F2x)} (xF ,(2x)} %"+ 1dx

=722 (n + @), (A17)
L " (Fi@x) = R0} F L)) x>+ dx
=72 M n+a+1). (A18)

Since # , (2x) is always positive for @ > 0, we conclude that
aslongas F, + F, are positive they are uniquely determined.
The resolution of the identity operator (2.59) is unique under
this restriction.

APPENDIX B: PROOF OF THE INEQUALITY
/a —1 (Z)> ,a (Z)

In this Appendix we show that for @>} and z>0, we
have the inequality

Ia~1(z)>1a(z)¥ (Bl)
where I,(z) is the modified Bessel function
a oo /2)2"l
1,@) = (i) N 2 B2
@={3 ,.Zon.’f(n-i—a-f-l) (B2)
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Define a function f{(z,) as

feay=1, ,@)~1,0). (B3)
From Egs. (B2) and (B3) we find that
feay= § O ey (B4

o ntlHN(n+a+1)
Each term on the right-hand side of Eq. (B4) is positive for
a >z/2. Hence, it follows that

f@za)>0, for 0<z<2a . (BS)

Further, for large values of z, we know the asymptotic nature
of I, (2):

I, (z)~(21rz)‘“2e‘[1 — —;—;(az ) (B6)
so that
fza)~@r)y e Qa —1). (B7)

Hence, it also follows that for some large and positive num-
ber M, and 2a > 1,

fza)>0, z>M. (B8)

Further, we also know that f(z,a) is an analytic function of z
for z> 0. Hence, from Eqgs. (B5) and (BB), it follows that if
S (z,a) was negative for some z, such that za <z < M, then it
must have a minimum at some point where its value is nega-
tive. Thus, f(z,&) can be negative for 2a <z < M only if for
some z = z,, we have the following three conditions satisfied:

2
Sf@pa) <0, i f(zp2) =0, and —-d—— f(Ze)>0. (B9)
dz dz
Now I, (2) satisfies the differential equation'?
d? d
Zz-d—;2—+2 E*(Zz'i-az) ]Ia(2)=0,
from which it follows that for all z,
2
2L fea)+2 L fem) - @ + ) @)
dz dz
+Qa—1)I,_ ,@)=0. (B10)

Since'* I, _,(z)>0forz>0and @ >}, Eq. (B10) at z =z, is
obviously in contradiction with Eq. (B9). Hence, f(z,) can-
not take any negative value. This established the inequality
(4.25) of the text, viz.,

I,_ @)>1.(2), z>0a>}. (B11)
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We derive new Ermakov systems with velocity-dependent potentials. The extended Ermakov
system presented contains all known one-dimensional cases and many new systems. These
Ermakov systems lead to a nonlinear superposition law for the solutions.

PACS numbers: 03.65.Db

I. INTRODUCTION

In earlier work' we have applied Noether’s theorem to
the Lagrangian

L=y#* —alt)p) + 3 Gt)F (p), (L.1)

where G, and F; are initially arbitrary functions of their ar-
guments. The following results are obtained by applying
Noether’s theorem to this Lagrangian:

G = Goixzm' -, (1.2)

F, =F,p ™™, (1.3)
where G,,;, F,;, and m; are arbitrary constants. Here x is an
auxiliary function, associated with the time part of the

Noether symmetry transformation, and satisfying the
equation

X + ot x = k/X°, (1.4)

where « is an arbitrary constant. The equation of motion for
p takes the form

p+at)p= 2 cx/ p*™ " x pY), (1.5)

and the Noether invariant the form

I= %[(xp — pi) + x(—g—) +3 7:— (%)"’] , (L)

where ¢, = — 2m; G, F,;. The invariant 7 is constant if p is
any solution to {1.5) and x is any solution to (1.4). For the
details of the calculation we refer to Ref, 1. The idea for that
calculation arose from the work of Lutzky? who obtained the
above results for ¢; = 0. These calculations represent an in-
teresting application of Noether’s theorem. For arbitrary G,
and F; the Lagrangian (1.1) does not allow a Noether sym-
metry transformation. Noether’s theorem applied to this La-
grangian forces G, and F; to have the above forms so that the
Lagrangian will allow a Noether symmetry.

Previous to arriving at the above results we had intro-
duced® more general Ermakov systems containing the above
Ermakov systems as special cases. The equation of motion
for these more general Ermakov systems has the form

p+a't)p=fx/p)/(p*x), (1.7)

where fis an arbitrary function. The auxiliary equation and
invariant have the form

i+ 02t )t = gl p/x)/ ), (1.8)
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x/ p /X
I=ixp—pi + f Fl)dy + f gl dn, (19)

where g is also an arbitrary function. [ is constant if p satisfies
(1.7) and x satisfies (1.8). We refer to (1.7) and (1.8) as an
Ermakov pair of equations and to (1.9) as the Ermakov invar-
iant associated with this pair. It is clear that the Ermakov
system (1.5), (1.4), and (1.6} is a special case of the more gen-
eral Ermakov system (1.7), (1.8), and (1.9).

An important property of Ermakov type systems such
as (1.7), (1.8), and (1.9) is that they imply a general nonlinear
superposition law relating the solutions to the Ermakov pair
of equations. The nonlinear superposition law can be derived
by using the new dependent variable » = p/x and indepen-
dent variable d7 = dt /x°. In terms of these quantities the
invariant [ has the form

1=+ ofp), (1.10)

where the prime implies differentiation with respect to 7 and
v(r) is defined by
1/r

o) = f “sman+ [ fiman.

For obvious reasons we refer to / as the energy and v{7) the
potential energy of the Ermakov system. The energy integral
(1.10) can be integrated to obtain

(1.11)

rHe= (1.12)

1 f dr
V2 ) (I—vn)"?’
where ¢ is an arbitrary constant of integration. Equation
(1.12) is the key equation for the existence of a nonlinear
superposition law for the Ermakov pair. Suppose we choose
a particular solution to (1.8), say, x, then the general solution
to the p equation (1.7) can be written

p=xr(fdt/x2+c,1),

where r is obtained by solving (1.12). Equation (1.13) is the
general solution to (1.7), the integration constants being /
and c. Thus, the nonlinear superposition law (1.13) gives the
general solution to (1.7) in terms of a particular solution to
(1.8). Examples of the use of this nonlinear superposition law
can be found in Refs. 4 and 5 and an example of a more
general nonlinear superposition law of the same general type
is in Ref. 6. For the present purposes it is sufficient to note
that the implicit nonlinear superposition law (1.13) can be-
come explicit, that is, constructive for certain choices of f

(1.13)
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and g. It, therefore, represents a practical method of con-
structing solutions of the p equation in terms of solutions to
the x equation. Also such nonlinear superposition laws have
utility in numerical analysis, where the accurate determina-
tion of particular solutions yields the general solution
through the nonlinear superposition law.’

The purpose of the present paper is to derive more gen-
eral Ermakov systems involving velocity-dependent poten-
tials and forces. We shall employ Noether’s theorem to ob-
tain new Ermakov systems and then generalize these systems
in the same way that the more general Ermakov system (1.7),
(1.8), and (1.9) can be obtained by generalizing the Noether
theorem results (1.4), (1.5), and (1.6). In Sec. II we start from
the Lagrangian

L=4p*—o™t)p’) + P(p,pit), (1.14)
containing a velocity-dependent potential and give the
Noether theorem results for this Lagrangian. In Sec. I1I we
generalize these results to more general Ermakov systems.
In Sec. IV we discuss various examples of these more general
Ermakov systems. Finally in Sec. V we shall give our conclu-
sions along with suggestions for further work.

The inclusion of linear friction in Ermakov systems can
be obtained by a change in the independent variable as ex-
plained in Ref. 4, hence, without loss of generality we can
consider only the friction-free equations.

1. NOETHER’S THEOREM INVARIANTS

The Lagrangian under investigation is the time-depen-
dent harmonic oscillator with the velocity-dependent
potential

L=}(p"—ot)p’) +P(p.pit). (2.1)
We use the formulation of Noether’s theorem as given by

Lutzky.? A symmetry transformation for a system is de-
scribed by the group operator

X =§(pt)0/0t) + n(p:t )(3/d p).

If X is a symmetry transformation then the following combi-
nation of terms must be a total time derivative of a function

(2.2)

flpt)ie,
JdL aL . .z 0L : ;
== 4 — pE)— +EL=F 2.3
53 "5, (7 p§)ap §L=1. (2.3)
If (2.3) is satisfied then the Noether invariant is
oL (2.4)

I=(§/5—77)T —&L+ S
P

The details of the calculation involve solving Eq. (2.3), which
is an identity in p, g, for 5, £, £, and P. Since the details of this
type of calculation have been given in Ref. 1 and 2 we only
give the results for the Lagrangian (2.1). In the following
calculation we assume that P is as general as possible subject
to the requirement that Noether’s theorem produces explicit
invariants.

The terms proportional to 6° in (2.3) imply £ depends
only on ¢. The p? terms give 77 as

n=4£p + ),
where #(t ) is an arbitrary function of time.

(2.5)
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The p terms then yield f

f=¥p"+vp+xit) (2.6)

where y is an arbitrary function of time. Here we have
assumed P ( p, p,t ) is general enough so that the termsin (2.3)
involving P are not proportional to g, pz, and g°. If this is not
the case then the above results will be modified in a way that
depends on the explicit form of P. The p® terms in (2.3) now
yield the equation

E+ 40% + 400E =0 (2.7)
which can be integrated to the form
X+ ot x =k/x3, £=x7, (2.8)

where « is an arbitrary integration constant. The p terms of
(2.3) yield

Y+t =0. (2.9)
In obtaining these last two results (2.8) and (2.9) we have
assumed that the terms involving P in (2.3) do not contain
terms proportional to p and p*. Next from (2.3) we obtain
¥ = O which implies that we may choose y = 0. Finally then
(2.3) takes the form

P +USp+ 4P, +(4p— 1P+ Y)P, +5P=0.

(2.10)

From this point it is not possible to progress further in the
solution without some restrictions on the form of the poten-
tial P, that is, the Lagrangian cannot allow a Noether sym-
metry for arbitrary P. This same type of result occured in
Ref. 8, where the potential initially having the form F( p,¢ }is
forced by Noether’s theorem to have the form G (¢ )F (k (¢ ) p),
where the functions G (¢ ), & (¢ ) follow from Noether’s theo-
rem. For the present case Noether’s theorem implies P has
the form

P=G(t)F(q(t)pk(t)p+h(t)p) (2.11)
where G, ¢, k, and 4 are to be determined. In the following we
denote the derivative of F with respect to its first argument as
F, and the derivative with respect to its second argument as
F,. We now deduce the explicit forms for G, g, k, and 4 from
Noether’s theorem. Using the form (2.11), Eq. (2.10) takes
the form

E(GF+ GF\gp + GFy(kp 4+ hp)+ (3 p + ¥)
X(GF\q + GF:k)+ (} p — 4 p + $)GFh + §GF = 0.
(2.12)

Next the coefficients of F, F,, F,, pF,, pF,, and pF, must
separately vanish in order for Fto remain arbitrary. The pF,
terms yield

Eh—1ER=0 (2.13a)
or

(2.13b)

where £ = x? and ¢, is an arbitrary integration constant. The
pF, terms yield

h=cx,

Ek+ 1 Ek+1En=0, (2.14a)

which integrates, after using (2.13b) to
k=c,/x —c\X, (2.14b)
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where ¢, is another integration constant. The pF, terms yield

&G +1£9=0, (2.15a)
or

g =cy/x, (2.15b)
where ¢, is another integration constant. The F, terms yield

¥ =0, (2.16)
and the F terms

G=1/x% 2.17)

Summarizing the results of the calculation we have obtained
the function P as

(2.18)

where F'is an arbitrary function of its arguments and the
constants c,, ¢,, and ¢, are arbitrary constants. Since the
function F is an arbitrary function of its arguments we lose
no generality in taking c; = 1, ¢, = 0, ¢, = 1 in which case P
has the form

P=F(c,p/x,c,p/% +¢\(x p — pxR))/X,

P=F(p/x, xp — px)/x?, (2.19)

where F is still an arbitrary function. The Lagrangian takes
the form

L=Yp*—a¥t)p’)+ F(p/x, xp— px)/x*. (2.20)
For convenience in writing the formulas let

r= p/x, (2.21)

W=xp— px. (2.22)

The utility of using these variables has been emphasized by
Lutzky.® Here  is the ratio variable that was introduced in
our earlier discussion of nonlinear superposition and W is
defined the same as the Wronskian for linear equations. It is
important to note, however, that W is not constant in gener-
al.We note the following important relation between these
two new variables:

x? ar
dt

and if we introduce the new independent variable
dr = dt /x?, we obtain

r= dr = W, (2.24)
dt
which was used in our earlier discussion of nonlinear
superposition.

In terms of these new variables the results of this section
can be summarized as follows: The velocity-dependent La-
grangian which allows a Noether symmetry has the form

- W, (2.23)

L=Yp*—o¥t)p")+ F(r,W)/x’, (2.25)

the equation of motion associated with this Lagrangian is

. 1 F W 3*F W &F
PO s Y Sawar T X awr =
(2.26)
where x satisfies the auxiliary equation
X + ¥t )x = /x> (2.27)
and the Noether invariant is
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2 2 aw

Note that in the equation of motion (2.26) the term W con-
tains g and X since

I= (2.28)

W=xp— px. (2.29)
We could use this result to make the 5 dependence explicit,
however, we prefer to do this after we have derived the gen-

eralized Ermakov system in the next section.

In the special case dF /dW = 0 these results reduce to
the Ermakov system

o, 1 oF 1 (p)

Yy _ L) 2.30
prattlp x> or pzxf x 2.30)
X+ ot x = k/x3 (2.31)

which we have previously derived from Noether’s theorem.?
As a final point in this section, we return to the idea of a

nonlinear superposition law between the p and x equations

{2.26) and (2.27). Using the new independent variable

dr =dt /x* and (2.24) we obtain

1 1 aF
I=—r*4 —x—F(r,r)+7r —, 2.32
M) (r,r) pw (2.32)
which still leads to the nonlinear superposition law
p= xr( f dt /x* + c,I), (2.33)

if we can solve (2.32) for #, integrate and then solve for

r =r{§dt /x* + ¢,I). Even if this cannot be done explicitly it
might still be useful for numerical solutions of the p equa-
tion.” The fact that the nonlinear superposition law (2.33)
can become explicit has been mentioned earlier and is dis-
cussed in Refs. 4, 5, and 6.

lil. ERMAKOV GENERALIZATIONS

In this section we discuss the equation of motion (2.26)
derived in the last section

p+ot)p
_10F W &F E’. FF =0, (3.1)
X  XPodw  x IW?
where x satisfies the auxiliary equation
X + ¥t )x = x/x°. (3.2)

Now in the Ermakov derivation of the invariant for (3.1) and
(3.2) we eliminate w*(r ) between these equations, multiply by
W and notice that the resulting equation implies that the
quantity

I=\W?*+ W’ —F(r,W)+ W—aﬁ (3.3)

aw

is constant. After performing this latter calculation we are in
a position to generalize these results by generalizing the aux-
iliary equation from (3.2) to

X+ ot )x
2 I 2
196  (WoG WG _, (3.4)
p’ OF p’ W  p AW

where G = G (F,W) is an arbitrary function and
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7=x/p = r~'. Elimination of »*(t ) and multiplication by
W leads to the Ermakov invariant
1 JF BG
I=—W?_F4+W=— —G 3.5
2 + aw +W oW (3-3)

for the pair (3.1) and (3.4). Equations (3.1), (3.4}, and (3.5)
represent an extended Ermakov system of a fairly general
form.

As another genralization of the form of the extended
Ermakov pair (3.1) and (3.4) we may replace the first terms in
these equations by m(W) g and m{W )%, where m is an arbi-
trary function. The Ermakov invariant then takes the form
of {3.5) except that the first term is replaced by

fwnm(n) dn.

The Ermakov invariant (3.5) corresponds to the choice
m = 1. Itis not yet clear whether or not this type of term can
be introduced using Noether’s theorem applied to a different
Lagrangian than employed in this paper. The addition of the
term m(W ) to the Ermakov system is also discussed in Ref. 6.
Through the change in independent variable dt /x* the
invariant (3.5) is converted into a function of r, 7 and there-
fore we have the same implicit nonlinear superposition law
connecting (3.1) and (3.4) as discussed in the previous sec-
tion. This is still true if we add the function m just discussed.

(3.6)

IV. EXAMPLES

The extended Ermakov system (3.1), (3.4),and (3.5) con-
tains all previous Ermakov systems as special cases and
many new Ermakov systems. It is the first example of an
Ermakov system with velocity-dependent forces except for
the special case discussed in Ref. 6.

As a first example suppose neither For G depend on W:

oF = 3G

= =0, — =0. 4.1
1) 4 4 &1
The Ermakov pair (3.1) and (3.4) then become
F
praltp— 55 o, 4.2
x* dr
$+ofp— 196 g, (43)
p’ dF

which is just our original Ermakov system® if we define fand
gas

___f( / )-— _1__45.’ (4,4)
dr
1 dG

2g( /X) = T (4.5)

As pointed out previously the Ermakov pair (3.1) and
(3.4) contain g and X in the W terms. When this dependence
is made explicit, the equations take on a different and some-
times startling form. For instance, if we assume that Fand G
depend only on W then the Ermakov pair (3.1) and (3.4)
become
W d*F

T =0 (4.6)

p+o’t)p+ —
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iy W d*G

X+o’ft)x — —
Using (2.29) and solving the resulting equations for § and X
one finds

p+ao*t)p=0, (4.8)

X+ 0¥t )x =0, (4.9)
that is, the Ermakov pair for (4.6) and (4.7) are equivalent to
two uncoupled time-dependent harmonic oscillators. For

this case W = const and the F and G terms in the Ermakov

invariant (3.5) are superfluous.
As another example we consider the partially coupled
system

=0. (4.7)

F= —r—W?¥2+1/(6W?, (4.10)

G=0. (4.11)
The Ermakov pair take the form

p+a’t)p+x°F =0, (4.12)

X+ o’t)x =0, (4.13)
and the Ermakov invariant is

I=r—1/2W?). 4.14)

If we use the new independent variable d7 = dr /x? then
{4.14) can be written

I=r—1/2r. (4.15)

Solving (4.15) for ¥ and integrating we easily derive the non-
linear superposition law between (4.12) and (4.13)

p =x11+ 32/3(x2x1 1/2/”}0 + cx, 3/2)2/3/2, (416)

where x,; and x, are solutions to the linear auxiliary equation
(4.13) with Wronskian W, and p is the general solution to
(4.12), I and c being the arbitrary integration constants. This
same example was discussed in Ref. 6, where it arose by
introducing the function m({W ) in the original Ermakov sys-
tem (1.7), (1.8), and (1.9).

We shall let these examples serve to illustrate the ex-
tended Ermakov system (3.1), (3.4), and (3.5).

V. CONCLUSIONS

In this paper we have started from the Lagrangian for
the time-dependent harmonic oscillator with a velocity-de-
pendent potential

L=y(p - o(t)p) + Pppit ). (5.1)

Applying Noether’s theorem to this Lagrangian we deter-
mine the form of the function P so that L admits a Noether
symmetry. The result we are led to is that P has the form

P=F(p/xxp — px)/x* =F(r,W)/x". (5.2)

The resulting equations of motion and invariants, have a
simpler form in terms of the variables » and W, as empha-
sized by Lutzky.® The Ermakov equations of motion and
invariant are

p+ao’t)p
LJF W &FF W IFF _, (5.3)
T X o x> 9row  x AW’ ’
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¥ + ot x = /X3, (5.4)
and
1 1 JdF
I=—W 4y —P_F+W—. 55
> + > + W W (5.9)

In this Noether’s theorem approach to Ermakov systems the
auxiliary equation (5.4) is uncoupled from the p equation.
This will always be true for Lagrangians of the type under
investigation since Noether’s theorem leads to

é—é=0=§£=0. (5.6)

ap dp

In Sec. III we found that the Ermakov type derivation
of the invariant by elimination of »* between the pair leads to
an immediate “symmetric” generalization of auxiliary equa-
tion from (5.4) to

X+ ¥t )x
) 2
_ Lsfg p_‘:ﬁ - Ziﬂz =0. (5.7)
p>oF  p FOW  p W
The Ermakov invariant now becomes
1 aJ
I=—W?_(F+G W—(F+G) 5.8
5 ( ) + aW( +G) (5.8)

This extended Ermakov system (5.3), {5.7), and (5.8) contains
all previous Ermakov systems as special cases and many new
Ermakov systems. It is the first example of an Ermakov sys-
tem with velocity-dependent forces except for the special
case discussed in Ref. 6.

Apart from their intrinsic interest, Ermakov systems
deserve study for two main reasons. The first is that the have
proven useful in solving time-dependent quantum problems.
As an example we mention Ref. 10 and the references con-
tained therein. Here one finds the eigenfunctions of the
quantum mechanical operator associated with Ermakov in-
variants used to construct the wave functions of the Schro-
dinger equation in exact closed form. Also one finds the
Feynman propagator expressed in terms of the eigenfunc-
tions of the Ermakov invariant. One key reason that Erma-
kov invariants are useful in describing quantum systems is
that one of the pair of variables p, x becomes a g-number
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while the other remains a c-number. The Ermakov invariant
thus becomes an exact quantum mechanical invariant. Spe-
cial cases of the Ermakov invariants discussed in this paper
could prove useful in quantum treatment of physical sys-
tems. The second practical application of Ermakov systems
is the existence of a nonlinear superposition law relating the
solutions of the Ermakov pair. A key point in the nonlinear
superposition law is the form the Ermakov invariant takes in
terms of 7 and 7. We are left, in principle, with only one
integral to perform before the superposition law becomes
explicit. We have presented a simple example of the use of
the nonlinear superposition law for the extended Ermakov
system in Sec. IV.

Although it may be “beyond our fondest dreams”'! to
hope for a nonlinear superposition law of universal validity,
Ermakov systems represent an important subset of nonlin-
ear equations for which one always has a nonlinear superpo-
sition law. In cases where this law becomes explicit it is of
practical value and furnishes the general solution. As a final
point we mention that nonlinear superposition laws obtain
for Ermakov systems associated with systems of several de-
grees of freedom.'*!?
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The free electron network model of a metal is reformulated in terms of restricted random walks;
this allows direct calculation of the propagator. The reformulation gives more freedom in the
choice of boundary conditions and is suitable for the investigation of topologically disordered

networks.
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INTRODUCTION

The quantum network model has had a long history (at
least since 1936') and has been revived periodically, mainly,
in the opinion of the author, for the following three reasons:
it is intuitive, versatile, and can be solved without perturba-
tion theory. The network model was originally formulated
for the investigation of conjugated molecules (see for exam-
ple Platt?) and was extended to crystals by Coulson.? In the
free electron model of a crystal the electron moves as a free
particle along wires of a network which is fitted to the crystal
lattice. Despite the apparent naivety of a model where wires
represent bonds and nodes atoms the resulting spectrum
compares favorably with those obtained from tight binding
and linear combinations of atomic orbitals models.

The model can be made more realistic by putting poten-
tials on the lines so that each node lies in the center of a
well.*3 In addition to the investigation of bulk crystalline
properties, the model has been used to investigate surface
properties,® and localization in disordered systems.’

The present revival is a reformulation of the lattice net-
work model in terms of restricted random walks. The net-
work model is unusual in quantum mechanics because the
system is multiply connected. In a multiply connected sys-
tem there is no unique self-adjoint extension of the Hamil-
tonian.® The extension proposed by Griffeth,® explained in
Sec. 1, is only one of many.

Dowker'? describes how to do quantum mechanics sys-
tematically on a multiply connected space. Quantum me-
chanics is first considered on the covering space; mechanics
on the base space is then described by summing over those
points identified under the covering. To see just what points
are identified by the covering requires a study of homotopic
paths in the base space. This is explained in Sec. 2 by means
of a simple example. This example will act as a model for the
reformulation of the lattice network and occurs as a special
case of the final result.

The reformulation of the lattice network model is ex-
plained in Sec. 3; the covering space of the network is identi-
fied as a Cayley tree. It is shown how to calculate the Green
function for an electron on a Cayley tree. The Green func-

My thanks are due to N. H. March for drawing my attention to this model
and to J. T. Devreese whose encouragement made this work possible. The
work was performed in the framework of the project ESIS (Electronic
Structure in Solids) of the Universities of Antwerpen and Liege, Belgium.
The title paraphrases a paper by Nash-Williams. '’
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tion for an electron on the lattice is then given directly as a
sum over restricted Polya walks, the distinct homotopic
paths. The reformulation makes quantitative the critical role
of the topology (which manifests itself in terms of closed
loops) in the success of the network model (c.f. Budgor'?).
The calculation of the number of restricted walks is de-
scribed in Sec. 4. As an example of the calculation of a Green
function, the average density of states per unit cell of the
lattice network is calculated with the machinary developed.
The modifications to the spectrum which a limited class of
extensions of the boundary conditions allows, is examined.
The reformulation of the model is shown to be suitable
for the investigation of topological disorder in Sec. 5. Pre-
vious authors’ who use the network model to study localiza-
tion in disordered systems consider a completely disordered
network, and because Bloch’s theorem is no longer available
to them, resort to statistical arguments. They compare the
motion of an electron with the trajectories of particles in a
perfect gas and by neglecting closed circuits (the lattice
forms a Cayley tree) derive a Boltzman equation for the sys-
tem. By way of contrast, the present investigation calculates
the exact Green function for a Cayley tree. The Green func-
tion for the lattice is found by summing this over all closed
circuits.
1. The nonessential self-adjointness of the network
model

The formulation of the quantum network model of a
lattice? is as follows: Consider a lattice in which lattice sites
are connected to nearest neighbors by wires (line segments)
which represent bonds. (Pictorial representations will al-
ways depict the square lattice, Fig. 1.} An electron is allowed
to move along the wires. Let /€] index the line segments each
of which is considered a closed interval 0<x, <b, of the real
line. The Hilbert space for quantum mechanics is
® ,.; L (0,b,). In the free electron model the wave functions
¥, on each segment satisfy the free particle Schrodinger

FIG. 1. Portion of a square lattice with a nontrivial loop indicated
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equation

Hy, = — 3*Y,/ox} =idy,/dt,
so that the Hamiltonian H = & ; H; , where the domain
D (H,) = {¢,eL *(0,b,):3*¢,/3xieL *(0,b,)} .

If {¢,}.; and [ ¥}, are two sets of wave functions in
the domain of H, the Hamiltonian differs from being sym-
metric by

S [~ ¢ *30,/9x, + 8 */0x,4, 15 -

el

(1.2)

The Hamiltonian will be symmetric if the domain is further
restricted to wave functions with zero boundary conditions.
The Hamiltonian, however, is not self-adjoint as the domain
of H * is larger than that of H (there is no restriction on the
boundary values). Any extension of the domain of H which
gives a self-adjoint operator is called a self-adjoint extension.
If there is a unique self-adjoint extension the operator is said
to be essentially self-adjoint.

The extension proposed by Griffeth? is the following:

(i) The wave function ¥ should be single valued and
continuous at a node. For the next condition a slight change
of notation is convenient. Let peP label the sites and
0<x,, <b,, label a point on a line segment joining site p to
one of its nearest neighbors ¢.

(ii) With condition (i) satisfied the current will be con-
served at each node p if and only if

S 3y /3% 10 =0,

n-ng
where the sum is over all nearest neighbors g to p.

(iii) For quantum mechanics on a lattice network, Coul-
son® supplements these two conditions by Bloch’s theorem

Yir + R) = exp{k-R}Y(r),

where R is a lattice vector. (The notation has been changed
again for the concise statement of this condition: ¢/ is as-
sumed defined over all Euclidian 4 dimensional space, reR ¢,
but takes only nonzero values on the line segments.)

An operator defined on a multiply connected space is
not essentially self-adjoint.® A space M, is said to be simply
connected if all loops (continuous paths with initial and final
points the same) can be continuously deformed into one
another. '

In particular, they can be deformed into the constant
loop whose image is one point. If this cannot be done the
space is said to be multiply connected. (As can be seen from
Fig. 1, the loop depicted cannot be shrunk to a point without
breaking it.) When a space is multiply connected there is the
possibility of multivalued wave functions. The boundary
conditions described above are thus not unique, in particular
the first condition of Griffeth, and in fact it will be shown
that there are countably infinitely many one-parameter
extensions.

2. QUANTUM MECHANICS ON A BENZENE RING

To exemplify some of the statements in Sec. 1, quantum
mechanics on the most elementary nonsimply connected
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network will be examined. This consists of a ring of wire (unit
radius) with a single node on it. Other nodes can be added
without affecting the arguments, and so this model could be
considered to describe a benzene ring.

In a multiply connected space the classes of loops which
can be deformed into one another are called homotopy
classes. For the ring or circle, § !, these correspond to classes
of paths which wind around the circle continuously in one
direction a specific number of times. It is intuitively clear
that two loops which wind around the ring a different num-
ber of times cannot be deformed into one another.

In general two loops can be composed to give a third by
traversing the first loop and then the second. It can be shown
that this gives rise to a group structure in the homotopy
classes called the fundamental group which is denoted
7,(M).Forthecircle7,(S ') = Z, theadditiveintegers, isjust
the winding number; it is clear that the composition of two
loops results in the addition of the winding numbers. (Loops
which wind around the circle anticlockwise correspond to,
say, positive integers; those which wind around the circle
clockwise correspond to negative integers; those which can
be deformed into the constant loop correspond to zero.

The circle or one sphere S ' is closely related to the real
line R, locally they are indistinguishable. The relation is giv-
en by rolling the circle without slipping along the real line so
that it prints out copies of itself. Analytically this relation is
given by the projection xeR—S ' Sexp(ix) so that points
which are related by a 27 translation x—x + 27n, neZ, are
projected onto the same point in S '. The circle can be
thought of as the real line modulo 27; that is.S ' is the quo-
tient of R by the group Z, of translations by multiples of 27;
thisis denoted S ' = R /Z. Itis no coincidence that the trans-
lation group is isomorphic to fundamental group (there is
one point in R above each point in S ! for each element of the
fundamental group)sothatS ' = R /7 (S !). Thereallineand
the circle look locally the same, the difference between them
is global; R is simply connected so that 7 (R ) = O consists of
only the identity element. The real line is the universal cover-
ing space of the circle.

The above is true in general; for each multiply connect-
ed space M there is a universal covering space M which is
locally like M but which is simply connected. For each point
in M there is one inverse image in M for each element of the
fundamental group. The fundamental group 7 (M ) acts like
a translation group on M and M /(M ) = M. (Note in the
example 7,(M) is commutative, but this is not true in
general.)

The systematic description of quantum mechanics on a
multiply connected space is given in terms of quantum me-
chanics on its universal covering space.'® Let #/(X) be a wave
function on M. This will define a multivalued wave function
on M by Y(yx), yemr (M ). For physical reasons, since ¥X and
X describe the same point, (yX) must represent the same
probability density:

Y(yx) = explia(y))¥(X).
It is easy to see that the phase factors must form an abelian

representation of 7 (M ). If K, (¥,X';¢ ) is the propagator on
M, the propagator on M is given by
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Ky@EX5t)= % explia(n)Ky(y%,5;t).
yer M)

Rather than finding the propagator on the circle, the
prescription (2.1) will be used to find the Green function, the
time-energy Fourier transform or the propagator. The pre-
scription will be the same because the Fourier transform is
linear. The Green function on the covering space R, the real

line, of a free electron is

Grlxx;E)= — i —E)"'?exp( — (— E)'"*|x — x'|),
for E > 0. (Positive energies are given by analytic
continuation.)

Since the phase factors form a representation of Z, the

group of integers, a(n) = an, where a is an arbitrary real
constant. Then

Q.1

Gs (xxE)= —}(—E)""> Y~ E)""2 S explian)

n=1

Xexp{ —(—E)"*2mn + |x — x'|)}]
—y—E) 2 i exp{ — ian)

n=1
— (= E)"*2mn — |x — x'|)}
for |x — x'| < 2. Itis written in this rather long way for later
consideration so that it appears as a sum over nonhomotopic
paths on the base space .S '. Every time the electron passes
through the node in an anticlockwise[clockwise] direction it
picks up a factor exp(ia)[exp({ — ia)]. The spectrum of the
system is given by the singularities of

Gs (x,%;E)= — }{ — E)~"?sinh(2n( — E)'?)/
{cosh(27{ — E)"*} — cosa],

which has poles at cos(27E '/?) = cosa for E > 0.

The situation of quantum mechanics of a point particle
on a unit circle is the same as a particle on a line segment of
length 277. Symmetry of the Hamiltonian, — d2/9x?, re-
quires that

8 *30/0x[2” — 9 */3xyly =0

for two wave functions ¢ and ¢ in its domain. This will be
true if the wave functions have zero boundary conditions,
but the Hamiltonian is not then self-adjoint. If the wave
functions satisfy the extended boundary conditions

¥(x) = exp(ia)y(x + 2w), where  corresponds to the pa-
rameter introduced above, the Hamiltonian will then be self-
adjoint. The presence of the parameter affects the spectrum
of the system. A physical interpretation of this is the Ahar-
onov-Bohm effect,® where the splitting of degenerate states
(a = 0) is due to a magnetic field.

Xexp{

3. REFORMULATION OF THE NETWORK MODEL

In order to incorporate some of the above freedom in
the network model it will be formulated as a problem on a
multiply connected space and evaluated as a sum over non-
homotopic paths. The covering space of the lattice network
is obtained by eliminating all closed loops. Locally the lattice
and its cover look the same. Itis clear that the covering space
of a lattice is an infinite or Cayley tree.

The propagator on a Cayley tree is obtained as follows.
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FIG. 2. Portions of the covering space of the square lattice in Fig. 1.

NS
=

Suppose at time ¢ = O the electron can be located at a par-
ticular point O on one of the line segments of the tree. The
electron wave function on this line segment for time £ > 0 is
the free particle propagator

¥ = (4mit )y Zexp(iy*/4t),

where distance y is measured from the initial point O. The
electron diffuses outward from this initial point. At a node
the wave function is required to vary continuously, but the
current divides equally down the remaining ¢ — 1 branches
(¢ the number of nearest neighbors). The wave function ¢
and (g — 1)'dy/Jx evaluated at the node act as initial condi-
tions for the wave function in the next g — 1 segments. These
are Griffeth’s boundary conditions but in this new situation
the network, an infinite tree, is simply connected. The same
procedure occurs at the next node and so on.

As with the example in Sec. 2, rather than deal with the
propagator, the Green function will be calculated between
two points O and P a distance x and x’ from a node as indicat-
ed by Fig. 2. In the initial line segment the Green function is

— 4 —E)"exp(— (= E)"?]y)).
(Again the energy is taken to be negative. Positive energies
are obtained by analytic continuation.) In each segment the
Green function satisfies

— dG,/dx, = EG, ,

the general solution to which, written in what will prove to
be a convenient form, is

(exp—axexpte ) ).

where @ = (— E)'?, A, and B, arbitrary constants. The
boundary values of G;, (g — 1)"'3G, /9x; are initial condi-
tions for the next segment. The relationship between coeffi-
cients in consecutive segments is given by

(‘;i+l ):Z(b,)(z') ,
i+1 i
where b, is the length of the segment and Z (b ) is the matrix
g — 1" (leP( —wb) (9 —2)exp(wb )) _

(g —2)exp(—wb) gexplwb)
Thus the Green function between two points O and P repre-
sented in Fig, 2 which are separated by N nodes is given by
G+(P,0; E) = (exp( — ox'),explwx’))

XZ by _ V2 by_s)....Z (b))

)
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The fundamental group of a general network is the free
group, one generator for each closed loop. The free group on
n generators is formed as follows. Take 7 symbols a,,....,a,
called the alphabet, and supplement these with the symbols
a; ,a; ....a, ande. Theset.S of words is formed by arrang-
ing any number of these 2n + 1 symbols in any order with
repetition included. The composition of two words is given
by juxtaposition. The inverse of a word is obtained by revers-
ing the order of the symbols with the replacement
a,—a;” ,e—e. An equivalence relation on the set of words is
defined by

ee~a; q; ~aa; ~e,

ea; ~a;.ea;” ~a;

The class of words form a group F, , the free groupon n
generators. For n > 1 the group is not commutative. If a fin-
ite network has N nodes and L line segments, the Euler
Characteristic of the network y is defined as N — L. The
Euler Characteristic of a tree is 1 but in general y < 1. The
fundamental group of a network is the free groupon 1 — y
generators. By building up a lattice from a finite network
step by step, it is seen that the number of generators for the
lattice network is infinite. The representation of the funda-
mental group of interest is abelian and so will also be a repre-
sentation of Z  (countable infinite product of the integers),
the abelianised fundamental group. Thus the Hamiltonian
on the lattice admits a countable infinity of one-parameter
extensions.

The Green function on the lattice G, is given in terms of
the Green function on the infinite tree by

S explia(y))Gr(yxx;E).

yerdL)
Because of the complexity of the sum, it is difficult (if not
impossible) to do in complete generality. To begin with the
prescription for performing the sum for the identity repre-
sentation, a(y) = 0 for all ¥, will be given; some special non-
trivial representations will be considered in the next section.

As with the example in Sec. 2, the sum will be over
nonhomotopic paths between two given end points. In order
to do the sum, the lattice will be divided into cells. A pointon
the lattice is associated with its nearest node. The points
associated with each node constitute a cell. (Points on the cell
boundary are equidistant from two nodes but these points
only form a set of measure zero.) A point in a cell can then be
labelled by a triple 1, X,x, where 1 labels the node, X the direc-
tion of the bond on which the point lies, and x the distance
along the bond from the node (Fig. 3). The homotopic paths

G, (xx,E)= 3.2)

x
L N B iy
I |
e
| | * l |
B A B A
FIG. 3. Decomposition of the lattice into cells
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FIG. 4. The homotopic restriction imposed on Polya walks.

implied in the sum (3.2) can then be considered as Polya
walks between two lattice cells 1 and I'. The walks are not
completely random but are restricted. A walk such asin Fig.
4 is not allowed because it is contractible. The homotopic
representative of this walk is shown in Fig. 1. The walks are
thus restricted in that immediate reversals are not allowed.

The contribution from a n-step walk will depend on the
initial and final directions. Let M L (1) be the number of re-
stricted walks from the origin O to a site 1 with initial step in
the F direction and final step in the L direction. (The direc-
tions F and L specify the position of nearest neighbor sites to
the origin.) There will be four distinct contributions to the
Green function which are tabulated in Table I. The contribu-
tion of the O-step walk is — Jo™".

4.RESTRICTED WALKS ONA LATTICE AND EXTENDED
BOUNDARY CONDITIONS

To calculate the Green function in the identity repre-
sentation, it remains to calculate the number of restricted
walks on a lattice. The probability distribution of such walks
was calculated by Domb and Fisher,'? but for the sake of
completeness a direct derivation of the number of restricted
walks using the approach of Montroll will be given.

Consider a d dimensional regular lattice in which the
lattice sites are labelled by integers 1 = (/,,...,/,), then

Mo ell= Y ME(1-L), (4.1)

n.nX#L

where the sum is over nearest neighbor sites (n.n). Defining

M Q)= Z M),

n.nL

the number of walks starting at the origin (all directions) and
finishing in a direction F at site 1, and iterating (4.1) gives:

M5+1F(l) =MnF(1 - L) _MnVlF(l) +M£—1F(l) .
4.2)

Define the generating function

MEQ)= § MLz

n=1
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TABLE I. Breakdown of contributions to the Green function.

L F Multiplicity Contribution

X AX S ML) fexp( — wx'), explun)Z )2 %0 )

£X  -X DRI fexpl — olb — X)explolp — x1Z" w1z )

x AoX S fexpl — wx)explaxz” ~16)z(6 —x 2 ")

X - X M, X'X ueh (exp( — wlb — x")).explw(b — x")Z " 2(b VZ (b — x)(éu(; I)

by introducing a parameter z. Multiplying (4.2) by z" +' and
summing from n = 2 to infinity, the generating functions are
related by

(1 =M 52) = 2M 5 M) + zM 5 (D + zM(1 — L,2)
— M (1 — L) — 22M.(1,2) . 4.3)
Define the Fourier transform
Hi(dz)= Y explid.hM £ (d,2)
all'l

and Hg(,z) correspondingly, with the sum over all sites 1;
this can be inverted

T

d¢ Hy(d2)exp(— id.]).

-

M2 =@m)

Multiplying (4.3) by exp(id.l) and summing over all 1 with
M) =086, p and M3 () = 8, ¢ (1 — 8F, ) gives

(1 — DHE.2) = 2 exp(ib.Fy ¢ — 285, .

+ (zexplid.L) — 22) Hp (,2) .

Summing L over nearest neighbors

H($,2) = (zexp(i.F) — 2°)/(1 — 24 + (¢ — 1)2*)
with

A= %M \Nexplid.}) = ngxexp(id).X)

the characteristic function of the lattice. Substitution of this
result finally gives

H}:(d),z) =(1- Zz)_lizexp("¢-F)‘5L,F — 22617, _L
+ (zexp(id.F) — 2%)(zexp(ib.L) — %)/
(1—z1+(g—12)}.

To calculate the Green function, Sec. 3, it is clear that
what is required is the generating function of the walks
M %(1,2) with z replaced by the matrix Z (b). The length of
each bond will be taken to be the same. An example of such a
calculation is the average density of states per unit cell:

b /2
Img='7~! S ib "f dx G, (0,X,x;0,X,x;E "),
Q

nnX
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which the above prescription gives as

—Im7r~'(27) ¢ J‘” d “¢ {sinh((wb )/wgcosh(wb ) — A )
~ (g — 2)/2wsinh(wb ) + (g — 2)/2gbw*} (4.4)

withw = ( — E *)'/2. Only the first term of the integrand has
anonzeroimaginary part and since |4 |<g thecutisalongthe
positive real axis and the density of states per unit cell is

— (27) ~ @~ 'sinh{wb ) Jﬂ d ‘pS(gcosh(wb ) — 1 ).

The condition gcos(E /b ) = A is the genalization of the dis-
persion relation given by Coulson’ for specific examples. In
the special case of a linear chain,d = 1, ¢ = 2 and

M \|l)=98,, + 8, _, thedensity of states reduces to that of a
free particle: 1E ~ "2 E > 0.

The general expression (4.4) even applies to the example
of a circle (Sec. 2) with ¢ = 2, and M (1) = 26, , any dimen-
sion. The extended boundary conditions for the circle can be
achieved by replacing M (1) by exp(ia)d,, + exp( — ia)b,
(A = 2 is replaced by cosa). M, (1) is then not the restricted
number of walks, but a sum of phase factors picked up at
each bond on a restricted walk. This suggests the following
generalization to the lattice network. Associate with each
nearest neighbor bond X a phase ay . Bonds in opposite di-
rections are given phases of oppositesigna y = — ay.
The summation of phase factors then goes through as for the
number of restricted walks above, but with the result that A
is replaced by X, . exp(id.X)expliay ), which is real.

For the simple cubic lattice A becomes
23] _ cos(¢; + a,), but the phases e, can be removed by a
change of origin in the ¢ integration. However, for the body-
centered cubic lattice three of the phases can be eliminated
by a choice of origin

A = dcos(¢, + ¢,)cosp; +4cos(@, — #;)cos(4; + ),

leaving one arbitrary phase. Similarly for a face-centered cu-
bic lattice three phases may be eliminated leaving three arbi-
trary phases. These correspond to more general boundary
conditions than those proposed by Griffeth® but as is clear
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from Sec. 3 they are far from being the most general. The
increased freedom could perhaps represent a physical situa-
tion in which interstitial sites possess a magnetic moment.

5. APPLICATION TO TOPOLOGICALLY DISORDERED
NETWORKS

In his conclusion Coulson® attributes the similarity be-
tween the network model and other models to the large ex-
tent which the geometry plays in determining the spectrum.
Budgor'' attributes the similarity to the homological struc-
ture of the network model. The present formulation in terms
of restricted random walks derives the spectrum directly
from the homotopic structure.

The expression for the density of states (4.4)

— Imzr'(2m) ¢ f d ‘o 'sinh(wb )/{gcosh(wb ) — 1)
can be rewritten

— Imr~'q~ '~ 'tanh(wb) S (g coshiwb)) "N, (0),

n=~0
where N, (0) = 2m) " ,d%A" (5.1)

is the number of unrestricted returning Polya walks on a
lattice. This form may be compared with the density of states
in a tight binding model with overlap V.

Im7! 3 (V/(E—-E))'N,©),
n=0
where E, determines the center of the band. This leads to the
direct comparison V<> — 2/gb ? as noted by Coulson.?

The above argument shows that the only lattice depen-
dence of the spectrum is now on the number of unrestricted
returning Polya walks. Even if a nonregular lattice is chosen,
such as graphite,* using a method similar to Thorpe,'* block
diagonalizing the connectivity matrix, the number of return-
ing walks on a graphite layer can be found from the eigenval-
ues of the reduced matrix

0 @ .
( o O) where 6 =1 +2cos(¢,)exp( id,).
A rotation of the ¢ coordinates puts the number of returning
walks in the form

N,,0) = @n) 2 [ d% (3 +2c0s, +200%,

+ 2cos(¢, — #,))",
NZn +1 (0) =0.

Substituting this into the expression (5.1) gives the density of
states obtained by Coulson.?

In a paper by Ringwood'” it was argued that the asymp-
totic form of the number of returning walks for any three-
dimensional network is

N,(0) =q"(4n>? + B(—g)"f(n)),
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where A, B and g are positive constants

0.22<g<1l; n2f(M<n™? n—ow.
The density of states produced by the asymptotic form of the
number of returning walks

— Imr~'q ‘o~ 'tanh(wb)

X 1lim 3 (cosh(b))~"(4n™? + B(—g)'n~")
N—o NI p
gives the position and the behavior of the band edges. The
function f(n) has been chosen for simplicity tobe n ~ *. More
complicated functions can, however, be handled.'® Using an
integral transform and summing the geometric series in its

* domain of convergence, the asymptotic form of the density

of states is the discontinuity across the cut of

— 77 g7 ‘o "tanh(wb ) lim (ch{wb)) "~
N—oo

XF dy{A (Iny)'/2/I" (3/2)p™(y — sech(wb ))

+ B(lny)" /T (v}p" (v + gsech(wb )} .
This function has a sequence of overlapping cuts on the posi-
tive real E axis. The asymptotic density of states is

tan( E b){o(secly/E b) — 14
X In'sec(, | E b)/I"(3/2)
+of —gsecl/E b)— B
xIn*~ gsecl | E b)/T'(v)}/qVE,

where ¢ is the Heaviside function.

Topological disorder can only affect the parameter g
and function f(n) (a completely random walk takes the lower
limits) and so gaps cannot be created in the network model
by topological disorder. This finding can be contrasted with
the result for the Weaire model.'”
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This paper presents a general expression for the WKB approximation to the propagator
corresponding to an arbitrary Hamiltonian operator H. For example, if the correspondence rule
used to pass from the classical Hamiltonian H, to H is such that it associates aP,Q’

+ (1 — a)Q’P; to p,q’, then the formula gives

Ko = Kyvexp [(; — ol (/30 a.0ho.l0)) ds J

where Ky, = (27ifi) = "2 (det M )"/2%exp(iS, /#) is Van Vleck’s well-known formula, S, being the
action functional evaluated at the classical path (g, p.) and M,, = — &°S./3q,'dq,’. More
generally, the formula presented here applies to any system with n degrees of freedom described
byafunctionf|(x,s Jwhosetimeevolutionisgivenby (H(x,kd /dx,t ) + kd /3t ) f(x,t ) = O,regardless
of the form of H. The Schrodinger equation of quantum mechanics and the Fokker-Planck
equation of diffusion are obvious examples. Many examples are discussed. This generalizes results
obtained in a previous publication [J. Math. Phys. 18, 786-90 (1977)).

PACS numbers: 03.65.Db, 03.65.Ge, 03.65.5q

I. INTRODUCTION

The propose of this paper is to obtain a general expres-
sion for the WKB approximation to the propagator corre-
sponding to an arbitrary Hamiltonian operator. In an earlier
publication' we determined a range of validity of Van
Vleck’s well-known formula,? which was known not to be
universally valid.? The approximation derived here, general-
izing Van Vleck’s formula, is also valid beyond quantum-
mechanical applications, as it applies to any system de-
scribed by a function f(x,t ) whose time evolution is dictated
by

[H(x,kd /3x,t) + kd /dt] fix,t) =0, (1)
such as the Fokker-Planck equation for diffusion processes.

Il. THE GENERAL WKB APPROXIMATION FORMULAS

We operate in # dimensions and summation over re-
peated indices is implied. The following theorem summa-
rizes our findings:

Theorem: Let

(i) H(Q,P,?) be an arbitrary Hamiltonian operator (the
lack of constraints imply that it could be non-Hermitian,
time-dependent, nonquadratic in P, etc.).

(ii) H_(g,p,t ) =H(Q—q, P—p, i = 0} be its classical
counterpart.

(iii) The correspondence rule used to pass from H, to H
be such that it makes the following associations:

flgl—f1Q), flpr—f(P), (2)

p:g’«——aP,Q’ + (1 — a)Q’P, for a given a. (3)
[Note that (2) and (3) do not imply Hermiticity of H, even if
a=1].

(iv) [g. (¢ ),p. (¢ )] be the classical solution, solving Hamil-
ton’s equations for H, such thatg,(¢,) = ¢, and ¢.(t,) = g,,
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(V) Sc (qb ’tb ’qa ’ta )
EJT[pc,»(t ML) — Hoig. (o eh)]de (4)

be the classical action (T=]t,,¢, ], also T=t, —t,).

(V) Mj(qy sty darta )= — FS. /34, g, (5)

be the Van Vleck-Morette matrix, with determinant
det M.

(vii) K (g, ,25,9.5t,) be the propagator corresponding to
H, defined by

[H(Q,P,tb) ~ i -af— ] K=0, (6)

b
limt,,at,,K =8(g, — q.) {7

where Q is represented by g, and P by — ifid /dq,, .
(viii) Kwig (95s8s:94 -, ) be the WKB approximation to
the propagator, defined by:

K sk [HIQP,t,) — i#d/3t, 1K wyp = O (), (8)
lim,_,, Kwkp = olg, — 9.)- (9)
Then the WKB approximation is given by

t, aZHC
Wwks = Kyy exP[(% - a)f ; {g.(t)p(t)t) dt |, (10)
t. 0q'dp;

, O
where K is Van Vleck’s formula:
Koy = (2mifi) ~ *(detM ) expliS. /#). (11)

(The case where det M = 0 is not examined here).
More generally, the WKB approximation is given by

Kyxp = AoexpliS./#), (12)
where
(i) 4o=Ko(0,2,,0,1,), (13)

(ii) Kolq, 559, st.) is the propagator corresponding to
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the Hamiltonian operator

Ho=1g"t)U;; + 1f;(¢ VY + k(e )W, (14)
(i)
) J*H &H.

gu(t)z_; _ A'i’f:’( )J=— - a=ain)’
9p:9p, Z=:,(u 9q'q’ P = pdt)
&PH,

kit)= e i) (15)
dq'dp; 4

p=pdt)

(iv) The correspondence rule used to pass from A, toH
is such that it makes the following associations:
p,p]<—>Uu, qiqj<—>Vij, q‘pje—>wj' (16)

lll. PROOF OF THE GENERAL WKB APPROXIMATION
FORMULAS

Let us begin by giving a simple example illustrating the
fact that the Van Vleck formula K in (11) is not always
equal to the WKB approximation K5 . Let H be an opera-

tor such that Kyy = Kwgg. The operator

H'=F " (QHF(Q) (17)

has the same H, (and hence the same K ) as H. Yet its
WKB approximation is not K, but

K ks = F(g.)F ~ (g, )Kvv,
as can be verified by direct substitution.
We now prove the theorem. Formula (10} will be proved
by generalizing the proof given in Ref. 1. The more general
formula (12) will be proved by generalizing the method used
in Ref. 4, which involves path integrals. It is presented sepa-
rately because it is more on the heuristic side.

(17a)

Proof of first formula: In Ref. 1, where we investigated
the range of validity of Van Vleck’s formula, we assumed
that the WKB approximation was of the form:

Kwis = alfi)Cexp(iB /#), (18)

where C and B are real functions of ¢,,, ¢,, q,, and ¢,, inde-
pendent of #, and found that

j|
_ ) : , .C & , i
Kxs |H Iﬁ wkp =B+ FO)\H (B',q,,t,) + | —i—— H,.(p.qs:t) <F 0+ “‘F(O))
a, C dp.dq;, =B’ 2
iF(0)C; ( ) _,;FO ( FH,
- q’t) (P,q ot )) +ﬁ2{[ LF(0
C ap; - p=2B' 2 ap,apj o p=B’ 8F( )aqbaqb
C: 4 Cy 82 Ci J &
—Fl0)—— —F(0 —FO —B" —F (0B B},
03¢ 37 ~F 056 —#FOB) 2=~ Fl0 —F(0) o
E; i F C; g & ]
—LF(0)B —F'(0 +F0———+—F 0)B "
OB o+ O + Ot (),apa AP0
82
X t o (%),
en "’],, _+om) (19)
where B ”_dZB /3q,,qi, etc., and F is Cohen’s F function,’ establishing the correspondence between H and
H, by
= (2mh)~ > R‘"dp dq du dv F(u,v\H. (g,p.t )exp{(i/#)[(g — Qq-u + (p — P)v]}. (20)

F effects the generating-function correspondence

F(u,v)expl( — i/A)(Qu + Pv)]
«——exp[( — i/A)qu + pv)], (21)

and a set of F'’s effecting a given correspondence H.«——H
can be found by solving®

F(u:U)J. dpdq H,(q,p,t "™ + poi/h
Rln
= (Zﬂ.h)ntr(ei(Qu + PU)/ﬁH). (22)

This equation for F, to be understood in the sense of distribu-
tion theory, may or may not have a solution, and the solution
may or may not be unique if it exists.

In Ref. 1, Fwas assumed to be a function of u-v/# only,
and this requirement is maintained here, as u-v/# is the only
dimensionless quantity one can form with , v, and %, and it
is assumed here that H contains no constants (other
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than #) that do not appear in H,. It can be shown’ that the
fact F depends on the combination u-v/# implies that the
operator H corresponding to p'¢” in one dimension is a lin-
ear combination of all the possible ordered arrangements of
P m times and Q » times (true “factor ordering”). Thus, no
true divisors are allowed in Cohen’s scheme,® an important
restriction since the Laplacian in curved spaces contains true
divisors. We shall return to this point later.

In Ref. 1, F was also assumed to be real® so as to insure
the Hermiticity of H. This requirement is dropped here.
Therefore, equating both the real and the imaginary parts of
the constant term and the term proportional to fito 0 in (19)
yields the following four equations to be satisfied by B and C:

dB JB
H, (q,,, t,,)R etFo] + 28 —o, (23)
ag, ar,
H, (qb, 9B ot )Im[F 01=0, (24)
aq,
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Re[F(0)]

J [C2 OH, Gopts)
c?q,,j ap To:Prle p=0B/dq, ]

i

+ —a-(C )+2C? GH, (g:p:15) Im[F’(0)]
8t,, apiaqi P i JB /ogq,
=90, o (25)
82
(Re[F (0)] — Im[F(0)]} [ g et ]

4=
2
c

’ dp 317, ]p—&B/aq,,

+ Im[F(0)] [—— = (qsDsty) + 1B
=:0,
(26)

where the third equation was rewritten in a more compact
form.

First, let us translate the conditions (2) and (3) on H into
conditions on F. These are:

F0)=1, Re[F'(0]=0, Im[F'(0]=a—1 (27)

[Indeed, (2) readily results from (21) with F (0) = 1. If we dif-
ferentiate (21) with respect to v, then set v = 0, then do the
same with u, we obtain

pg«—F (0)QP + PQ)/2 — #F'(0),

which yields the two conditions on F'(0).]

It is, in fact, possible to drop the requirement that the
correspondence be given by an F function, so that the results
are valid for any H satisfying (2) and (3). This will be seen
when we treat the more general formula (12).

Let us now solve (23)—(26) for B and C. Since F(0) = 1,
(23) and (24) are recognized as being one of the Hamilton—
Jacobi equations, yielding B = S,. Note that since (23) and
(24) stem from equating only the constant term to 0in (19}, an
approximation to zeroth order in # yields B = S, and no
information on C other than the fact that it must be such that
the boundary condition (9) is satisfied (this is not sufficient to
fix C).

")l"o solve (25), we note that if Im[F '(0)] =0 (@ = 1) then
C? = detM, since the (continuity) equation satisfied by the
Van Vleck—Morette determinant is precisely

(28)

a
— [q (¢,)detM | + —— [detM ] =0. (29)
Iqi, at,
This leads us to write
C? = NdetM, (30)

which, when substituted in (25) and using Im[F'(0)] =a —}
yields the equation for N{(g,,t,,q.,t,}):

N i)
Z + 4! 41
2
+N(2a— 1)‘_9—132(‘_&@ 0 =0, (31)
9 api P =pdty)
with N—1 as t,—t, and g, —q¢,, if Kyyv—b(q, — g,) as
t,—t,.

The search for a solution of (31} is facilitated by the
observation that the first two terms form the convective de-
rivative of N with respect to the final endpoint. Knowing
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that the convective derivative of any function f of position,
momentum, and time (at the classical path) with respect to
either the initial or the final endpoint is 0, i.e.,

[%Jrq(b)_]f(qc(t)ﬁct)t)._ 32

(to be proved shortly), we are led to a trial solution of the
form

N =exp [(1 — Za)flh

‘a

2
.94 (g.(2)pc(t)t) dt] - (33)
By direct substitution in (31), (33) is seen to be the correct
solution [use f=g¢, and f= p, in (32)].

To prove (32}, we first observe that it is sufficient to
proveit for f= g. and f = p. : the chain rule will then extend
its validity to any f. Now, derivatives of the classical solution
with respect to any parameter introduced by the boundary
conditions (here, #,,t,,9,, and g,) are known to be solutions
of the equation of small distrubances, obtained from the sec-
ond variation of the action functional.'®"* Since this equa-
tion is linear, its general solution is a linear combination of
27 linearly independent solutions. Thus, the only solution
vanishing at both ¢, and ¢, must be zero everywhere. Now,
the left-hand side of (32) with f = g’ (¢) is, by its very con-
struction, a solution of the small-disturbance equation. It
vanishes at 7, because g, (t,) = g, (a constant). It also vanish-
es at ¢, because

dgie) | _ [‘a 34 it)
o, L,

t=1,

i

—qctb)+—jqc(t)dr

fi

—4.(1)+ E (@ — 9.)

= —q.lt), (34)
[since @ /Jf, commutes with @ /3t when acting on
q.(tt,,4,)]. Thus, (32} is true for f=q,. The case f=p, is
proved by observing, by substitution in the equation of small
disturbances in phase space (¢ h = 0), that if u is a parameter
introduced by the boundary conditions, then

op.i(t)/du = Dyt )dq! (¢)/0u, (35)
where
o f k+d/sdt
ﬁ:*(k”_d/dt g )
_ (aqc(t )/8u), (36)
dp.(t)/u

— (12 _ )

D=¢ (1 dt k)

and f, g, and k are defined in (15). This completes the proof of
the WKB approximation formula (10). @

Note that (19) indicates that when H_ is quadratic in
both p and g, the term proportional to # is O because C is
independent of ¢, and g, (S, being quadratic in ¢, and g, ),
and higher-order terms are O because they involve third and

higher derivatives of H,. Thus, the WKB approximation is
exact in that case. This goes beyond the well-known result
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because H does not have to be Hermitian, so that the extra
exponential term in (10} supplementing the Van Vleck for-
mula is not constant.

Notealso that in terms of the Lagrangian L (¢,§) we have
FH.(q.p)/9p.0q'=tr(H. )y, = tr( — L 53 'Ly,).

Proof of second formula: Formula (12) will be proved
using the path-integral approach, generalizing a method pre-
sented in Ref. 4. More details on this method and its exten-
sion to a WKB expansion of the propagator for arbitrary
Hamiltonians will be presented elsewhere.

The propagator K can be written as a phase space path
integral as follows:

K(@yulordonts) = f [ i;"f—q ]exp(is /), (37)

where S =§,[ p¢ — H (q.p,t )] dt is the action functional and
& is the space of paths (g,p) such that g(¢,) = ¢, and

a(t,) = q,. If S is expanded around the classical path (g_,p.),
its first functional derivative vanishes by definition of the

classical path and we obtain
K = 5% j d;(fy ]eis; )/ i 5/A (38)
‘L/)l)

where Z, is the space of paths (x,p) such that x(z,) = x(¢,)
=0, £2. contains the terms beyond the second functional

derivative, 1** and the second functional derivative S is
St = [ dt [nfe o) — vt

— 3 et pel(e) — K j(e (e e e ) ), (39)
with £, g, and & in (15).

We can define a measure w on #,, normalized to 1 and
absorbing the second variation of S by:

dw(x,y)=A ¢ ' [dxdy/h "]expliiS ! (x.y)/#), (40)

the normalization factor being
Aosf [dxdy/h "]expliS ¢ (x,y)/#). (41)
#e

Now, it is observed that the S term in (39) is in the form of
an action functional corresponding to the fictitious
Hamiltonian

Holx,p,t )=3¢"t ,y; + 11 (e e/ — k j{t)y;x”. (42)
Hence, (37) indicates that 4, must be the propagator
Kolg,'s15,9, 51, ) corresponding to H,, evaluated atg,' =g,

= 0. But for which Hamiltonian operator H,? It makes
sense® that it should be the operator derived from H,, using
the same correspondence rule linking H, and H, i.e., (14)
with (16). This leaves us with

K= Aoeis‘/ﬁJ e I duix,y). (43)

Py
It can be shown in this general case, as was done before for
special cases,''~"? that the expansion of the £2, term followed
by the evaluation of the path integrals (the correspondence
rule being taken into account) yields a series in #,

K = Ape®(1 + #iK, + #K, + ), (44)
which identifies the constant term as the WKB approxima-
tion.l
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Let us now retrieve formula (10) from this more general
case. The operator H, in this case is

H,= %g‘j(t P, Pj + %f;j(t )Q‘Qj

+ kj(z)[aP,Q’ + (1 — a)Q’P;], 45)
which can be rewritten, using [Q',P;] = i#i5; as
H, = Hy, + ifi(} — a)k (), (46)
where
Hy= 1" )PP, +1f;(t)Q'Q’
+ 1k 5()(P,Q’ + Q’P,). (47)

Now, since Hy, is quadratic and Hermitian, its propagator
K, 1s given exactly by Van Vleck’s formula, (11). In this
case, however, the S, in (11)is zero because g¢; = ¢, = 0. (In
faCt’ in general Sc = quco,i (tb) - qlaipco,i (ta )’ Where (qco ’Pco) is
the classical solution for Hy). Further, the “det M in (11)is
the same as the “detM ” for H, because H,and H, share the
same equation of small disturbances and M; is a boundary
value of a specific solution of that equation,''~'* Therefore,
Koo = (2mi#) ~ "/ (detM )'/2. Now, if H, = H, + f(¢), the
propagators K, and K, are related by K

= K, exp[ — (i/A)f +.f (s) ds]. H, and H,,, are related in this
manner. Putting all these results together gives

Kwyp = (2mifi) = "*detM )'/?
X exp [(l’/ﬁ)S’c +( - a)fk i{s)ds ] , (48)

which is formula (10). Note that this suggests that the nor-
malization factor (277i) ~ "/ is universal and independent of
Hc . 14

Note in passing that it is not always easy to find out
what operator p,q’ corresponds to, given the H, «—H cor-
respondence, if the latter is not given by an F-function. Scal-
ing tricks (replacing Q by 4 Q in functions of Q, then differ-
entiating with respect to A and setting A equal to 0)
sometimes help.

IV. SOME EXAMPLES

We begin with an example pointing out that formulas
(10) and (12) are not restricted to the correspondence rule
being effected by an F-function. Consider the Hamiltonian

H= g~ "Q)[P, — 4,(Q)]g"*Q)g"Q)

X [P, —4;(Q)]g~ Q) + V(Q) (49)
corresponding to
H, =1g"q)[p. — 4@, —4,(9] + Vg, (50)

where g, =6/ and g=det(g;). There is no F in general
because of the divisors.'” Nevertheless, a direct substitution
shows that Van Vleck’s formula applies, and we get:

K '(H, — i#d/dt,)Kyy
= WPgC M /M + T\ M,/M+ MM ,/2M>
— M, /M — Ty — L+ T)g,)
=0(#), (51)

where the following properties and definitions were used:
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M =detM,

r ;k =g ‘a(gja,k + 8ray — &ika )s

8= —TI 8" -8

g, =2ag°I"}, (52)
gl{ty) = gt ) [pilts) —A(g,)],

P.ilty) = S, /9q,,

as./ot, = _Hc(qb’asc/aqb)’

as well as (29).'¢
On the other hand, (19) gives the following expression
for the miss term:

K '(H, — i#id/3t,)Kyy
— [ 8% (4F (0) — iF'(0) — F"(0))
+ gLF(0)— 2iF'(0)C;/C + g'F(0)C";/C ], (53)

an expression which cannot be matched with (51) for any F,
for C = M "2 (Thus, there is no F).

Consider now the Fokker—Planck equation of diffusion
processes:

»_

'a 7 [DYgt)P] — —= [v'(q,t)P] (54)

where D is the diffusion matrix and v the drift vector.!” It
formally corresponds to a Hamiltonian H=P,P,D %Q)/
2i#i + P,v(Q) with classical Hamiltonian H, = p,p,D "/
2ifi + p,v'. Since the P factors precede the Q factors, a is
simply equal to 1. Thus, formula (10} gives:

Kok = (27if) ~"(detM )"

Xexp [ L5, - i ‘erc,-(r D, q. (1)) dt

v igena]. (55)

Note that the dynamical equation gives p_,(¢)
= if{D ~");(¢] — v’), so that in one dimension part of the
integration can be performed, yielding

Kuwks = Kyy [D (9,)/D(g.)] 2
Xexp(%f((vD’ —v'D)/D) dt) . (56)

In the case of the backwards equation (Q precedes P, a = 0),
the factors | are replaced by — in (56) and inside the brack-

et of (55).
For constant diffusion parameter (D = 1) and linear
drift v = — yq, one retrieves the well-known propagator'®

_271)]1/2

Kwyp = [y/m(1 —2e
X exp[ — Mg, —q.e TP/ —e M7, (57)

which, H being quadratic, is also exact [it satisfies (54)
exactly].

It can be shown, by direct calculations, that the “miss
factor” for (55) is exactly as given by {53) with
F(x) = expl(ix/2).

Another interesting application is the “lognormal” pro-
cess with Hamiltonian

H = aQ’P? + B QP (58)
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in one dimension, useful in modeling population growth.'®

Using formula (10) on H, = ag’p® + Bqp one gets
Kwkp = (95/9.)' ~*Kyvexp[ Bla — nri, (59)
where?’
Kyy = (2mif)~ *(2aTq,q,) "
Xe In— — BT
xp[ 4ﬁaT("qa g ) ] (60

In our case, a = 0. Note that for a = O the exact propaga-
tor?!

K = Kyypexp( — ifiaT /4), (61)

so that the expansion of the exponential gives the terms of a

WKB expansion of X, useful for checking general formulas.
Let us also mention the elements of the WKB approxi-

mation for Hamiltonians in one dimension of the form

H, =kp™q", (62)
where k is a constant. The classical equation of motion is g,

= (n/m)g%/q. and the Lagrangian is L = ¢™/" "
X L = qn/(m-1)(mk)-1/(m-1). For m#n these elements are:

q.(t)=A(t— 1)) ",

Pc(t) — [k (m . n)] 1/im — 1)(t - to)n/(n — m)A 1 —nV/im-—1)
4 —g (1 _ y)m/(m —n)
a '}/T ’
t, —yt
fo=—— 2
V—(qa/q )"" -, (63)

= (m — Y(kT)~ '~ Y(m—nymf1-m)

X (% {m—nym __ qa {m— n)/m)m/(m -1

b

M= [Tk(m— n)]“""””—'(" 5 (9,95

X (qb(m —n)/m __ qa(m — n)/m)(l — m)/(m — 1).

)—n/m

For m = n, these elements are:
g.(t) = expldt + B), q.(tlp.(t) = (A /km)/™ Y,

A=T B=n|g,(g./9,)"]

S, = (mkT)~ """~ 1 —m~")[In(g,/q,)]™"" ",
= (mkT)~ """~ [(m — 1)g,q,] "
X [In(g,/q)]* ~ ™" M.
In all cases,
Kwxs =Kuvlg, /)" "% 7. (65)

~'In(g,/q.),
(64)

(V. CONCLUSION

We have produced a formula to approximate the propa-
gator corresponding to any system described by a function
whose time evolution is given by a partial differential equa-
tion that is of first order in time. This approximation can be
supplemented by correction terms that can be generated by
path integrals, and this will be the subject of a follow-up
study.??
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We investigate the effects on the discrete spectrum of an arbitrary quantum mechanical
Schrddinger operator H, which are caused by the addition of a real rank N separable potential to
H. For such a potential the bound state energies E,, (4 ) as function of the real potential strength A
are in general confined to certain bounded intervals. This remarkable phenomenon can be seen as
a particular case of the general situation of complex potential strengths.

PACS numbers: 03.65.Ge, 03.65.Db
1. INTRODUCTION

In this paper we shall investigate certain properties of
rank N separable (also called degenerate) perturbations AV,
in particular the effects they have on the bound-state ener-
gies of an arbitrary Schrédinger operator H. Many of the
results we shall obtain are well known (see in particular Kato
Ref. 1, Ch. IV.6, Ch. X.3, and Ch. X.4). However, a detailed
study of these degenerate perturbations in a quantum me-
chanical language will be useful.

Thebehavior of the bound-state energies £, (4 ) as func-
tions of the real parameter A ( — w0 <A < ) is especially
interesting. In contrast to the case of local perturbations,
these E, (4 ) are in general confined to certain bounded inter-
vals, as we will see below. We have to take full account of the
possibility that there are discrete eigenvalues embedded in
the continuum. Such “positive eigenvalues” can occur for
local potentials in exceptional cases only. A second compli-
cation concerns the fact that the negative eigenvalues can be
degenerate. As is well known, for a regular local potential [in
one particular partial wave space] the eigenvalues cannot be
degenerate.

It may be noted that in Ref. 2 the particular case of the
Coulomb potential plus the rank one Yamaguchi perturba-
tion has been studied. Here explicit formulas containing hy-
pergeometric functions have been given. (See also Refs. 3
and 4.)

In a subsequent paper® we shall consider the case of a
complex (nonreal) coupling parameter 4.

Some preliminaries will be given in Sec. 2. In Secs. 3-6
we consider rank one perturbations. Four different cases will
be distinguished here (see the classification at the end of Sec.
2). Figs. 1-4 correspond just to these four cases. The investi-
gations of Secs. 3—6 pave the way for the general case of rank
N perturbations (Sec. 7). Indeed, any rank N perturbation
can be obtained by iteration of rank 1 perturbations. In Sec. 7
we also give certain closed formulas for rank 2 perturbations.
Finally in Sec. 8 we discuss some important and interesting
properties of rank N perturbations.

2. PRELIMINARIES

We are interested in certain properties of degenerate
perturbations to a given Schrodinger operator (see Ref. 6,
pp- 355, 365),
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H=H,+ V. 2.1)

Here H, is the kinetic energy operator. As usual we take
#i=2m = 1, so H, = p*>. We assume that H is a self-adjoint
operator whose essential spectrum’ is [0, o ]. Then ¥ can be,
for example, a local potential V (¥) which vanishes for 7— co,
or a separable potential. In certain cases when H, + Vis
essentially self-adjoint, one obtains a self-adjoint operator in
a standard fashion by taking the closure, (see e.g., Ref. 6, p.
358).

A degenerate perturbation is an operator of finite rank,
also called a separable potential,

N
V,=— z |gi)/‘[’i(gil' 2.2
i=1

Here N is the rank, 4, are real numbers and |g;) are called
the form factors. We assume that these have a finite norm,
(g:18.) < . The operator V, is defined in a space corre-
sponding to one particular value of the orbital angular mo-
mentum quantum number /. We shall restrict ourselves in
this paper throughout to / = 0. However, all results can be
generalized easily to the case of any /> 0.

The main purpose of this paper is to study the behavior
of the nonpositive eigenvalues of H 4 V. as functions of the
real parameters A,. We shall first restrict ourselves to the
case N = 1 [Secs. 3-6]. Once this case has been fully under-
stood, the properties of a general perturbation of rank-V > 1
can easily be derived, (see Sec. 7). Indeed, by including
N —1 terms of the sum in Eq. (2.2) into ¥, the general case is
reduced to the case N = 1. The perturbed Schrodinger oper-
ator is now

H,=H,+V—1|g) Gl 2-3)

In Secs. 3-6 we shall study the behavior of the nonpositive
eigenvalues of H; as functions of A.

We have to introduce some more notations. The (so-
called outgoing) scattering states of the unperturbed Hamil-
tonian H, corresponding to the continuous spectrum, will be
denoted by |k + ). For simplicity we assume that the con-
tinuous spectrum of H is absolutely continuous (see Kato,
Ref. 1). Let the point spectrum of H (to be distingunished
from the discrete spectrum of H, which is the set of isolated
eigenvalues of finite multiplicity, (see Ref. 1, p. 187 and Ref.
8, p. 2292) consist of the nonpositive eigenvalues — «2
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(n = 1,2,...,n,) and the positive eigenvalues k 2,

(m = 1,2,...,n,). We denote the corresponding eigenstates by
|«,) and |k,, ), respectively. Then we have the following use-
ful resolution of the identity,

1= ¥ k), + Y 1k ) k|

+ f Ik + )k + |k ? dk. 4)
0
Furthermore,

H=— YR+ 3 k21K, ) (K, |

+fwk2|k+)(k+|k2dk @.5)
(¢]

is the spectral resolution or spectral decomposition of H (e.g.
Refs. 8 and 6, pp. 252, 452 and 500). The orthonormality of
the eigenstates and the scattering states is expressed by

(KK ) =8
(kb ) = 8 »
(k+ k' +) = k28 — k),
Kk ) = (K, |k + ) =k, [k +) =0.
We shall use the Green operators or resolvents,
GE)=(E-HY',
and
G.(E)=(E—H,)".
From Egs. (2.4) and (2.5) we have

|6, ) K | 1Ko ) Ko |
GEI= X Fre T2 E-r
N F%k%. 2.6)

The eigenvalues of H, are just given by the poles of the
resolvent G, . Obviously on the physical sheet G, (E) has
poles for real values of E only. The following expression,

lG|g><g|G , Q2.7
A7+ (g|Glg)
is very useful for the study of G,. From Eq. (2.7) one easily
obtains the interesting equality

(€|G.1g)"' =4+ (g|Glg)". (2.8)

The poles of G and G, at some E<0 are all simple poles.
We note that the residue at such a pole is a projection opera-
tor. For example, when G, has a pole at E = E,,, one easily
finds

G/{ZG‘—

lim (E ~E)G,(E) = |E)u (E,|=P,.  (@9)
Here |E, ), is the eigenstate of H, corresponding to the non-
degenerate eigenvalue E,, . If the eigenvalue E, happens to be
degenerate, say r-fold, the projector P, is equal to

r

> 1E) L (E, |

i=1
In order to find the poles of G, , it is sufficient to
investigate
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(i) the poles of G, and

(ii) the zeros of 1 ' + (g|G |g)-
This follows easily from Eq. (2.7). It is useful to distinguish
degenerate and nondegenerate eigenvalues of H. Further-
more, it can happen accidentally that the form factor |g) is
orthogonal to one or more of the bound state vectors |«,, ) of
H. We shall see that the behavior of the eigenvalues of H; as
functions of A is different in this case. Therefore these differ-
ent situations should be distinguished. We shall make the
following classification:

I (Sec. 3) No degeneracy, all eigenvalues of H are
simple,
(glx,)»#0, foralln.

II (Sec. 4) No degeneracy, all eigenvalues of H are
simple,

(lk,.) =0, (glx,)#0, for nn,

IIT and IV At least one of the eigenvalues of H is d-fold
degenerate: k,, = ... =k, .

III (Sec. 5) {g|x,, ) #O0.

IV (Sec. 6) (g|k, ) =0, foralli=1,2,..4d.

3. CASE I: NO DEGENERACY, (g/x,>#0, FORALLn

In this section we assume that all eigenvalues of the
unperturbed Hamiltonian H are simple, and that (g|«, ) #0
for all n. We shall investigate the poles of G and the zeros of
A1+ (g|Glg).

From Eq. (2.6) we see that the expression
(8|G (— x?)|g) (we take E = — x*<0) has simple poles at
Kk = &,.Also Gand G |g) have simple poles at these values of
«. From Eq. (2.7) we have

lim (~ & + k)G, (— )

AT A LA

0. 3.1
)12 G-

=[x, ) K, |

This implies that G, has no pole at ¥ = k,,. The poles of G,
are therefore obtained from the solutions of the equation

A1+ (glG(—«D)lg) =0. (3.2)
In this connection it is useful to recall Eq. (2.8),

(|G, 18)"' =4+ (g|G|g)".

This equality shows in a simple way that we have to solve Eq.

(3.2) since G, has no pole at ¥ = k,,. Indeed, for k = x,, one

has (g|G |g)~' = 0, and therefore (g|G, |g) ' £0when i 0.
We recast Eq. (3.2) in the form

A =Ff). (3.3)
The function fis defined by
fE={(g|( + H)"|g). B4

Differentiation with respect to « yields

;";f(x)= _2%{g|(6® + H)?lg) <0, for x>0.
3.5

Furthermore, by inserting Eq. (2.6) into Eq. (3.4) we get
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FIG. 1. The behavior of the function f ()= — (g|G ( — «?)|g) in case I: No
degeneracy, and {(g|«, } #0 for all n. The eigenvalues of H, are obtained
from the solutions « of f(x) =1 ', i.e., k = f~'(1"'). The numbers c,, are
defined as the zeros of f (), s0 f(c,,) = 0. Note that an eigenvalue of H, can
never pass any one of these numbers c,,, .

(glx, )k, |g)

fW=3 =3
(glk,. )k, |8)
+ ; K+ k2
o K+ k?

From Eqgs. (3.5) and (3.6) it follows that f(x) is a real-valued,
continuous, and monotonically decreasing function of x on
each of the following intervals,

O<Kk <K, sour o Ky <K <KK <K< 0. 3.7

The residues of f («) at its poles ,, are all positive. Since f(x)
decreases from + o« to — 0, Eq. (3.3) has exactly one solu-
tion in each one of the intervals

K, <K<Kn” ETTE Ky <K <Ky,

for every real value of A #0. Since f(o0) = 0, there is just one
and only one solution for x; <k < o if A > 0, and there is no
solution in this interval if A < 0. (See Fig. 1.)

We can determine the nonpositive eigenvalues of H;
somewhat more precisely. The function fhas an inverse on
each one of the intervals given by (3.7) since f'is continuous
and monotonous on these intervals. We denote this inverse
byf-'. The domain of f ! is the whole real axis. The solutions
« of Eq. (3.3) are given by

k=f1A. (3.8)

It is useful to introduce the numbers ¢,,c,,...,c,, . These are
defined by f~'(0) on each one of the intervals given by (3.7).
Note that ¢, is not defined when f(0) < 0. In Fig. 1 we have
sketched the function fas a function of the energy E = — &2,
so that it is now monotonically increasing. When E = —
we have f = 0 and therefore —c; = — .

Now we are in a position to discuss the behavior of the
bound-state energies as functions of 4, (see Fig. 1). We start
with 4 = 0. The bound-state energies are then, of course,
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— &}, 1.e., the nonpositive eigenvalues of H, . Let the param-
eter A now increase from O to + oo. The eigenvalues of H,
then move to the left and approach the numbers — ¢ in the
limit for A— + w. If f(0)> 0 (so that ¢, exists), there
emerges a new eigenvalue in the interval ( — ¢}, ,0] for
A= £(0). So we see that, for positive A, the number of non-
positive eigenvalues of H, is either #, or n, +1.

On the other hand, if we let 4 decrease from0to — oo,
the eigenvalues move to the right, (see Fig. 1). The particular
eigenvalue which starts at — «, movesto — ¢’ if £(0)>0
(so that ¢, exists). However, if (0) <0, this eigenvalue
moves to 0 and then disappears when A becomes sufficiently
negative, i.e., A ' > £(0). Therefore, the number of nonposi-
tive eigenvalues of H, is either n, orn, — 1 when A is
negative.

It is important to note that the eigenvalues can never
pass the numbers — ¢2. Each one of the intervals

(_C(Z))_c%)r ------ )(_ci,,kzy—ci,,—l ) (39)

contains just one and only one eigenvalue for every

A # + . For A >0 there is also an eigenvalue in

(—ci _,,—«%), and there can be an eigenvalue in

(— ¢5 ,0. On the other hand, for A <0 there can be an eigen-
value in the interval (— «% , — 2 ).

So we have nroved that

(i) If £(0) = O, the number of nonpositive eigenvalues of
H, is always n,, independent of A (finite).

(i) If £(0) > 0, H, has n, nonpositive eigenvalues if
A < 1/f(0); n,, +1 nonpositive eigenvalues if 1> 1/£(0).

(iii) If £ (0) <0, H, has n, nonpositive eigenvalues if
A>1/f(0); n, —1 nonpositive eigenvalues if 1 < 1/£(0).

In particular, the number of nonpositive eigenvalues cannot
decrease if £(0) > 0, and cannot increase if £(0) <0, for any
finite A.

We conclude this section with a derivation of the bound
state vectors of H, in closed form. To this end we determine
the residues of G, at its poles, see Eq. (2.9). With the help of
Eq. (2.8) we obtain

G(E,)|g)(8|G(E,)
(8|G*(E,)lg)
=P, = |E, ), (E,| (3.10)

Therefore the bound state vector corresponding to the nega-
tive eigenvalue £, of H, is given by

|E,), = G(E,)Ig)(g|G*(E,)Ig)) " (3.11)
It should be noted that every negative eigenvalue of H, is
simple. From Egs. (2.8) and (3.11) one can easily prove that

X(En' lEn)A :6n’n’ (312)

which is the well-known orthonormality property of the
bound state vectors.

4. CASE II: NO DEGENERACY, (gj«,>=0,FORn =n,
ONLY

In this section we shall investigate Case II. The negative
eigenvalues of H are nondegenerate, and (g|«,) = O for
n = ngonly.

Just as in Sec. 3 we have to determine the poles of

lim (E — E,)G,(E) =
E-+E,
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FIG. 2. Thebehavior of f (k)= — (g]|G ( — x)|g) incaseII. The eigenvalues
of H are nondegenerate, and (g|«, ) = O for n = n, only. In this case — «2,

isafixed eigenvalue of H,, i.e., it is independent of 1. The eigenvalues of H;
areobtained fromthesolutionsxof theequationf(x) = A ", i.e,.x = f'(1 ).

G, (E). Itis obvious that the present case differs from Case 1
in one respect only. Indeed, we only have to investigate here
the behavior of f(«) in the interval

K11 <K<K, _,.

Because {g|x, ) =0, it follows from Eq. (2.6) that G |g) is

regular for k¥ = «,, , for all values of 4. We see that the resi-
dues of the two terms on the right-hand side of Eq. (2.7) do
not cancel. It follows that, in this case, G, has a pole for

x = k,, for all values of 4. Therefore we call this pole a fixed
pole and we call — k., a fixed eigenvalue of H, .

The function f(x) has only and only one zero,

k = c=f""(0), between «,, ,, and«, _, . According to the
definition of the ¢’s, this number c is ¢,,, when it lies between
K, ., andk, ,sothatc, _, ismissing. Itisc, _, whenit

lies between «,, and «,, _, ; then the number ¢, is missing.
In Fig. 2 we have sketched the function fin the vicinity of

K = K, , assuming that its zeroisc,, _; .

When A = 0, H, has an eigenvalue —«; . Ifweletd
increase to + o, this eigenvalue shifts to the left and ap-
proaches — ¢’ _, for A— o, (see Fig. 2). Clearly it will
coincide with — «7_ for a certain finite value of A. For this
particular A, H, has a twofold degenerate eigenvalue — &7 .
We shall deduce the two corresponding eigenstates of H, by
evaluating the residue of G, at E = — &7, .

For all real A, except one, we have

A7+ (glG(—«3)lg) 0. “4.1)
By using Eq. (2.7) we easily obtain for this case,

im (— & +&2)G,(— &%) = |x, Yk, |=PD. “4.2)
We see that the fixed eigenstate of H is identical to the
eigenstate |«,, ) of H. This is obvious when we consider the
Schrédinger equation, because (g|x, ) = 0.
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For one particular value of A we have
A+ (glG(—x)lg) =0. “.3)

In this case the residue of G; at E = — «7,_ is different from
P . We denote this residue by the projector P . From Eq.
(2.7) we get

PR=1m (-« + & )G (— &) = |« ) (K,,|

K—K,

—G(—k)e)ElG(—4%)
— K+ i,

X lim . 44
v, A7+ (g]G (— x%)|g)
By applying I’ Hospital’s theorem we obtain
G(—xK G(—«
PO — ey, |+ SCBIDECC) o

(8|G*(—x2,)lg)

This expression may be compared with the expression for P,
in Eq. (3.10). Note that the state G ( — 7. )|g) isindeed orth-
onormal to |«, ), according to Eq. (2.6).

This shows in an explicit way that P is a projector.
Since P? projects onto a two-dimensional space, it follows
that — «7, isatwofold degenerate eigenvalue of H, , where 4
is determined by Eq. (4.3).

We conclude this section with three remarks.

(i) If (g|G ( — &2 )|g) = 0, Eq. (4.3)is valid for 4 ~' =0
only. Therefore, the eigenvalue — «_ is nondegenerate in
this case. See Fig. 2: Theeigenvalue — «;, _ | shifts to the left
when A increases, and approaches —«. forA = + «.On
the other hand, when A decreases from G toc — o, the eigen-
value — «; _, shifts to the right up to — &3, .

(i) When |g) is orthogonal to every eigenstate |«,, ) of
H, the function f(x) is everywhere positive (i.e., for k>0).
Obviously in this case /, has only one moving eigenvalue, if
and only if > 1/£(0). The states |«, } are fixed eigenstates of
H,.

(iii) The function f(«) and its derivative,
f'(€) = —2x(g|G*(— «?)|g), are in general smooth func-
tions between their asymptotic values. In particular, in the
case when (g|«, ) = 0, the behavior of f(x) and f'(x) in the
vicinity of k =k, is in general not exceptional, cf. Fig. 2.

5. CASE HI: 0-FOLD DEGENERACY, (g|«;, >#0

In this section we shall investigate the complications
which are connected with a d-fold degenerate eigenvalue of
H. So we put

K". = an == ese — K",l’

Hlk, )= —x; |k, ), i=12,.4d, (5.1)

where the |«, ) may be taken orthonormal. We assume that
at least one of the numbers (g« ) is different from zero. In
Sec. 6 we shall consider the case when all {g|«, ) vanish.
Following the same procedure as in Secs. 3 and 4, we
obtain for the residue of G; atits pole — « the expression,

lim (= + 2 )G, ( ~ )
=P —Plg){(g|P(g|P|g)". (5.2)
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f(n)

FIG. 3. The behavior of f() in case I11. The eigenvalue — x> of His d-fold

”n

degenerate, and (g|«;, ) #0. It is split up by the perturbation — 4 [g) (g|
into d —1 fixed eigenvalues and 1 moving eigenvalue E(4) of H,.

Here we have used Egs. (2.6) and (2.7). The projector P is
defined by

P= 3 Ik, . 53

i=1

Note that (g|P |g)"! is a well-defined quantity, because

€lPled = 3 (gl . Ig) (5:4)

i=1
cannot vanish. By using P? = P one easily verifies that the
expression on the right-hand side of Eq. (5.2) is a projection
operator. However, the dimension of the space on which it
projects is not shown.

In order to simplify the expression on the right-hand
side of Eq. (5.2), we perform a basis transformation in the
subspace spanned by the states |«, ). By applying a suitable
unitary operator to the |k, ) we can obtain new basis states

|« ), such that

(gl; ) #0,
(5.5
gk, ) =0, i=23,.,d

This procedure is well known from quantum mechanical
perturbation theory in the case of degeneracy. Indeed, one
has to diagonalize the perturbation, i.e., adjust the basis to
|g)- Since the perturbation here is one-dimensional, there is
only one matrix element different from zero, namely
(x,. |8){glx;, ). In general |g) is not proportional to |«;, ).
The projection operator on the right-hand side of Eq.
(5.2) has amuch simpler form when expressed in terms of the
|«c;, ). Indeed, by using Eq. (5.5) we get

lim (— &>+ |2 )G, (— )

= 3 kK| —

i=1

€5, |
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N ALl (5.6)

i=2
This is a rank-(d —1) projector, which we denote by P{* V.
Clearly the multiplicity of the eigenvalue —«. of H, is
d —1. This eigenvalue is fixed, i.e., independent of A. In ad-
dition there is a moving eigenvalue of H,; which does depend
on A. It is obtained from the solution of the equation

A7+ (g|G(—rH)|g) =0,
ie.,

f)=A4"1
When A = 0 this moving eigenvalue coincides with the
(d —1)-fold degenerate eigenvalue — x>, (see Fig. 3).

So we see that the d eigenvalues — k. of H are split up
into d —1 fixed eigenvalues — «; and 1 moving eigenvalue
E, of H,. The corresponding eigenvectors of H, are ob-
tained from the residues of G, at its poles. According to Eq.
(5.6) the fixed eigenvectors are |«;, ), i = 2,3,...d (or linear
combinations). The unique eigenvector depending on A is
given by Eq. (3.11),

|E,}, = G(E,)|g) (gIG*E,)|g)"?,

where E, = E, (A ) is the corresponding eigenvalue.

6. CASE IV: d-FOLD DEGENERACY, {g|«,,> = 0;
i=12,..,d

Just as in Sec. 5 we consider here a d-fold degenerate
eigenvalue —«,, ,

H |K,,,) = —K, |K,,'), i=12,..4d. 6.1)
In this section we assume furthermore that
(g|K,,i> =0, i=12,..,4d. (6.2)

This implies that the perturbation |g) (g| is diagonal with

f{w)
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1
1
!
|
!
|
|
|

d fold, fixed
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FIG. 4. The behavior of f(«) in case IV. The eigenvalue — «;, of His d-fold
degenerate, and (glk, ) = O for all i = 1,2,...,d. This d-fold eigenvalue

— «;,, does not “feel” the perturbation — 4 |g){(g| at all, i.e., it is a d-fold

fixed eigenvalue of H, . There is one moving eigenvalue E (4 ) which coin-

cides with — «; for one particular value of A only [Eq. (6.5)].
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respect to the basis states |, ) ({ = 1,2,...,d ). Therefore no
basis transformation is necessary here, in contrast to the case
of Sec. 5.
From Eq. (2.6) we see that G ( — x°)|g) is regular at
k =k, , by using Eq. (6.2). Therefore G, ( — x) does have a
pole atk = «,, , according to Eq. (2.7). So — «;, is an eigen-
value of H, . We shall now investigate the degree of degener-
acy of this eigenvalue, and find that it is either d or d +1.
For every real value of A, except one, we have

A7+ (|G (—x3,)lg) #O0. (6.3)
When Eq. (6.3) holds, the residue of G; atk = «,,, is given by
the following projector,

PD= lim (=K% + 2 )G, (— )

"
= 3 |k, )k, (6.4)
i=1
This implies that the multiplicity of the eigenvalue — «2, is
equal to d.
For one particular value of A we have

A+ (glG(~x;))lg) =0. (6.5)
When Egq. (6.5) holds, we obtain the following projection
operator,

PE V= lim (— & +2)G,(— <)

K—K,,

d

= 2 )]
G(—Kf..)lgHgIG(~Kﬁ.)'
gIGH(—x2)lg)

So we see that the multiplicity of the eigenvalue — &7
equals d +1 in this case. There are d fixed eigenvectors,
independent of A. These are just the eigenstates |«, ) of H.
The unique eigenvalue which does depend on 4 is given by

G(—r)lg) ((&lG*(—x)leN ™, (6.7)

as is easily seen from Eq. (6.6). The behavior of the function
S(®)= — (g|G(— «*)|g) in the vicinity of k = «, has been
sketched in Fig. 4.

(6.6)

7. ON RANK-N PERTURBATIONS

In this section we shall consider some interesting prop-
erties of a rank-N perturbation. We have seen in Secs. 3-6 in
which way the eigenvalues shift when a rank-1 potential is
added to H. The eigenvalues are confined, for arbitrary
strength A, to certain intervals (— ¢, — ¢’ ), [see Eq.
(3.9) and Fig. 1]. In general an eigenvalue of H,; cannot shift
from a particular eigenvalue of H to one of the two adjacent
eigenvalues of H.

When a rank-1 potential is added to H , , the eigenvalues
are again confined to certain intervals, different from
(—c2, —c’.,) Itfollows that, in general, any eigenvalue
of H plus a rank-2 potential can pass only the two adjacent
eigenvalues of H.

By iteration we see that for a rank-N perturbation, the
eigenvalues can pass at most N —1 adjacent eigenvalues of
H upwards and N —1 adjacent eigenvalues of / down-
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wards. Exceptions to this general case occur when one (or
more) of the form factors |g; ) is orthogonal to one or more of
the bound state vectors of H, (cf. Sec. 4 and Fig. 2).

It is instructive to consider some explicit formulas. The
Green operator corresponding to the rank-N potential

VAedi) =V = 3 lg)Aie,] .1

i=1

is given by (cf,, e.g., Sec. 5 of Ref. 9)

GlhyA)=G— 3 Glg)r,(glG, (12)

=1
where the matrix elements 7; follow from
(T_l)ij = -l)lj + (g.|G |gj)' (7.3)
It follows from Eq. (7.2) that, in order to find the poles of
G (4,,...,Ay), one has to investigate the poles of G and the
poles of 7.

From now on we restrict ourselves to the case N = 2.
Furthermore, we introduce the notations

gijE<gi|G|gj> (7.4)
and

7, =Dr,. (1.5)
Here D is the determinant of the 2 X 2 matrix 7!, so

D=(etr)' =AU +g)A;" +82)—gn. (1.6
Note that g, = g;; and 7; = 7, because we restrict the ener-
gy variable E to negative values. We have

A+ -
7__2( 2 822 78:2 ) 1.7
— 812 A +gn

According to Eq. (2.6), i.e.,

G(E)= EM + z...+J...dk,

" E+x,

G has simple poles at E = — «2. We see from Eq. (7.2) that
any pole Eof G(4,,4,) is

(i) either equal to a zero of D

(i) or equal to an eigenvalue — «2 of H. We shall inves-
tigate the latter case only.

To this end we deduce the residue of G (1,,4,) at
E = — k; inclosed form. By using Eq. (7.2)—(7.4) and (2.6)
we obtain

lim (E+ )G (A,42) = |x,){«,]

E— — &,

E:[‘JY: 1 (K, |gi )7:,] <gj ‘K" )
(E+&2)D '

By using the explicit expressions of (7.6) and (7.7) for D and

7 we can evaluate the numerator and the denominator of the

fraction in Eq. (7.8) in closed form. We obtain for both these
quantities the same expression, namely

X|1— lim

E.»—x

(7.8)

lim (E+«,)D=F. (7.9)

E— — &

Here Fis defined by

F=@A["+ G11)<g2,Kn>2 +@A, "+ G22)<81|"n>2

—2G,,(8:1x, )k, 8), (7.10

H. van Haeringen and L. P. Kok 113



where the G; are defined by [cf. Eq. (2.6)]

Gy=Gy(~«,)
— : <gl [Kn>(Kn |gj)
= Ellm,.z,,(@" IGlg;) — -—E-—-}?—) (7.11)

Therefore, the right-hand side of Eq. (7.8) will vanish in
general,

limxz E +K,)G(ApA) =0,
B — 2

so that G (4,,4,) has no pole at E = — «2. This is just what
we expect: The perturbed eigenvalue differs in general from
the unperturbed eigenvalue — «2. Clearly G (4,,4,) can have
apoleat E= — 2 only if

lim (£ + K.)G (A1,4,) #0.

E— — "

So wesee that “F = 0" is a necessary condition in order that a
perturbed eigenvalue coincides with the unperturbed eigen-
value —«2.

It is interesting to consider the particular case
|g:) = |8;). Obviously the rank-two potential is then equal
to a rank-one potential, so that our formulas must reduce to
those of Secs. 3-6. Indeed we have in this case

F=@ "4+, Yelk,)2 (7.12)
So F can be zero only if either A, = — A, (vanishing pertur-
bation) or if |g,) is orthogonal to the eigenstate |«, ) (in this
case — « is a fixed eigenvalue). This is in agreement with
the results of Sec. 4. On the other hand, when we let A, go to
zero, we see from Eq. (7.10) that lim, _,A,F can be zero
only if (g,|«, ) = 0. Thisis again in agreement with previous
results.

In general F will not vanish for different «,’s, for fixed
A,and A,. In order to prove this, we shall work out a particu-
lar case. We take 4, = 4, = 4 fixed, and we assume that
Ky >Ky> ..., and furthermore,

(g1lx1) #0, (g|x,) #0,
(&lx,) = (g,]x,) =0.
In this case F reduces to
F(—r)=@A"+ Gu(— kX)) alx, )
By using Eq. (2.6) one easily verifies that
0> G — K1) > G — K3).
Because G,,( — «?) differs from G,,( — k3 ), the equation
F(—wx)=F(—x3)=0

cannot hold, according to Eq. (7.13).

By this example we have proved that the perturbed ei-
genvalues do not all at the same time coincide with (some of)
the unperturbed eigenvalues, in general.

(7.13)

8. DISCUSSION

From the investigations of this paper we draw some
interesting conclusions. Let 4n, denote the alteration in the
number of nonpositive eigenvalues of H, caused by a pertur-
bation A V.
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(i) We have proved that a rank-1 perturbation can alter
the number of nonpositive eigenvalues n, (where the multi-
plicity is included) at most by 1:

|4n,|<1.

By iteration one obtains from (i):
(ii) a rank-/ perturbation can alter n,, at most by N:

|4n, |<AN.

This fact can also be obtained from the first Weinstein—
Aronszajn formula, (see Kato, Ref. 1 Ch. IV. 6, cf. Ref. 10).

For a rank-1 perturbation — A |g)(g| we have proved
the following interesting facts, which give more detailed
information.

1. Given the Hamiltonian A and the form factor |g),
then one and only one of the following three alternatives
applies:

a. Either n,, increases by 1if 4 goesfrom0to + «.In
this case any finite negative A will not alter n,,. We have
S(0)>0, where fis defined as f (k)= — {g|G ( — x)|g);

b. or n,, decreases by 1if A goes from 0to — . In this
case any finite positive A will not alter n,,. We have f(0) < 0;

c. or the number of nonpositive eigenvalues is always
n,, independent of A. This case applies if f(0) = 0.

2. The multiplicity of any nonpositive eigenvalue of H
can alter at most by 1 (a particular case of the Weinstein—
Aronszajn formulas, see Ref. 1). A change in the multiplicity
is caused by the so-called moving eigenvalues of H, . It is
important to note that a moving eigenvalue is always simple
(i.e., nondegenerate), except for one particular value of 4,
when it coincides with some fixed eigenvalue.

3. More specifically, we have defined certain intervals
with boundaries — ¢2, and 0, see Figs. 1-4. The union of
these intervals is just the real negative axis. When we let A go
from — « to + «, every moving eigenvalue shifts from the
right-hand side to the left-hand side of some particular inter-
val. Different eigenvalues move in different intervals. All
moving eigenvalues are continuous and monotonically de-
creasing functions of A.

Finally we consider the operator

H, =H—lg){gl

for A— + oo . One might expect that every eigenvector of H,
will approach, in a certain sense, the form factor |g Y when A
goes to + oo. However, only the ground-state vector of H,
converges to |g) in this case. The corresponding eigenvalue
goes to — oo, which means infinite binding energy. The re-
maining eigenvectors and eigenvalues of H,; have simple
limits, both for A— + « and for A— — «. We have ob-
tained simple closed expressions:

(i) (glx, ) = O for some n, then |«, ) is not only eigen-
vector of H, but also of H, , with eigenvalue — «Z, for all real
A.

(ii) All other eigenvectors of H, have the form

¢
E —H
The eigenvalue E,, is a solution E = E,, of the equation,

A7+ (g|G(E)Ig) =0.

c-G(E,)|g) = g).
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Therefore, for A— + «, the eigenvalues E, are just given by
the zeros of the quantity

(g E-H g)'
So we see that H, is, for A — o0, a well-defined operator,

with simple eigenvectors and eigenvalues. Its essential spec-
trum is [0, o), just as the essential spectrum of H.
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It is shown that the existence of Aharonov—Bohm scattering depends upon the criteria used for
establishing the stationary states. If one applies Pauli’s criterion, there is no scattering. It is shown
further that applying the usual criteria that the wave functions be continuous and single valued, as
was done by Aharonov and Bohm, leads to stationary state wave functions which, with two
exceptions, are eigenstates of the acceleration operator corresponding to eigenvalue zero. The
acceleration operator is undefined for the remaining two states. Thus, only the eigenfunctions
satisfying the Pauli criterion lead to well-defined, sensible physics.

PACS numbers: 03.65.Nk

I. INTRODUCTION

In a recent paper' it was argued that the total cross
section for Aharonov-Bohm scattering diverges. This con-
tradicts the well-known result of Strocchi and Wightman?
that shows electrodynamics to be a local theory. It is this
contradiction that has stimulated the investigation of the
mathematical nature of Aharonov-Bohm {hereafter called
AB) scattering reported here.

The author feels that it is essential to distinguish be-
tween AB scattering and the AB effect, which several inves-
tigators claim to have observed,*~* and which is treated in
graduate textbooks, such as the one by Sakurai.® It must be
noted that, in the past two years, papers have appeared that
claim to prove the nonexistence of an AB effect’™'’; their
authors would say that the distinction being made here is
superfluous. These papers will be discussed elsewhere; the
only comment to be made here is that the author believes
that some of the derivations of the AB effect in the literature
are correct.

The claim being made here is considerably more modest
than those of the papers cited above. It is shown here that the
AB effect, if it exists, may not be interpreted as scattering.

AB scattering is alleged to be the scattering of electrons
by a whisker of flux located along the Z axis. The differential
cross section was computed by AB'' to be

do _ sin’(ra) (1)
d0  2mksin’0/2)
wherea = — e® /cfiand the energy of the incoming particle

is #°k 2/2m. This result was obtained by taking the wave
function of the incident particle to be e’ <% ~ ‘¢ This func-
tion gives a probability current density in the x direction and
is an eigenfunction of the velocity operator. It is also an ener-
gy eigenfunction, but it does not meet the commonly im-
posed requirement of continuity, unless « is an integer. It
will be shown here that the criteria imposed by AB (i.e.,
continuity and single valuedness) are not the correct ones.
The essential criterion for admissibility of wave functions
was set down by W. Pauli'>'? in 1939. Had AB subjected
their energy eigenfunctions to Pauli’s criterion, they would
have found no scattering. This is shown below.

The Hamiltonian of the system is given by

H =[P — (e/c)Ar], 2)
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where we put m = #i = 1. The vector potential is given by
A, =0, Ay =P/ 27nr. (3)
The stationary state Schriodinger equation is then

1 19 1(5 )2]
e T a7 \Ge T )Y

_*
= @

Il. THE VELOCITY OPERATOR

In order to understand the physics of the scattering pro-
cess, it is necessary to study the velocity operator, since
changes in this quantity must be related to scattering. The
velocity operator is

v=P —(e/c)A(r) = — iV — (e/c)A(r). (5)

It has components

v, = cosfv, — sinfu,, (6a)

v, = sinfv, + cosfy,. (6b)
It is convenient to introduce the operators

v, =v, +iv, (7a)

v_=v, — v, (7b)

Straightforward substitution then yields

,d €° 9 iae®
v, = —ie —+ —— + , 8a
* ar r 86 r %)
— 60 ;
vo=v', = —ie wd _e T d {8b)

Equations (8) indicate that the velocity is not a vector under
the spatial reflection y«— — y. The condition
v_(0)=v_(— 6)fails unless one also replaces @ by — a.
This means that the particle velocity is a vector under spatial
reflections only if one also reflects the velocities of the
charges that act as the source of the magnetic flux. One notes
that the Hamiltonian is also not invariant under y«— — y
unless one puts a<— — a, thus inverting the direction of
the magnetic flux.

Formal computation shows that v, and v_ commute,
as long as no restrictions are placed upon the functions on
which these operators act. The angular momentum operator
is
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a

M= —i—. 9)
a0
The operators M, v, and v_ obey the commutation rules
My, ]=v,, (10a)
My_]= —v_. (10b)
These equations lead to the results
My, v_]=0 (11)
and
H=4v,v_. (12a)

Thus, M and H commute, and we may use the eigenval-
ue m of the angular momentum operator to characterize the
eigenstates that comprise the basis of a Hilbert space of states
having energy eigenvalue k ?/2. Thus if M |m) = m|m), we
find that Eq. (10a) implies that

My, |m) =(m+ lp, |m) (13a)
and Eq. (10b) implies that
My_|m) = (m — l_|{m). (13b)

v, is therefore a raising operator and v _ is a lowering
operator.

Let us restrict a to the range O < & < 1. Other values of &
can be treated by making obvious changes in the discussion
that follows. We are now ready to discuss solutions of the
stationary state equation (4). Pauli'>'* would argue that the
appropriate energy eigenfunctions are those solutions of Eq.
(4) that are square integrable and are closed under the oper-
ations v, and v_. This set of functions is

T (krle™e =0 v =0,+ 1, + 2, (14)

This choice of stationary states leads to understandable
physics, since the incident wave used by AB can be expanded
in terms of these functions. Hence, there is no scattering.

It is enlightening to investigate the behavior of the AB
eigenfunctions under the operations v, andv_. These eigen-
functions are

|m> =J\m+a|(kr)eime» m =0, +1,+ 2, (15)

One quickly sees that the operator v can be used to generate
the positive m states from the eigenstate |0). The operator
v_ may similarly be used to generate the negative m state
from the state | — 1). These results follow easily from the
well-known recurrence relations for Bessel functions. It is
clear however, that there are two distinct chains of eigen-
states that are not linked to each other by v, and v_.

From the recurrence relations for Bessel functions, we
see that v_|0) involvesJ _ ,  , (kr); this function does not lie
in the Hilbert space of AB eigenfunctions. It is infinite at the
Z axis, while the AB eigenfunctions all vanish there. Apply-
ing v_ twice to the state |0) produces a function that is not
square integrable over any region containing the Z axis.
Similarly, the function v | — 1) does not lie in the AB Hil-
bert space. Thus in order to treat the problem using the AB
eigenfunctions, one must modify the Hamiltonian to the
form
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=1 Z v_uv, P w3 Z v, v_P,, (12b)

mz0 m<0
where the P,, are the projectors that project on the states
|m). Then, on a subspace of fixed energy k */2, the operators
v, and v_ become multiples of isometric operators U and
U?, so that

v, =kU and v_=kU". (16a,b)

The state | — 1) is not in the domain of U and the state |0} is
not the domain of U". The acceleration operator that gives
the rate of change of v, is

L =IiHy, =ik [HU]. (17)
Similarly, we may define a_ by
a_=i[Hvy_]=ik[HU. (18)

Equations (12b), (17), and (18) show thata , and a_ are
zero operators when they operate on states in their respective
domains of definition. The same is true of the Hermitian
operators

a,=Ma,+ae_) and a,=(1/2)a, —a_)

We therefore conclude that the AB states are all states of
zero acceleration, except for the states |0) and | — 1). The
acceleration of the particle in these states is not defined.
Thus to have well-defined observables, one must make the
Pauli choice of eigenfunctions given in Eq. (14). Only this
choice leads to well-defined, sensible physics.

It is well known that if a time independent Schrodinger
equation has a solution ¢°(r), then, if a vector potential hav-
ing a vanishing curl is added to the system, the correspond-
ing energy eigenstate is given by

Ylr) = YO(rjetr A, (19)

where S(r) is the point r itself. The path of integration is
otherwise arbitrary. In the AB problem, A(r) is given by Eq.
(3). If we take the integration path to begin at any point on
the positive x axis, then Eq. (19) becomes

¢(l‘) wO(r)e(:e/ﬁc P /2m6 __ ¢0(r)e 1(19 (20)

Thus the proper eigenfunctions are related to the corre-
sponding zero flux eigenfunctions by the usual London rule.
It is therefore clear that correct discussion of the Aharonov-
Bohm effect must deal with any physical consequences of
this phase factor in a proper way.
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A heuristic procedure is developed to obtain interior solutions of Einstein’s equations for
anisotropic matter from known solutions for isotropic matter. Five known solutions are

generalized to give solutions with anisotropic sources.

PACS numbers: 04.20.Cv

I. INTRODUCTION

The assumption of local isotropy is a common one in
astrophysical studies of massive objects. However, recent
theoretical work on more realistic stellar models suggests
that stellar matter may be anisotropic at least in certain den-
sity ranges."? Anisotropy could be introduced by the exis-
tence of a solid core, by the presence of type P superfluid, or
by other physical phenomena. In this paper we do not dis-
cuss the mechanisms for inducing anisotropies. Rather, we
concentrate on the following two questions:

a} What is the extent to which isotropic models differ
from anisotropic ones?

b} How do we develop suitable models for anisotropic
matter in the context of general relativity?

Anisotropic matter has already been considered,>* and
it has already been shown that some properties of anisotro-
pic spheres may drastically differ from the properties of iso-
tropic spheres. This paper is organized as follows:

In Sec. IT we give the general conventions and the field
equations. We describe the procedure for obtaining anisotro-
pic models in Sec. II. In Sec. IV we give five examples. The
last section contains a discussion of the results.

{l. THE FIELD EQUATIONS

Let us consider a static distribution of matter which is
spherically symmetric but whose stress tensor may be locally
anisotropic.

In Schwarzschild-like coordinates the metric can be
written as:

ds* = edt? — &*dr* — rPd8? — rPsen’0 d¢ *.

Denoting differentiation with respect to r by a dash,
letting (t,7,6,¢ ) = (0,1,2,3), the metric field equations read:
87T = —e *[v/r+ 1/F) + 1/7, (1)
87T2 =8aT;
= —e MW -V + P+ =42,
(2)

“Supported in part by CONICIT, Venezuela.
“Supported in part by N.S.F. under grant number INT-1825663.
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87Ty =e *[A'/r—1/r] + /P, (3)
with T# = diag (p, — P,, — P,, — P,), where P, and P, de-
note respectively the radial and tangential “pressure”. Using
(1) and (2) (or the equivalent, the conservation condition
T# ., = 0) the equation for hydrostatic equilibrium is found:

dp, v 2
= - Y L Lp-P)
ar (p+P) St (P—P,) (4)

Integrating (3):

e *=1—=2m(n/r, (5)
where

m(r) = f417'ﬁp dr. (6)

0

From (1) and (3):

v o_ T(r) + 40P, . o

2 Hr — 2m)

Obviously in the isotropic case (P, = P)Eq. (4) becomes
the usual Tolman—Oppenheimer-Volkov {TOV) equation
for hydrostatic equilibrium.

Before trying to find specific models, we write Eq. (4) in
a different form. Let

P, — P, =Cf(Prfp+P), (8)

where C is a parameter which measures the anisotropy; the
function fand the number # are to be specified for each
model. Taking in to account (8), Egs. (4) becomes

dP,/dr= —(p+PW/2+2Cf P p+P)"~" (9)
Equation (9) can be integrated if p is a known function of

rand f(P,,r) is specified. We keep the usual boundary condi-
tion P, (a) = O, where a is the radius of the sphere.

. THE PROCEDURE

The chief question is how to choose the function f(P, 7).
One approach would be to consider (9) as defining this func-
tion for arbitrary p(r} and P,. However this might produce
models with strange pressure distributions and would usual-
ly not permit C = 0 as a subclass of a particular model. The
ideal approach, of course, would be to know the relation
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between P, and P, on physical grounds. We shall propose a
heuristic method which allows us to find a family of noniso-
tropic models from any isotropic model; the family will de-
pend continuously on C and permit the isotropic situation,
C =0, as a special case.

The procedure is as follows:

1) Take a known exact interior solution of the Einstein
equations and assume the functional dependence of p = p(r)
of the anisotropic model is the same as that of the isotropic
solution. In fact one does not expect that the presence of
stresses (at least for small values of C) will change the matter
distribution drastically.

2) Assume

[P r—1=v/2. (10)
This relation is not assumed for any specific physical

reason but only because it transforms Eq. (9) into the simple
form:

dP,

dr

where # =1 —2C.

The next section is devoted to the integration of Eq. (11)
for different density distributions p(r). Notice that for h = 1,
we recover the isotropic case. 2 = 0, because of the boundary
condition, implies P, = 0. Such a configuration corresponds
to a sphere sustained only by tangential stresses. It has been
considered in a different context by Lemaitre.’

= —h(p+PW/2, {(11)

IV. THE MODELS
A. Schwarzschild-like model

The first model we discuss is a generalization of the
Schwarzschild interior solution. Such a generalization is ai-
ready known,? and we can examine how our method repro-
duces this known solution for anisotropic matter.

Following the procedure sketched in the last section we
imagine an anisotropic sphere whose density is independent
of the spacelike coordinates,

_ [po=const, O<r<a
P= [ 0, r>a (12)
Equation (6) gives

m(r) = 4wrp,, (13)

and condition (10) reads:

SFnP)r = = =4mr{po + 3P,)(1 — (87/3)Fpo) ~ ' (14)
I

B. Tolman VI-like model

where Eq. (7) has been used. Equation (11) takes the form
dP

r

dr
X(1 — (87/3)p”?) ~ 'r. (15)
Equation (15) can be integrated to obtain the radial
pressure

(1 = gmrpo)r 2 — (1 — grapol 2
Pr =P0 2 ( 6)
31— gmaoof 2 — (1 — 4mrpo) /2
or
P —p | 1= 2m/ry""* — (1 — 2M /a)*”?
L0 2Msap — (1 —2myrp
where M is the total mass.
It is worthwhile to recall some properties of this model.

For example, the critical value of the quantity 2M /a for
which the central pressure tends to infinity is

2AM /a)rc = 1 — (173, (17)

thus, the limiting case # = 0 (C = 1/2) yields 2M /a).,,, = 1
and the horizon may be reached. We recall that in the iso-
tropic case (h = 1) the critical value is:

(2M /a).q =&
The critical mass is
M, =(3/32mpg)'*[1 — (1/3)7* 1?2, (18)

| ae

The ratio of the critical mass for the anisotropic case to
the corresponding value for the isotropic case is given by

Ma_,,
=1 — (1732 19
M. 31 —(1/3*] (19)
This ratio is less than one for 2> 1 (C <0) and greater
than one for # < 1 (C <0).
Furthermore the expression (17) affects the redshift z at
the surface, given by

z=(1-2M/a)~ "> —1. (20)
The critical value for the redshift is
Zo =37 —1, (21)

thus, in principle, anisotropy is capable of explaining red-
shifts larger than two.
It is easy to use {16') and (7) to obtain v

o [ 3(1 —2M /a)"? — (1 — 2m/r)" 2 ¥

5 (22)

The next model we shall generalize is solution VI of Tolman.® We recall that the equation of state of this model, for large

p, approaches that for a highly compressed Fermi gas.

Using the procedure discussed above and the fact that the matter density is

8mp = 3/77,
we get the following equation for P,
dP,
- = h(3/56mr* + P,)(3/8r + TurP,).
r

This equation can be integrated to obtain
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= 56mr*

h [ 1 — (r/a)v 30 }
(8 —3h +4v/(4 —3h)) — (8 — 3h — 4v/(4 — 3h))r/a) 0 |

(25)

This solution restricts the values of 4, h < 4/3, or equivalently, C> — 1/6. For the special case A = 4/3, the solution is

3 [1_ 2 ]
S56mr 2—In(/a) |’

P (r)=

(26)

Of course for the case # = 1 we recover the Tolman VI solution. Also for 4 = 0, P, = 0, as expected. The ratio of the

central pressure to the central density is

P/p.=3h/(8—3h+4J4—3h ).
In the case & = 1, one gets the well-known result

Plp. =1}
For the limiting value 2 = 4/3, the ratio is
Pc/pc = 1’

{27)

which in some sense represents a natural limiting value for the equation of state at the center of the sphere. The equation of

state for the radial pressure can be written as

P,(p)=3hp

which for large values of p, becomes

p — 3P, = constp'/~.

1 _ (3/5677.)\/(4 — 3h )/2( p — l/2/a)\/14 — 3h)
, 28
(8 —3h+4v(4—3h)) — (8 —3h — 4/ (4 — 3h))(3/56m) 1 ~3HVY p— /2 g)v/14 = 3h) ] 28)
8—3h+4(4—-3h 3 \wvw-dmy2
o i o (29)
In the case A = 1, we recover the expected result

(30)

For the limiting value 4 = 4/3, the equation of state takes the form
v (31)

P(p)=|1— .
) [ 4 — In(3/567pd")

Now it is not difficult to find the metric function v. Feeding (25) back into (7) and using (23)

(32)

[4
7

At the surfacer =a

8v/(4 — 3k)

3

e

=1-2M/a=}%

r=a

. 4 [ (8 — 3h 4+ 4v/(4 — 3h)) — (8 — 3h — 4y/(4 — 3k ))(r/a)”® M) ]vh ( r )mwmm WAB — 3+ 4/ 14— 34)

a

which agrees with the expression for the exterior Schwarzschild metric.
For the limiting value # = 4/3, the metric function v takes the form

e” = 3[(r/2a)(2 — In(r/a)]*.

(33)

Equation (24) has also been integrated numerically. Introduce the following dimensionless quantities

P=pPM?
z=a/r,
where M is the total mass. Equation (24) becomes
dP
y4

e 3hP /z 4 Tmh (14/31P%/2° + (9/7 X 647)(3/14hz,

(34)
(35)

(36)

where the fact that M /a = 3/14 has been used. Solutions of (36) for differents values of # are indicated in Fig. 1. It is
worthwhile to observe that negative values of 4 correspond to negative radial pressures. Such situations cannot be excluded a

priori since we are not considering perfect fluids.

C. Tolman IV-like model

Let us consider a generalization of the Tolman IV solu-
tion. We recall that the equation of state of this solution leads
to results similar to those which would be obtained from the
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equation of state for a Fermi gas in cases of intermediate
central densities. As in the preceding cases, the density is
assumed to have the same functional dependence as for the
isotropic case, thus
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FIG. 1. The function ISEP,M 2 versus z=a/r for the Tolman VI-like model
and € = 3/14.
a)h=1
b) A =1.333 e ee
c)h= — 31888 --emimmimmm
dh= —2.7699 -..-.c....-..
2 2 2
87 = % (14+34%R +32r’/R )
A (1 +277/42)
2 1—-~/R?
o2 _U-rRY &)

AT A(1+27/4%
where 4 >and R 2 are constants which in theisotropic case are
related in a specific way through the central density and
central pressure.
We calculate the function m(r) and obtain

mir)=rR>+ A%+ A)/2R YA + 27). (38)
Hence
firP )= Wr[(R*+ 4%+ ) + 87R*P,

X{A24+2°1/24R? — 4% + P (39)

and the equilibrium equation becomes

dP 2 2
gr 20 _ g [ R24342437)
dr R*4%+2r)
24°(R*—r} ]
= 4 8P,
RWd 127
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40)

(R2—=r)A%+ 7
For k>3, the integral is given by
P=38mA%P.(r)

(P _re_ 3= e 32\ 442100 @41
(Z—hR 2—h 3#)/( 2 @)

Unfortunately, this pressure is less than zero for all real
r and approaches — (3/2)4  as 7— o . Hence the regime
h> 3 cannot correspond to a bounded distribution of matter.

We did not succeed in finding an analytical solution to
(40) other than (41), so that we integrated that equation nu-
merically. In order to do that, we introduce the following
dimensionless quantities:

. [ (R2+ A2+ +87R*P(A*+ 2 ]
(

P=8wAP,
p = 8mA %p,
z=1/(y+e)
y=r/A; e=M/a, xk=A%R>%
Thus Eq. (40) becomes
dp
dz

_ h(l —ez) [ (1 4 3x) + 3x(1 — €2)®
T 2 2 —2(l —ezf
222[22 — k(1 — €2)*] n: ]
22+ 2(1 — e2)*)?
% [ 21+ &)+ &{l — e2)* + P[22+ 2(1 — e2)?] ] @)
[22 — &(] — 2?22 + (1 — €2)*]

In order to integrate this equation numerically we must
specify the values of €, x and A; also the boundary condition
P(zy) =0, where z, = z|, _ ,, requires that the value of
Y, = a/A4 be given.

Now, from the condition

+

e *y—g=1—2M/a (43)
we get
e=M/a= Yi(l +x+Y3)/2(1+2Y3), (44)

where the relation
e =RYA*4+2°)/(R*—P)4*+ 1)

has been used.
For the isotropic case (# = 1) we have the analytic
solution

P(Y)=(1 —x—3xY?}/(1 +27? (45)
and thus the boundary condition, in this case, leads to

Y3 =(1 —«)/3. (46)
Feeding (46) back into (44) we obtain
k=1-3e (47)
Also, because of (44)
Y. — 4e — 1 —k +V/((1 + &) — 8e + 16€7) 12

0o — H

2k
(48)

thus, fixing €, one gets uniquely the values of Y, and «.
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In the nonisotropic case (7 # 1) we do not have an ana-
lytic solution like (45) and so the values of k and Y, cannot be
obtained from €. In order to pick values of ¥ and ¥, which
would not lead to unphysical situations, we shall integrate
for values of & not very far from 1, and for « we shall take

kh)=xth=1)[1+1—h|/h]. (49)

Fortunately Eq. (42) is “stable” with respect to a pertur-
bation of the coefficients such as (49). Specifically we have
integrated for the following cases:

0.18737 \

0.00000 LL P L

1)e =0.1:
i) h=1, x=0.7, z,=2.09,
i) h=.67, x = 1.04, zo=2.29,
i) A =133, x = 0.88, z,=2.20,
2)e=0.3:
i) h=1, x=0.1, z, = 0.49,
ii) h=0.67, x =0.15, z, =0.56,
iii) A =1.33, x=0.13, z, = 0.53.
122
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The resuits of integration are displayed in Figs. 2 and 3.
The accuracy of the numerical analysis was checked against
the exact solution (for the case A = 1) with excellent results.

D. Tolman V-like model

Though the Tolman V solution does not represent any
interesting physical situation, we have generalized this mod-
el in order to obtain more information about the difference
between the isotropic and the anisotropic case.

Following the established procedure,

8mp = 3/77 + (10/3R 3(r/R )7, (50)

m = (3/14)r + r'?/2R "3, (51)

e *=4/7—(r/R)”,
where R is a constant.

The condition (10) reads

(52)

1.87370

1.68633 -
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131159 | \ 4
\
\
\
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\
\
0.93685 |- \ i
\
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.
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0.37474 \ i
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FIG. 3. The same function as in Fig. 2, with € = 0.3 and
h=1

k=0.1

h=133
k=0.13
h=0.67

k=0.15
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FIG. 4. The function P =87R 2P_versus z=¢€R /r in the Tolman V-like
model, with € = 0.25, and

h=1
h =133
h= —277
h= —3.188
frp)r !
=W =(3R"?+ 7" 4 56mP R 321/2r{4R 7 — Tr77)
(53)
so that the equilibrium equation becomes
dP,
81r—d—’ = —h| 3/77 +9r/R) + 87P, |
r
X [BR77 + 77" + 56wP,R"°F)/2r4R " — Tr"7)].
(54)

We could not find an analytic solution for (54), so we
carried out a numerical integration. To do so, we introduce
the new dimensionless variables

P=8r7R?P,
p = 87R p,
z=¢€R /r,

with € = M /a. In terms of the new variables, Eq. (54) reads
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[ 4(e/2) — (e/2)'™] (Z%/¢€) Z—f

= h(€e/2P%/2 + h |3+ Ye/2)”| P
+ k| $z/e + Ble/2)'” + 3e/2)*7) . (55)

The surface of the star is defined by the value
z, = €R /a; furthermore, the ratio R /a can be expressed
through € using Eq. (51)

2~ |2e—ay (56)
In the isotropic case (h = 1)
R /a = (147
and
e=1

We have integrated fore = 1/4; h = 1.33, h =1,
h= —277,h= —3.188 and for e = 0.3; h = 1.33,
h= —3.188, h= —2.77.

The solutions are shown in Figs. 4 and 5.
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FIG. 5. Same function as before but € = 0,3 and
h=133
h= —277  —ceommmmemmeeee
h= —3.188 --memmm-
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E. Adler-like model

Lastly, we shall apply our procedure to a solution found
by Adler.” This solution is adiabatically stable, does not ex-
hibit singularities and in principle could be used in astro-
physical considerations.

The density is given by

87p = &yBr/(a + 3B — 3y/la + 3B, (5T)

where 7, # and a are constants. In addition,

m= —yr/2a + 3BrP>, (58)

e ' =1+yr/la+36r " (59)
Y
Syt ==

[ 87Pla+ 3B —y 0
2l @+

and the equilibrium equation reads
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8
dr 2
_ 4B Iy ]
— _ 8P
’ [(a WA ar A o
[ 87P,(a + 3By —y 6l
(@ + 3BV + yr* (e1)

In the isotropic case (# = 1), the solution is
87P, =48 /(a + pr)
+ Va + 5 BrP)/(a + Br)a + 3B (62)

(some errors in Adler’s paper have been taken into account)
and

"= (a+BrP (63)
Using the boundary conditions
P,(a)=0,
em =g T =126,

when € = M /a, we find
a=(1-5/2€¢)/(1 — 2) ', (64)
B = e/2a%(1 — 2¢) 2, (65)
y= —2€el —e€)**/a*(1 — 2¢) . (66)

Hence, for the isotropic case, the radial pressure can be
written as

P, = (e/4md’)| 1 — 207(1 — €)(1 — 3¢ + 3) - )
X(1—3e +4ey’) =1 — (1 — € (1 — 3¢ + J07) ~ 2,

(67)
with

y=r/a.

Equation (61) was integrated numerically for different
values of h. To this end, we introduce the following variables:

P=28xP,/y, (68)
p=8mp/y, (69)
22 =1/B7, (70)
dP _ héla + 3z~ 52
dz 23[(a+3z_2)2/3+z"2]
héla + 2z ) .
B [l@+ 32732 4+ 862 )ja + 3z~ )2
hé(3a + 5z 7 R
[(a+ 32‘2)2/3+52_2](a+32‘2)5/3
where
§=1y/B.

In order to assign to the constants a and § values which
do not lead to unphysical results, we shall integrate Eq. (71)
for values of 4 close to one and assume

alh)=ah=1)[1+4+ |1 —h|/h] (72)
Sh)y=8h=11+|1—h|/hH| (73)
Also for z; = z(r = a) we get, using (67)

€ =68/2z3(a + 325 ).

Figure 6 shows the solutions for # = 1, h = 1.33, with
€ =10.35.
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V. CONCLUSIONS

We have presented a heuristic method to obtain aniso-
tropic models in the context of general relativity.

The main virtue of the method is its simplicity and the
fact that the models obtained are continuously connected
with the isotropic case 2 = 1, which allows comparison with
this case. Of course, whether or not these models represent
physically plausible situations will depend ultimately on the
agreement between relation (10) and a reasonable equation of
state for the tangential pressure.

125 J. Math. Phys., Vol. 22, No. 1, January 1981

'M. Ruderman, Ann. Rev. Astr. Ap. 10, 427 (1972).

2V. Canuto, Neutron Stars: General Review (Solvay Conference on Astro-
physics and Gravitation, Brussels, 1973).

R. Bowers, and E. Liang, Astrophys. J. 188, 657 (1974).

*L. Herrera, G. Ruggeri, and L. Witten, Astrophys. J. 234, 1094 (1979).

*>G. Lemaitre, Ann. Soc. Sci., Bruxelles, A 53, 97 (1933).

°R. Tolman, Phys. Rev. 55, 364 (1939).

"R. Adler, J. Math. Phys. 15, 727 (1974).

Cosenza et al. 125



JMAPA, 800400800449

Observer frame rotation rates and magnetic fields in spatially homogeneous
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We discuss how the rotation of an observer’s Cartesian reference frame is related to the precession
of the shear tensor’s principal axes and to the rotation vector of the fluid. An approximate solution
of Einstein’s equations illuminates this relationship further. In the case with a magnetic field and
fluid flow a vorticity is allowed in Bianchi I cosmologies.

PACS numbers: 04.20.Cv, 04.20.Jb

I. INTRODUCTION

In the past decade the well-known models of cosmology
have been exhausted. Since an important paper by Misner, '
there has been widespread consideration of anisotropic mod-
els with more complicated geometries,*” referred to below
as the “Maryland” universe. Simultaneously Ellis and his
pupils have also developed a method for dealing with a spa-
tially homogeneous, anisotropic cosmological model®'°
which we shall name the “Cambridge” universe. Hawking
has blended them into an hybrid.'"!?

The models contain expanding perfect and imperfect
fluids possessing shear, rotation, and acceleration of the flu-
id flow. In the case of perfect fluids the shear can always be
diagonalized. Should there be imperfect fluids or electro-
magnetic fields this is not so and the off-diagonal terms in the
shear tensor interact with the fluid expansion. The shear
tensor precesses: Its principal axes rotate causing the tem-
perature ellipsoid of the microwave background radiation to
have an angular momentum.” The spin is about the observ-
er’s fluid flow vector.

This is due to another kinematical quantity which exists
when imperfect fluids and electromagnetic fields are present.
If the metric is of the form

ds’ = —dt’ + e, dx'dx’ €))
witha = a(t) and B,; = B,;(¢), a symmetric, tracefree ma-
trix, that quantity is

T = (eﬂ)'K[i(e_B)j]K ’ (2)

where the brackets denote the usual antisymmetry oper-
ation. It has been formally described previously as the rota-
tion of an observer’s Fermi-transported reference triad.'>'*

The relation between these quantities can be given a
more precise meaning. We shall examine that in this paper.
In Sec. II the spatial tensor 7,; will be shown to be the mea-
sure of the rotation of the principal axes of the coordinate
shear tensor

g, = (eﬁ)'K(i(eiﬁ)ﬁK 3)

with parentheses indicating the usual symmetrization. Since
the observer’s reference triad vectors can be made eigenvec-

“NASA-ASEE Summer Faculty Fellow, 1977-78, Marshall Space Flight
Center.

126 J. Math. Phys. 22 (1), January 1981

0022-2488/81/010126-07$1.00

tors of this shear tensor, 7,; measures the observer’s refer-
ence triad rotation. We will show this through a few simple
kinematical identities.

Since 7, is a rotation, we will also examine its disen-
tanglement from the fluid vorticity. We will show that the
frame rotation and fluid rotation are proportional to each
other with a Bianchi type V cosmological model as an exam-
ple. This means that the universe’s dynamics react back on
our local reference triad.

In Sec. ITI we will exhibit a particular family of Bianchi
I cosmologies with anisotropic stresses and give an approxi-
mate solution which shows how the shear tensor precession
is truly given by the tensor 7,;. A formal solution which
demonstrates this relation will be first given and then com-
pleted in the approximate solution.

The effect of magnetic fields will be considered in Sec.
IV. There we will find two things: First, that the presence of
the field allows a fluid flow to exist in Bianchi I models.
Second, that those conditions allow 7;, to be nonzero, which
allows the vorticity to exist through the shear tensor. Again,
7;; and the rotation end up proportional to each other. In this
section we also give an approximate solution for all quanti-
ties. The effects of curvature in Bianchi V and IX universes is
considered here.

Conclusions and suggestions for future work are sum-
marized in the final section.

Il. REFERENCE TRIAD ROTATION AND FLUID
KINEMATICAL QUANTITIES

By the Fermi transport law the Cartesian reference-
frame triad vectors é° evolve according to the equation’>'®
dé*/dr = — £25&° where the precession tensor {2 is given by
the wedge product 2 = — a A u with a the acceleration.
This acceleration can include rotations as well as boosts. But
de®/dr = €;,02 6" = €], €€ se,, ,Wé" (see Refs. 8-10),
where for a fluid congruence, rather than the normal con-
gruence, substitute u° for n °.

Also from the definition of the Ricci rotation coeffi-
cients' I',,, = éie,; ¢}, where e, are the tetrad compo-
nents, we can formulate the relation between the Fermi
transport £2¢ and 7, . For a metric as in the Introduction

Iy, = — 7;;. Combining this with the first two equations
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with & substituted for u * we easily find (¢’ =

sa
de ()Ac_[" e ¢
- —e ec,noebe —_ aoce —_ '_Tace .

dr @
Hence 27 = r,.. By this elementary example 7. represents
the rotation rate of an observer’s Fermi-transported refer-
ence triad. This is amplified in the formalism of Ref. 10. The
fluid flow vector is given by u, = cosh Bn,, + sinh ¢,
where 8 is the hyperbolic angle of tilt between u,, and n,, the
normal to the homogeneous hypersurfaces of constant time
and ¢, is the projection of u, into these hypersurfaces. The
tetrad vector commutators give the affine connection coeffi-
cients Iz, via [Ek, E 1= y,wE and I',5,
=4Vapy + Vyas — rﬁm) In the normal bas1s E,=#,
E, =é,, then (A, é,] = (e, 2°—6,), and [¢,e,]
= (€x, 1" + 6,a, — 8ya,)é,, where 6, = n,,, (||v=co-
variant derivative) is the expansion + shear tensor of the
normal congruence, 2 ° = €™%e, e, ;7 is the rotation rate
of é along the normal congruence, and n™(a, ) is a relative
tensor (vector) determining the geometry of the spacelike
hypersurfaces.'°

We now analyze this quantity according to the formal-
ism of King and Ellis."® The reader should refer to their
paper for the form of the main equations. Use is made of the
Jacobi identities, the inertia and momentum density conser-
vation equations, and the Einstein field equations. They give
an explicit algebraic relation between the vorticity and shear
in perfect-fluid, tilted, spatially homogeneous models:

W, 5= W p+p)'cosh'B(e,5,n" + 8as — 85a,)
X (Ekp‘r nTV - 3ap6vk )0}: (5)

which shows how ,, is coupled to the peculiar velocity vec-
tor of the matter ¢, and to the shear ¢%,. We will show from a
different perspective how 7 is the the observer reference
frame rotation. A specific example will show a direct rela-
tionship between £2 " and w,,, . In a model of Bianchi type V
we can take a, = a8, and ¢, = c8;. The tetrad vectors are

R a

= —,

at

{eci})

R ; a J d
é =X 1(’)(5c—l+f(t’x1’x3) :9;—2+g(t,xl) @):

5 ©)
b= Y0 5,

o daxef O

&y =2Z""e* (6 s +K (@) ——)
The J acobi identities and (13) (23) field equations give
a=Ayx o3, =2%5(YZ%) L 0,, =35 (XY, and es-
tablish consistency conditions to fix K = — 253,
Z (XY?)~!dr. The conservation equations are d In (wi>
XcoshB)/dt = 0anddIn(rsinhfB)/dt = — Z ~'¢’3,Z. The
Jacobi identities and (02) (13) field equations fix the triad
rotation 2, = 0,, =0, 2, = — 0,3, and 2, = — 0,,. The
remaining field equations and dynamics need not concern us
here, save that they can be consistently solved as in King and
Ellis.'® The relative connecting vector X ° between two
points can be aligned with the reference triad vector é°. It
evolves then according to®: dX °/dt = @°, X to first order.
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If 6, is diagonal we have only expansion of the components
of X% Butifo,; = — £2,#0and 0,; = — 2,50, then the
vector itself will rotate. Hence é° will rotate with it. Equa-
tion(5) establishes the relation between the triad rotation and
the fluid rotation. The fluid rotation is w,; = 3

(g + p)~'cosh™'B o;. Then by the Jacobi identity and (02)
(13) field equations 2> = — g, and for the triad rotation
tensorf2,, =€, 2" wefindf2,; = — (g + p)coshBw,.
Now if we may assume an equation of state p = yu, the con-

servation law gives cosh 8= Wyl —3u ~'~7, where W, is a
constant and is
D= -+ VWl 0. 0]

Now 2(1 + ¥)W,/3 is a constant, hence the difference be-
tween (2, and @, is contained in the / >y ~ 7 term. Neglect-
ing the effects of cosh S on the fluid expansion we have that u
variesas/>to/ ®asyranges0to 1 asafirst-order approxima-
tion. Then, with an allowed rescalingof w,; so that

2(1 + )W,/3 = 1, it is possible for £2,; = — w,; in certain
circumstances. We discuss the meaning of this below.

I1l. DEMONSTRATION BY AN APPROXIMATE
SOLUTION OF EINSTEIN’S EQUATIONS

We now consider the nature of this phenomenon within
the context of the Maryland universe'~’ in particular with
regard to the nature of 7,,. The initial discussion shall be
concerned with the simplest spatial geometry of Bianchi
type L.

The metric is of the form ds®> = — dr? + ez"ezﬁdx'dx’
wherea = a(t) and B, ; is a symmetric 3 X 3 traceless matrix.
The affine connection and Einstein tensors are well known.
The connection coefficients are I', , = — Iy, ; =abd;;
+a;;, T — Il =1 =0, and I, ,J,where

"=4a/dt0,; (e")(, ex andr (e‘g)[,eK” The Ricci ten-
sor components are R9 =3¢ + 3a? + 00, R%=0,
=[d +3d)8,; + 0,; + 3ao,; + [0,7'] i and R = 6¢
12oz2 + 0;;0,;,. The field equations are

3a? —40,0,=T%,
0, +3ao;; + [o,7],;, =T, —16,,TX, )
— 66 — 9% — 10,0, = Txy -

We shall explicitly solve Egs. (8) for a universe contain-
ing a general fluid with a magnetic field. The matrix B;; will
have block diagonal form wherein 3,,70. The magnetlc
field will have the components B, = B,57 + B,5. The per-
tinent field equations read

6, +3aoy, =m,,,
O +3a03; +205375;, = Ty,
033 +30043 +203,75;, = 735, )

O3 430023 + 039Ty3 — Tp3033 = 723,
O3 +3003; + 03373 — T30, = T35

The trace-free stresses 7, may be due to viscous stresses
and Maxwell stresses,

— 1B, B, + L5B%8,4 . (10)
Their exact form will not be important in the formal solution

aB - - igaﬁ
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we are seeking. Maxwell’s equations and the hydrodynamic
equations could give us the functional relations of B, ¢4, a,
etc., required.

We subtract the second and third of Egs. (9) from each
other and sum the fourth and fifth of Egs. (9). We also make
use of the trace-free property of B;; and o} = 0. These give

(022 — 033) +3a(0y; — 033) +402373, = Ty — 733,
20,3 +60a0y; —2(02; — O33)3, = 2753, (11

(022 + 033)- +3a(022 + 033) = — 1.

These can be solved completely. First let £ = e**(0,, — 033),
2,53 =20,3€°% IT = (my, — m33)e, and IT,, = 27,,e>®. Then
the first two of Egs. (11) are - + 275,25, = IT and

2,3 — 273, 2 - = II,5, which can be combined on multiply-
ing the second equation by / =/ — linto (T + i%,,)*

= 2iT3,(E + iZ,3) + (IT + ill,;). The general solution is
(B +iZy) = (Z° 4 iZ %) ™ 2™ g(IT + IT,)

X e~ 27 gt Using this with the last of Eq. (11) for

(022 + 033) we find for the components of the shear (super-
script zero indicates a constant):

g, =05, + fﬂ“e“‘ dt, (12)
20,6’ = 09,(1 4+ cosd) + 05;(1 — cosg ) — 2053, sing

+ cosg J [(75, — 33)c08¢ +217,, sing 1&** dt

+ sinqﬁJ‘[(ﬂ22 — T33)sing —217,, cosd e dt

— fv, e dr, (13)
20,,6°* = 05 (1 + cosg) + 0%, (1 — cosg ) + 209;sing

- cos«ﬁf[(fr22 — 3,)c08¢ —21,, sing ]e** dt

— sin¢J[(7r22 — Ty3)8ing —277,,c08¢ 1e** dt

2055¢* = 20%;cosp + (03, — 0%, )sing

+ cos¢f[(2#23cos¢ — (35 — T35)sing | dt

+ Sil’l¢j[(7’l’22 — my;)c08¢ +2m,.sing Je* dt,
(15)

where ¢ = 27,, dt. If viscous stresses are present it is more
straightforward to replace the factor ¢’ by ¢*** * in Egs.
(12)—(15) with the contribution to 7, coming from the
magnetic fields.

We now make the solution more explicit. In the case of
vanishing viscosity and magnetic field the evolution of the
shear would be just o,; = 07, **. We will therefore take
Eqs. (12)(15) as giving the effects of viscosity and magnetic
fields as small perturbations to the simplest possible aniso-
tropic background. Maxwell’s equations would give
B,=B%¢~>*and B,=B Je ~**. Dimensional analysis of the
shear evolution equations shows that 7,; must be close to the
form 7,; =7° ' where 7°is a constant or very slowly varying
function of time. Then to this order of approximation cos¢

= cos[27°In(t /¢ %)]. The inertial density conservation equa-
tions give that the inertia density evolves as p = p% ~°7%,
where the speed of sound ¥ in the equation of state relating
pressure p to the inertia density p, p = (y — l)p, is
Vs = (¥ — 1)"2 Then to the lowest order (isotropic uni-
verse) e ® = [(3ypo/2v/3)t */*", which is usually written e*
= At **" with A a constant.

To evaluate the shear we use Eq. (13) as an example and
evaluate the shear component o,,. It will have integrals in it
of the form

JCt 237c0s[27°%In(t /t,)] dt (16)

which is the very first in Eq. (13) with

C=(4/4)X(BY — BY). Weusethe gauge freedom allowed
by general covariance to set 7° = }. This means that all rota-
tion and precession rates of frames or fluid components are
scaled by the rotation rate of observer reference frames. Us-
ing the substitution x = In(¢ /¢,). The integral passes over to

— J-7T e dr, (14)  the well-known form D fe'**” + " cosx dx with
1} D= Ct¥**' The o,, shear component is then
P4 _ L
On= — {03 [1 + cos In{t /£,)] + 05 [1 — cos In(t /1,)] — 20%,sin In(t /2,)} + —
((B§)2~(B‘2’)2(2/37+1)/2+B‘2’B‘3’ (Bg)z'*'(Bg)z) (17)
(2737 + 1P + 1] 62/37 + 1)
or in terms of a,
—3a 3 Iva . 3va 32
Oy = [0‘2)2 (1 + cos%) + 0% (1 - cos—ZT) — 209,sin 27:4 ] +e W32 E}, (18)

where { E } is the constant term in the brackets in Eq. (17).
The full set of shear terms are listed in the Appendix. The
shear terms may be inserted into the 7'°° Einstein equation
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r
(8) using either Eq. (17) or (18) above to yield information
about the expansion.

Since we are obviously using the small shear approxi-
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mation we add a disturbance e to @ where €2<1. Then the T%°
Einstein equation is

@’ +2aé=T" —lo,,0,; . (19)

Inspection of the shear terms in the Appendix shows that the
equation becomes

= 31” (r ~97"S (M cos”d + N sin')
n=0

171571 (0; cos"p + P sin")
n=0
+1t~¥"Q'sing cos¢p +¢t ~¥>+2R"), (20)

where the primed case letters are all constants. This can be
transformed to

. 6 "2 Iva . Iya
€= g (¢3a [M" cos” (—-——) + N,sin" (—)]
¢ ,,Z:o 24 24

n=1
_+_e~(5—37)a 2 OnCOS (327:4 )+P sin” (327:;)]

n=20

6 Jya . (3ya @
+ e~ 673792 Ocos (—)sm (—) +e @ 3apR
0 24 24
(21

24 =2 M, cos" 'x nin — 1)
€= —¢ ﬁ(acosx+nsmx+ )
n=20 a+n a

n=2 N, sm"“x —
+ z (asinx — ncosx + M)]
a

n=20

[n—lO cos” ~x

n=20

{(acosx + nsinx)

+n—1P,,s1n 1Jc( . )]
—  (asinx — ncosx

ngo a’ “+ n?

_ 2R e W—Ma L = fe""cosx sinx dx ,
34— 3y 3y

(22)

wherea = — (6 —3y)24 /3y, x = 3ya/24, and
b= — (5 —4a/2)24 /3y. This completes the approximate
solution. The expansion is altered by a complicated oscilla-
tory pattern superimposed on it in response to the shear.
Overall, we see that the precession rate of the observer refer-
ence frames is controlled by the shear tensor strictly by the
terms in cos In (¢ /t,) and sin In (¢ /2,). If 7° = O the effects of
these terms vanish and there is no spin of the observer refer-
ence frame.

Itis clear that while 0, stands alone there is a great deal
of mixing of 7,, 033, and ,;. The contributions due to o3,
and 03, affect 0,, and 0, in the same way, while their effect
on g,, depends only on their difference. The important vari-
able is the phase angle ¢ = 27,, dt; o,, decreases as — 209,
sin ¢ while 0, increases as + 203, sin ¢. One may also exam-
ine the contributions due to the inhomogeneous terms in the
differential equations, i.e., due to the trace-free stresses.

Consider an observer’s reference triad to be a shear ei-
genvector and sight on a sample distant galaxy with position
vector é; = 68, + €é,. Then as the shear evolves, (say) o4,
increases with respect to 0,,, and we find the 3-component of
é; increasing while the 2-component decreases. The refer-
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ence frame ‘‘rotates” toward the 3-direction. Another way of
viewing this is that ¢,, decreases as the reference frame pre-
cesses with the shear tensor. Dynamically, this means that
the evolution of the universe tends to diagonalize the shear
tensor, so that one of the principal axes will end up aligned
with the magnetic field. Once the reference triad is aligned
with the shear principal directions, it rotates with their
precession. The angle of this rotation is given by
¢ = 2J75, dt, 75, being a measure of the rotation rate of the
reference triad.

Cosmological observations would be altered in an inter-
esting way by these effects. Proper motions of distant objects
as formulated by Kristian and Sachs'” furnish a good exam-

ple. The evolution of the image direction cosine e * is given by
de*
d ¢ - eB( uB + Dup )

¢PE,;] 23)

where w,,4 is the vorticity tensor and U,,;, is the total veloc-
ity gradlent iy = 6., + @, The Newman-Penrose iden-
tities'® give the optical scalar equations which we may use to
findE,,,
E, =0, —20,80. 24)
Using Egs. (17), (18), and (22) one finds the precession rate,
de*/dt as a quadrupole pattern on the celestial sphere. How-
ever, the direction cosine is the direction vector & in the
observer rotation frame which is spinning, in a sense oppo-
site to the velocity as shown in Sec. II. Thus, one would
conclude that the proper motion was much greater than it
really was.

If a flow, or peculiar velocity, were imparted to the fluid
in the form U, = Uy8,° + U,8,° the T = 0 field equa-
tions would normally constrain it so that U, = 0. With a
magnetic field B, = B,6,” + B;8,’ present, this is not the
case. For then we have an electric field £, = U,U,B; and a
Poynting vector P, = UyE,B;. The T® equation then reads

yoU,Up=P,. 25)

The shear equations then include terms containing the
Reynolds stresses 7%, , ;

R=yp(U,U; — 6,,UcU*/3) (26)

The conservation equations for the momentum density are
no longer trivial and give a lowest order solution of U,
= Ufexp[ — a — (y — 1)Inp/4] for nondissipative fluids.
The Reynolds stress terms are therefore of the form
Sypoe T UG Ve~ P~ 8= e where f= +3, — 4, which
finally contains terms of the order e*” ~¥* or 4 7 —8 x
¢{®7 = 19737 The additive contribution to the o,, shear com-
ponent is then of the form
frpo (U4 %t /1) 7!
2—[(6y—16)/3y+1 1
This is a heavy contribution to the shear.
The vorticity vector is given by o * = 1n** U, U,,
where 7°**? is the four- dlmens1onal alternating object. One
finds in this case that @' = (U,? + 1)a,;. Collins'® has shown
that Bianchi type I models with a magnetic field can evolve
like a Bianchi II model. Batakis?® has shown that type I1

+ r[f(o,5 + @,5) U, —

@7
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models can have vorticity if electromagnetic fields are pre-
sent in addition to the perfect fluid. It is almost as though the
field endows the manifold with a spatial curvature. The pres-
ence of a spatial curvature is necessary if a perfect fluid is to
have a peculiar velocity. The velocity then provides “curva-
ture” terms to react back on the field via Maxwell’s equa-
tions. One of Maxwell’s equations in this case® B,

— B°U, — 20°E, = 0 which gives B,U, = —2(U,*

+ 1)0,3U,B;. The equation for B, gives By~ B,% ~**

U, ~"¢ and B, is found algebraically. Note the additional
term U, ~"/® which is (1 — U, affecting the field’s dyn-
amics because U, #0.

In more general geometries the spatial curvature of the
homogeneity surfaces R ;; enters the field equations with the
extratermsR */2,R [, — R */38,;,andR */2inthelastofthe
three Egs. (8). The T, Einstein equation is no longer trivial,
being

eha[(e;ﬁaeﬁ)bacabc(e_l;)ci - aij(e»ﬁ)jccaac] = TOi! (28)

linking the nondiagonal o, 3, and group structure constants
C“,, to the matter currents. The group structure constants
are given by the spatial triad commutation relations.

In Bianchi type V spaces C?,; = C>;; = 1 and type IX
C*4,, = €,, (the permutation operator).

These two types correspond to open and closed Fried-
man universes. In type V the space curvature is isotropic so
R}, — (1/3)R *6,; = 0 and 7;; affects dynamics the same
way as in type L. Things are more complicated in type IX
since there (1/2)R ;; = (3e ~2*/4)(V, — 1)and R;; — iR *6;

= (3¢ ~2%/4)dV, /9B, with
V, =(1/3)Tr [e¥ —2¢ =), + 6;;].

The spatial rotation of the fluid in these cases is

o' =e %€, [1/2C L uu® + u,u, | (29)
for a stress tensor with components T, = (p + pju,u;.
Equation (28) is solved for the velocity u, and then inserted in
Eq. (29) to determine the vorticity, in terms ultimately of the
noncommuting elements of (¢?) and (e ~#), .

In type V Eq. (28) reads 30,; = poe ~ **u;, hence
u, = (3/poe**a,; for dust (pressure-free matter). Hence »*

= (3/p0)€asc C bc01:/2 + (3/po)€asce ~*ay, (€¥0,). In this
case, let §;; have the block diagonal form with 3,, 70 so that
T,, replaces 75, in the previous discussion. Then there can
only be spatial velocity components u, and u, by the 7%
equation (4, = 0). The vorticity vector only has &> 0 while
o' = w* = 0. Then we have competition between w,, and 7,
which must be disentangled if we are to understand certain
of the observations. We have »* = (3/pg)o,¢ ~= %

+ (3/po)e*[011(012) — 012(011) ] This expression may
be used for the former expression, inserting (¢*°c )

= (I, — 20,,72,)¢*" and (e*°0,)

= (I, — 01,712 + T1204,)e*” from the trace-free space—
space Einstein equations, Eqs. (9) with the 8,,«— 5,;
substitution.

In type IX the 7% equation reads J¢; e ~ *[e*,0]

= T,;. Again we restrict ourselves to the block diagonal
form for B, ;, taking 5,, # 0 in the preceding equation and the

130 J. Math. Phys., Vol. 22, No. 1, January 1981

vorticity vector by Eq. (29) has only the o' component as
then again a rotation tensor ,, is mixed with a triad spin
tensor 7,;. In solving the shear equations (9) we have to deal
with the space curvature anisotropy. If we consider that it
may become an additive part to the trace-free stresses,* viz.
I, —IT,; — R [, + (1/3)R *8,;, then formally the effect of
7;; is the same on the dynamics. Certainly nothing is
changed qualitatively in this behavior. The rotation of the
universe has been discussed with no reference to the metric
tensor’s principal axes.'"'? But in others*® the fluid rotation
is defined by the rotation of the metric’s principal axes. A
certain portion of an observer’s perception of rotation in
proper motion and distortion measurements in these type IX
models*® (and in other types'"?) would be in the precession
of his reference triad as eigenvectors of the shear tensor
(aligned with its, hence the metric’s, principal directions).

In the more general tumbling (and possibly “mix mas-
ter””) models the relation of 7;; to the dynamics and to the
vorticity is difficult to display without making approxima-
tions. Using the results of perturbation theory*'! the behav-
ior of 7, is easily calculated for comparison with w, ;. The
results are in accord with this discussion. One possible inter-
pretation is that the evolving shear tensor represents a gravi-
tational wave of wavelength greater than the horizon dis-
tance; then 7,; represents the angular momentum or spin
tensor of that wave’s circularly polarized component.

More study of the role of magnetic fields is needed, par-
ticuarly in magnetohydrodynamic models such as those of
Tupper and Dunn.?? If we expect a high-temperature plasma
to conduct electricity, then certainly we should include the
dissipative Joule heating and Ampere forces in our analysis.

IV. CONCLUSIONS

We have examined the rotation of an observer’s refer-
ence triad in currently accepted formalism for treating spa-
tially homogeneous cosmologies. An observer’s triad rota-
tion is affected by the shear dynamics through Einstein’s
equations. The quantity 7, = (¢®)* (¢ ~#),x is the triad
rotation tensor. The role of the magnetic field is most
important.

Confusion can arise between an observer’s triad rota-
tion and the rotation of the cosmological fluid in proper mo-
tion measurements. The observations must be very carefully
examined, then, to be sure of the role played by the various
kinematical quantities. The confusion varies with Bianchi
type, as shown by the 7,;,—w,; relations discussed. In par-
ticular a precessing shear tensor may appear to be due to a
rotating fluid when the cause is partially a rotating quadru-
pole distortion much like a circularly-polarized long wave-
length gravitational wave.

It may be that the upper limits on the cosmological vor-
ticity can be further reduced if a component due to the rota-
tion of our own reference triad can be identified. Other ob-
servations, such as the distortion and proper motion
effects,’” and number counts, may possibly allow separate
limits to be fixed for each quantity, so that more precise
limits, including possible lower limits, may be determined. It
is certain anyway that 7,; is an important entity, both in
Einstein’s equations and in observations. Most interesting
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will be the issue of whether one group type will mimic an-
other model’s behavior upon inclusion of fluid flows, electro-
magnetic fields, and magnetocurrents. For then the universe
will be a confusing place indeed.

ACKNOWLEDGMENTS

Portions of this material have been presented at collo-
quia before the relativity groups of Scarborough College of
the University of Toronto, The University of North Carolina
at Chapel Hill, and the Unviersity of Pennsylvania. I thank
those groups for useful discussions and encouragement. A
brief preliminary version of this paper was read before a
meeting of the American Physical Society. I thank the Cryo-
genics Branch, Space Physics Division, Space Sciences Lab-
oratory of the Marshall Space Flight Center for the hospital-
ity July—August 77-78, especially P. Eby, W. Darbro, E.
Urban, and T. Parnell.

APPENDIX

The full forms of the rate of shear tensor’s o;; compo-
nents are given here. The most general trace-free stress ten-
sor 7, in the spatial hypersurfaces is given by

— Aoy — | 4B,B, — 5B°6,;| +vp(U,U; — U%6,,/3),

(A1)

where 4, B;, U,, 7, and p are the kinematic viscosity, magnet-
ic induction, fluid velocity, equation of state index, and iner-
tia' density. The parts of 7,; are the viscous stresses, Max-
well stresses, and Reynolds’ stresses. We will consider
mainly Maxwell stresses here. The formal solutions to Ein-
stein’s equation for the shear are Eqgs. (12)—(15) in this paper.
Using the analysis immediately following those equations
one finds

0 t\—-27 BOZ BO2 t —4/3p+ 1
oy = i (_) 4 BV By) (_) (A2a)
A t 124 %2/3y + 1) \&
— 0_0 e~ 3a + (B20)2 + (B30)2 e~ 4y — 372)
" 12(4/3y + 1)
(A2b)
—2/y —4/3y + 1
Sy = (—t%— {02.°[1 + cos In(t /15) + 033%(1 — cos In(t /¢,)) — 203:%in In(z /1,)} + '(ELOLAz—
(LB = BP0 4 12+ BOBY (B + B0 (A3a)
[(273y + 1)* + 1] 6(2/3y + 1
e 3va 3va . 3va 37
= [0220 (1 + cos 27; )] + a3’ (1 — ¢cos —ZA—) — 20,,%in % 4 e Wr—3epy (A3b)
-2y —4/3y + 1
O3y = -(’-%3— (03,°[1 + cos In(t /2g) + 05,1 — cos In(¢ /1)) + 205,%sin In(t /2,)} — %2———
x ( (ByY)? — (B(2/3y + 1)/2+ B,°B,°  (B,°) + (330)2) (Ada)
3 (237 + 1 + 1) 6237 + 1)
e Iva Jva . 3ya 4y — 3/
= {033 (1 + cosIn 77:;) + 0220[1 —cosln (—27:7)] + 205;%in T’;——] — e Wr=32epy
(Ad4b)
0 —2/y
Oy = 7;33 (¢/t,) ~*¥cos In(t /t,) + %— (02,° — 03,%)sin In(t /1,)
[t/ (320330(2/3?’ + 1) + [(B,°) — (330)2]/2) (A5a)
442 [(2/3y + 1 + 1]
— 3a
[023°e ~3%cos In 3ra + < 5 (032° — 75;%sin In % —e~r—32e{g) ] . (A5Db)
T
These may be used in the 7% Einstein equations to determine mu= —ypU,"/3, (A6a)
the evolution of « in either form, depending on the desired T = 2ypU,2/3 (A6b)
type of approximation being used. .
If viscous stresses are present, then all terms should Ty = —ypU,7/3. (Aéc)

include a factor of e ~**

tion of shear.
When Reynolds’ stresses are present, say for a peculiar
velocity U,50, then the new terms in r,; are

to show the effects of viscous dissipa-
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The lowest-order evolution of p and U, are p = pse ~*"* and
U, = U,%®" ~*=_ The Reynolds’s stresses then assume the
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form
Ty = — ypoU,%) % — = (A7a)
= — oo UL7A 7~ Hy o =3y, (A72)
T = ypo(U,°Y'e® ~ (A7b)
= #po U024 3 — 8 207 =837 (A7)
T3z =Ty - (A7¢)

The Reynolds’ stress contributions to the rate of shear
;% are then easily found:

‘711R
- 3A8[(7;3PO(U2122)1;3j+ T ARG
}/ J—
012 4 —3/2,((97 — 24)/3y + 3/2]a
S 7’Po(Uaz_);4 e , (A8b)
34 7[(6y — 16)/3y + 1]
R
O

_ 4 1eolUPA (¢ /1)~ 197+ 6y — 16)/3y + 1]

648 {[(6y — 16)/3y + 11> + 1}
— %UHR (A9a)
_ . 7,’DO(UZO)ZA 3y e[(9y*24h/37+ 3/2];1 _ %a“R
64°=%  {[(6y — 16)/3y + 1]+ 1}
{A9b)
=0'22_R —%a“R,

(A9¢)
033° = — 0y F—lo)%, (A10)
02 43 (67 — 16)/3y + 1
0.23R —_ YPO(UZ )A Y (t/tO) v 7 > (Alla)

64°  ([(6y — 16)/3y + 11>+ 1}
= +022’R[(6‘y——16)/37+1]'1. (A11b)

The full shear tensor may then be constructed o, "™ + o, ,®
for computation.
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The metrics of the Hoenselaers-Kinnersley-Xanthopoulos family of spinning mass solutions
with arbitrary positive number distortion parameter § and with twin rotation-reflection
parameters besides mass parameter are studied. When values of two parameters are unequal or
equal, the metrics are asymmetric or symmetric with respect to the reflection at the equatorial
plane, respectively. The metrics for any distortion parameter § contain no event horizon.

PACS numbers: 04.20.Jb

1. INTRODUCTION

On the problem of the stationary axisymmetric, asymp-
totically flat exact Einstein vacuum field Hoenselaers, Kin-
nersley, and Xanthopoulos' (H-K-X) found, through their
study of the symmetry transformations leaving the gravita-
tional field equations invariant, a family of spinning mass
solutions with arbitrary positive number distortion param-
eter § and with two parameters besides mass parameter.
They have given the solutions in the form of the Ernst com-
plex function? €.

The purpose of the present paper is to give the metric
functions £, w, and ¥ [see Eq. (4) for the definition}, to clarify
the physical meaning of two parameters A { = , in H-K-X
notation) and 2 ( = a, in H-K-X notation), and to study the
property of the H-K—-X metrics. This family of solutions has
four parameters, i.e. mass parameter m, positive number dis-
tortion parameter 8, and twin rotation-reflection parameters
A and p. The angular momentum J about the symmetry axis
(z axis) is
KA+ p)
(1 —Apf
+ {26 + 1 — (28 + 3)Au]} cos]

=m’(Ad + p){(8(1 — Ap) — 2Au) + (p — AP}

Xle — AP + {1+ Ap)8(1 — ) — 24p)

+ 28(1 — Ap) — 24p)), (1)
where the unit of distance « is
k= m(l = A8 — A) — Upf + = AP} ()
and the angle 7 is

tant = (p — A)(6(1 — Au) — 24)" 3)
[consult Egs. (33), {32), and (31) for the derivation of the
angular momentum J about the symmetry axis (z axis), the
unit of distance «, and the angle 7, respectively]. The angle 7
is the parameter of the NUT-Geroch transformation with
respect to the timelike Killing vector, which is necessary in
order to have the asymptotic flatness. When A #y ord =y,
the metrics are asymmetric or symmetric with respect to the
reflection at the equatorial plane, respectively. The metrics
with any distortion parameter § contain no event horizon.

In the latter half of this section the notation will be
explained along the way to give convenient expressions of

the gravitational field equations for sources with axial sym-
metry and angular momentum. In Sec. 2 the metric func-

J= [(© — A)sinr]
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tions of the H-K-X family of spinning mass solutions with
arbitrary positive number distortion parameter & will be giv-
en. Finally, in Sec. 3 the property of the metrics obtained will
be studied.

The line element is written in the form
ds* =f (e + dp?) + p*dg?) — fldt —w d ), (4)
where z, p, and ¢ are the Weyl-Papapetrou coordinates and
the three metric functions f;, @, and ¥ are functions of zand p
only. Prolate spheroidal coordinates x and y are introduced
as

p=«lx* — 1)%(1 — y*)/? and z = kxy,
where the unit of distance « is given in Eq. (2) [consult Eq.
(32) for the derivation of «]. The notations @ = x*> — 1 and
b =y? — 1 are also introduced. The Einstein vacuum field
equations are

V(fT'Vf+ of pTVe) =0, (3)
V(£ Vo) =0, (6)
Y: —2_1.[— p(.fzf,‘) +ﬂz‘r)p)=0’ (7)

Y, + 4 L+ 2.7 — () —(2,)) =0, (8)
where Egs. (9) are used in advance and, for example, 7,
= dy/0z. It follows from Egs. (6) and (5) that there are po-
tentials {2 and P, respectively, which satisfy

p fw,= —k"'b702, and
P o, = —kla"'02, (9)
S +p %0 %0, = — kg (w2 ), +a”'P,,
ST +p7%0f %0, = — k70 ~\0f2), + b 'P_.(10)
A, B, H, I, and G are defined by the relations
f=A/B,2=2I/B,B=A4+ 2H + 2G,
and
H?>41°=A4G + G~
The Ernst € and £ functions® are € = (4 + i21)/B and
&= (H +iI)/G. Then Eqgs. (9) and (10) become
204 T*H(A+2G), —( A+ 2G)H,)=P,,

2b4 “(H(4 +2G), — (4 + 2GH,) = P,, (1)
224 (I (4 +2G), — 4 +26)1,) = Q,,

264 (4 +26G), — 4 +2G)I,) = Q,, (12)
4ad ~YIH, — HL,)=R,,

4bA ~YIH, — HL)=R,, (13)
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and

o = —k(Q + R) + const. (14)
Three potentials P, Q, and R are transformed linearly among
them under the operation of three generators of the SU(1,1)

Ehlers group. Under the operation of one of three generators
(parameter is 7) 4, H, I, G, P, Q, and R are transformed as

A'=A,H' = H cost + I sin7,

I'= — Hsinr 4 I cosr,

G'=G, P’ = Pcosr + @sinr, (15)

Q'= — Psint + Qcosr,and R’ = R.
This is the NUT-Geroch transformation with respect to the
timelike Killing vector [see Eqgs. (3) and (31) for detail]. Equa-
tions (11}{13) are the gravitational field equations for
sources with axial symmetry and angular momentum.?

2. METRIC FUNCTIONS

The metric functions f; w, and ¥ of the H-K—X family of
spinning mass solutions, which satisfy Eqgs. (11}-(13), are

f=A/B, (16)
o= —KkQ+R—24 +u)l—-Ap)""), (17)
= m(1 — Au){(6 (1 — Apz) — 24’

+{p—AP (18)
" = 4a®° = /(1 — Appla — b)5’+46 +4 (19)

A=a‘5(a—-b)46+4+/'£2a35+‘b(x+y)“"’+4
+p2a35+'b(x——y)“5 +4
—Z/l,ua”“(a——b)z‘s“ +/12/.t2(156 +4’ (20)

B=A+2H +2G, (21)
H = Hcos 7 + Isinr, I= — Hsinr + Icosr,  {22)
tant = (p — A )G (1 — Ap) — 24p) ™", (23)

H=(i)fa —b)** +*{(x + 1) — (x — 1/}
+ (i)/{ 2026(x +y)45 +4{(y _ I)Z(x + 1)26 +2
— (¥ + 1P = 1) 77
+ (JpPaPx — PPy + P+ 1)
—(y =P — 1277
_ (%Mﬂazs(d _ b )26 +3{(x + 1)26 +2
_ (X _ 1)26 +2}
+ (‘l‘),{ 2u2a45+2l(x + 1)26 +4 __ (x _ 1)25 +4},(24)
f= —/11125((1 _b)26+3(x+y)26+1
+[.u12‘5(a _ b}26+3(x H_y)za+1
+12,ua46+2(x+y)26+3 ——/1/L2046+2(x—y)25+3, (25)
G= (@ —b)***{lx+ 1P = x = 1)
+ (A2 + )Py — D+ 10
—(y+ D — 1012
+ (2 =y + D+ 10
—(y=Hx~1P+1}2
_ (%Mﬂaza(a __b)28+3“x + l)8+1 - (x_ 1)6+1}2
+(‘1‘M21u2046+2{(x+ 1)6+2_(x__ 1)5+2}2’ (26)

P = Beost + Osint, Q= — Psinr + Qcosr, (27)
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PA = 28pa’la — b ) +*,
+u2a36+lb(x+y)46+4(_x+(5+ l)y)
+ 2%+ b (x — y)° x4+ (6 + 1)
- 4/1”(5 + l)ya3'5+ l(a _ b)26+3
+2}~2H2(5 + 2pa®+*, (28)

04 = —Aa%a— b x + P {(p— Do + 1774,
+(y+ e — 1721
+pa‘5(a—b)2“3(x—y)z's“{(y+ 1)(X+ 1)26+l
+ (=N~ 1+Y
+/12ua35+’(x+y)28+3{(y— 1)(x+ 1)26+3
+(y+ Dx — 1)
—l,u%”*‘(x—y)z‘s“{(y«i— 1)(x+ 1)25+3
+ (= Dx — 1P+, (29)

and

RA= —Aa%a — b P>+ (x +pP°+ {(y — Dix + 17+

—(r+ N —1°7 Y

+pala — b1 x -y (4 I+ 170

—(y— e — 171

+A %@+ yP 3 (y — D 17

—(y+ D =177

—/1/12(135+ l(x __y)25+3“y + 1)(x + 1)26+3

—(y—x =1+ (30)
The four parameters are mass m, positive number distortion
parameter &, and twin rotation-reflection parameters A and
.

3. PROPERTY OF METRICS

Equations (20), and (28)(30) show that, when x tends to
infinity, x— o0, the leading behavior of 4, P, Q, and R are

A~(1 — Appx1oo+¢,
PA~2(1 — Ap){8(1 — Ap) — 24 )px'%0 & 4 Ox105+8,
Q4~2(1 — Au) g — A yx'0+E 4 Ox106+8

RA~2(1 — Au)A + p)x'®+5. (31)
In order to have the asymptotic flatness, i.e., in order to have
the vanishing metric function @ = — «(Q + R ) + const

when x tends to infinity, the NUT—-Geroch transformation
with respect to the timelike Killing vector given in Egs. (15)
is introduced, on the one hand, to eliminate yx'°® * ® terms
from Q4 = (— Psint + Q_cosv')A, and the integration con-
stant in Eq. (14) on the metric function o is used, on the other
hand, to eliminate x'% * ® terms from RA. Therefore one gets
7, Q, and w given in Egs. (3), (27), and (17), respectively.
The unit of distance « is defined to be the inverse of the
coefficient of the term — 2m/x in the leading behavior

S~1—2m/xx (32)
for x— 0. Then « given in Eq. (2) comes from Egs. (16),
{20}26), and (32). The angular momentum J about the sym-

metry axis, the z axis, is defined to be the coefficient of the
term 2b /kx in the leading behavior

w~J2b /kx (33)
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for x— 0. Then J given in Eq. (1) comes from Egs. (17), (18),
(23), (27)430), and (33).

Equations {20}, {24)-{26), and {28}{30)} on the metric
functions 4, H,I,G, P, Q and R show that the y-dependence
of A, H, G, 0, and R is always via the factors, i.e., (z — A )y
multiplied by the even power of y, and that the y-dependence
of T and Pis not via these factors. When the parameter A is
not equal to the parameter u, the metrics with arbitrary dis-
tortion parameter § are asymmetric with respect to the re-
flection at the equatorial plane y = 0. When 4 = g, the
NUT-Geroch parameter 7 vanishes and the metrics with
arbitrary distortion parameter § are symmetric with respect
to the reflection at the equatorial plane of symmetry y = 0.
From this and from Eq. (1) defining the angular momentum
J about the z axis, the parameters A and i are named as twin
rotation-reflection parameters.

Equations (7) and (8) on the metric function ¥ become

Y. = —bA "}a—b) " '(x{aK + bL) — yaM ),
and
¥, = —ad “*b—a)"(p(bL +aK)—xbM),  (34)
where K, L, and M are defined as
K=(H,)+ () —(G.f —4,G,,
L=H)V+)—(G)—A4,06,,
and
M=2H. H, +2I1I, -2G.G,—A4,G, —G.A,.

K, L, and M are invariants of the NUT-Geroch transforma-
tion with respect to the timelike Killing vector given in Eqs.
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(15). K, L, and M of the H-K-X family of solutions with
arbitrary distortion parameter & do not vanish except in the
case of A=pu=0{(K #0,and L =M =0whend =pu =0).
By contrast, M of the Kerr-Tomimatsu—Sato family of spin-
ning mass solutions with arbitrary positive integer distortion
parameter & always vanishes.> BothaK + bL and M are fac-
torized by A. From Eqgs. (34) we obtain the metric function ¥
given in Eq. (19).
The proper area X of the surfacex = 1 is

1
3 = 4mx f (— e¥w?)V/2 dy. (35)
Q

It follows that w(x = 1)~ finite and *”(x = 1)~0. The prop-
er area 3 with arbitrary distortion parameter & vanishes.
Therefore the H-K-X family of spinning mass solutions
with arbitrary positive number distortion parameter § con-
tains no event horizon.
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A particular type of exact solutions of Einstein—-Maxwell massless scalar field equations
corresponding to stationary axially symmetric fields is presented here. The solutions are linear
combinations of static fields with constant coefficients. Further, by a proper choice of conformal
transformation the solutions have been transformed to the Brans-Dicke fields coupled with
source-free electromagnetic fields. Finally these solutions have been transformed to a general

form through unit transformations.

PACS numbers: 04.20.Jb

1. INTRODUCTION

The study of scalar meson fields has attracted the atten-
tion of many workers. Brahmachary' considered the mas-
sive whereas Bergmann and Leipnik? considered the mass-
less scalar fields coupled to spherically symmetric
gravitational fields. Janis et a/.> have further considered the
problem from the point of view of singularities and Gau-
treau,* Singh,” and Buchdahl® have extended the study to the
case of nonspherical Weyl and plane symmetric fields. Later
on the workers in the field, with a few exceptions (Stephen-
son’), have directed their efforts to the study of massless
scalar fields coupled to gravitational and electromagnetic
fields (Refs 8—11). The generalization of the Reissner-Nord-
strom solution in the presence of a massless scalar field was
obtained by Penny.!? Janis et al.'® obtained the solutions of
the Einstein scalar and Brans-Dicke field equations for stat-
ic space-time and also gave a procedure to generate static
solutions of the coupled Einstein—-Maxwell scalar field equa-
tions and the Brans—Dicke scalar tensor theory (Brans and
Dicke'*). Recently, the solutions of axially symmetric Ein-
stein—-Maxwell scalar field equations have been given by Eris
and Gui'ses'® and the Brans-Dicke-Maxwell fields have
been studied by Singh and Rai.'®

In Sec. 2 we obtain solutions to the stationary axially
symmetric gravitational field coupled to massless scalar and
source-free electromagnetic fields following the method first
introduced by Lewis'” to obtain the solutions for the axially
symmetric gravitational fields. Using Weyl-like canonical
coordinates we give here a special class of solutions obtained
from the linear combinations of Weyl’s static fields.'® The
solution admits a very simple interpretation, similar to
Arbex and Som (Refs. 19 and 20), that an observer in canoni-
cal space (7,6,z) describes the static fields of the canonical
space (~',0’,2') using a reference system which rotates with
constant angular speed £2 whose measure s givenby |£2 | < 1.
Although some of the steps are parallel to Arbex and
Som, '?*® we have written the steps in full because of certain
changes due to corrections of the calculation errors of these
papers. For vanishing rotation one gets the static field. Ac-
cording to Dicke,?! by a proper choice of conformal factor
and scaling the metric as well as the field quantities suitably,
the Brans—Dicke-Maxwell scalar fields coupled with
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source-free electromagnetic fields reduce to the Einstein—
Maxwell massless scalar fields and vice versa. Thus, in Sec. 3
we have obtained solutions for Brans—-Dicke-Maxwell
fields. Further, in Sec. 4 we have used the unit transforma-
tions given by Morganstern®? and the above solutions have
been transformed to a more general form. Some concluding
remarks are given in Sec. 5.

2. SOLUTIONS OF THE FIELD EQUATIONS

We consider a stationary axially symmetric space-time
where the sources of the geometry are massless scalar and
source-free electromagnetic fields. The field equations are

R,=—-K[V,V*+E}], Q.1
with

E), = —F,F>™+16F PF 2.2)

8"V, =0, 2.3)

Fr=0, 2.4

Flay =0, 2.5)

where Vis a scalar field and the semicolon denotes covariant
derivative.

We take the stationary axially symmetric line element
in the form

ds’ = fdt? — e?¥(dr* 4+ dz*) — ldé* +2m do dt, (2.6)

where f, ¥, [, and m are functions of 7 only. We shall number
the coordinates r,z,4,¢ as 1,2,3,4, respectively. On account of
the stationary character of the field we can take the surving
components of F*"tobe F*'(= — F'))and F*'(= — F ')
only. Then from Egs. (2.1) and (2.2) it follows that

RY+R}=0. Q.7

One can now introduce Weyl-like canonical coordinates™
such that

Flam?=r 2.8)

If one makes a linear transformations of the coordinate dif-
ferentials'” such as

dt = dt' coshu — d¢ 'sinhu,
dé = d¢ ' coshu — dt ' sinhu, 2.9
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with
f=Fcosh’u — L sinh®u, [= L cosh’z — Fsinh®u,
(2.10)
m = }(L — F)sinh2u, '
the metric (2.6) transforms into
ds* =Fdt" —e*(dr +dz*) — Ld¢"? (2.11)

in Weyl’s canonical system.
In general, the transformation (2.9) is purely local. In
our case, we choose u as constant. Now let

coshu =y and sinhu =82, (2.12)
where ¥ and {2 are constants such that

y=>01-02%»" (2.13)
From Egs. (2.8) and (2.10) we have

fl+m*=r*=FL. 2.14)
We now choose

F=e¥™ and L=r%"", (2.15)

where a is a function of 7 only. Then Eq. (2.10) takes the
form

[=r¥e*—02%% ), I=yXrie *—-0n%),

m=y22(r - ). (2.10a)

The field equations may now be explicitly written as
rd — ¢ —2a(1 —ra,)

=V (—g)K[e_wV,z] +£(F41F41 + FF)],
(2.16)

A+ =—-Vi(—g %(F“F“JFF“FM), @.17)
y2 9 11— ra,(1 + 29)]
ar

- V(-9 %(F“F“ _FYEy), @.18)

rzai [ra,(1 + 291 =V (—g) §(F‘“Ru —FYE,
r

2.19)
— 29)% [(1 —2r2)] =V (—g) KFF,,  (2.20)
& 20)% [ —2ra)] =V (—g) KFY'F,,  (21)
y =k —nlogr, (2.22)

k and n being constants of integration. From Egs. (2.20) and
(2.21) one obtains

F31 _ F31 _
7o F,, =p, (2.23)
where £ is a constant.
We consider now two cases:
\)p=1/1n
(2.24)
(i) B = 2.

Case () f = 1/42: In this case the observer in canonical space
(r,¢,2) describes the pure static magnetic field in canonical
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space (¥, ',z") using a reference frame which rotates with
angular speed 2.
From Eq. (2.4) we have

V(—g) F¥ =4, (2.25)
where A4 is a constant.
From Egs. (2.20), (2.21), (2.23), and (2.25) we have
ez“[a” +& =(_ E_)ii,
r 2/ 92
which on integration gives
e2a={(rl+b_a(r1wb}2’ (2.26)

where a and b are constants of integration satisfying the
relation

a=AK/8b%y2 2.27)
From Egs. (2.17), (2.20), (2.21), and (2.25) one obtains
14

ad
Wa+ Y= — ?5; [(1=2ra}})] = 5(’01)’

which on integration gives
¥ =a+ Blogr+ D,

B and D being constants of integration.
Using the value of a from Eq. (2.26) in Eq. (2.16), we get

(2.28)

B=(b2— KTnz——l) (2.29)
Substituting « in expression (2.10a), we have

f=rHO " —a) )2

—0272{(7 1+b_a(r)l—b}_2]’
=20 {0) + — ) )

-2’ —a(n)' 7],
m=y2.0[rz{(r)”"—-a(r)“”}'z

— (' —a(n' "}, (2.10b)

and from Eqgs. (2.26), (2.28), and (2.29)

e rZ[b‘—(Kn‘/Z)—ll{(r 1+b6_ a(r)l —b }2'

Case (if) B = 12: In this case the static field in the ca-
nonical space (#',¢ ',z’) is a purely radial electrostatic field.
From Eq. (2.4) one gets

V(-9 F" =B, (2.30)

where B is a constant. Equations (2.20), (2.21), (2.23), and
(2.30) yield

2
e[y, +ra,] = — ff (2.31)
On integration we get
e = {(r)' +c(r) )7, (2.32)

where ¢ and 4 are integration constants satisfying the
relation

c=BK/8d %2 (2.33)
From Egs. (2.17), (2.20), (2.21), and (2.30) one obtains

_1drq_ - _9
ron+ ¢ = 2 o (1 —2ra})] ar(ral),
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which on integration gives
Y= —a+ Mlogr+ N,

where M and N are constants of integration.
Substituting the value of @ from Eq. (2.32) in Eq. (2.16),
we get

M:(dz_ fﬁ)
)

Substituting a in expression (2.10a), we get
f= 72[{()‘)‘1-{-6(7)“1}'2 —.er2[(r)"+c(r)*d}2],
I=y2[r?{() + () = 2@ + )},

m=y22[r (O +c() 4} = () + ()9},
(2.100)

(2.34)

(2.35)

and from Egs. (2.32), (2.34), and (2.35)

eZd/ — ’.2[d 2 (Kn'/2)] { (r)d + c(r) —d } 2’
when n = 0, the solutions (2.10b) and (2.10c) immediately
go to the solutions of Arbex and Som'®® (with some correc-

tions), which further reduces to Lewis’ solution'’ when 4
and B are set equal to zero.

3. SOLUTION FOR BRANS-DICKE-MAXWELL SCALAR
FIELDS

As pointed out in the Introduction, the Brans-Dicke
scalar electromagnetic fields are conformal to the coupled |

zero-mass scalar and source-free electromagnetic fields of
Einstein’s gravitational theory. A similar result in the case of
vacuum Brans-Dicke fields has been established by Peters®*
and Tabensky and Taub.?® It has been shown that the con-
formal transformation

Vay
explm = @pp, (3.1a)
2.
(Psp) '8 = & (3.1b)

where @y, and g ,, are the quantities occurring in the
BD

Brans—Dicke theory, reduces the Brans—-Dicke vacuum
fields to zero-mass scalar fields of Einstein’s gravitational
theory and vice versa. The above transformation works again
when the source-free electromagnetic field is also present in
addition to the scalar fields.

In this case we consider a new stationary axially sym-
metric metric

ds* =fdt? — e?(dr? + dz?) — Td¢* +2 i dg dt,
(3.2)

with £, ¥, I, and / as functions of 7 only. After conformal

transformation we get the values of £, ¥, /, and 7.

(i) For pure static magnetic field, we consider the solution (2.10b). Applying the conformal transformation (3.1a) and

(3.1b), we obtain

@, = exp \/E(k—nlogr) ’ (3.33)
(w+%)l/2
gu=8n= _exP[ _\/(az)(-]:--%_)ll/lzlogr)]rZ[bI-(Kn’/z)_“{(r)l+b_a(’)1“b}2,
= —\/E(k_nl()g’) 201+ b 1=b3-2 _ 2 (' +b _ 1-b)2
g3 = —exp Tz YIr{m' " —a@) "7 - 23 a(' ="}l
@+D"
= "\/E(k—”log’) 2 146 1512 _ (2, 2((Al+b _ 1—b)-2
8as = €XP T2 U@ P —a)' P =20 a(n' ~*}71,
@+
§34=g_43=exp[ —\/Z(k—nlogr)]yzn [rz{(r)1+b_a(r)l—b}—2_ {(’. 1+b_a(r)l—b}2]. (3.3b)

((1) + %)1/2

(ii) For purely radial electrostatic field, we consider the solution (2.10c). Applying the conformal transformation (3.12)

and (3.1b) we obtain

Ppp = €xp YM , (3.42)
(w+%)l/2
~V2k —nl e s .
Bn=Fn=— exp[ (w(+ 5 OB | ot 2l (14 ()~ 412,
B - exp[ — vVt ‘,”21°g’)]flr2{ O +e) =1~ 22O + )41,
(@ + 3"
= exp| = Y28 ) o0 12 @y e,
@ +39"
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o —V2(k—n1 _ )

834 =843 = CXP[ (a)(+ 3)1’/12 °g”) YR +c(r) P — () + (D¢ } ’]. (3.4b)
2

Let us now consider a static axially symmetric line element

ds? = Fdt? — e¥(dr? +dz?) — L d¢ ", (3.5)

with F, ¢, and L as functions of 7 only. After conformal transformation we get the values of £, ¢, and L.
(i) For pure static magnetic field, we consider the solution corresponding to Eq. (2.11). Applying the conformal transfor-
mation (3.1a) and (3.1b) we get

Pyp = CXP[ Xz(gc—;%%gﬁ} (3.62)
E=8n= —exp' _\/(E(i;;k’g')]rz“’“"‘"”’"”i(r)‘“—a(r)'—"12,

8= — exp[ - ﬁ‘i;,’,’zhg’)]rzi(r)‘ to_a() -t}

Fuu= exp[ = \g(f %‘),72'°g”] () ** —a() 12 (3.6b)

(ii) For purely radial electrostatic field, we consider the solution corresponding to Eq. (2.11). After conformal transforma-
tion we get

Vagk —
Pyp = CXP[ —i{f:;”,—lfg—')} (.7a)
Z=8n= — exp[ - \fg(f_:lr/lzlogr) ]r”“’ ~ KD 4 o) ),
@ 2
8= — exp[ — \:j(_]: ;;Zlogr) } rA{M?+cr)~4y?
2
Buu = exp[ - \Cj(f :),',',bg’)] (O + e} (3.70)

when (2 = 0, the solution in case (i) reduces to a Brans—Dicke analog of the axially symmetric magnetic field given by Ghosh
and Sengupta.”® For {2 = 0, the solution of case (ii) becomes an analog of the solution for a static, cylindrically symmetric
radial electrostatic field obtrained by Mukherjee,?” Bonnor,?® and Raychaudhuri.?

4. GENERAL FORM OF THE SOLUTIONS

We consider, without loss of generality, the scalar @ as a specific function A, viz., @ = @A, in the original Brans-Dicke -
equations and subsequently scale the length, time, and reciprocal mass by the common factor [A (x)] ' ~??; then

g,—%,=A'""%, 4.12)|
DD = PA°, (4.1b)/

where 0 is a parameter.
We consider the stationary axially symmetric metric

ds? = fdt? — e¥dr? + d2?) — [d¢? + 27 dg at, 4.2)
where £, ¢, I, and 7 as functions of 7 only. After unit transformation we get the values of /; 1;, I, and /7.

(i) For pure static magnetic field, application of the unit transformation (4.1) on the solution (2.10b) yields
\/50 (k — nlogr)

(w + %)1/2 !

DD =PA= exp{

where

A= exp[

\/E(k — nlogr)
(w + %)1/2

and we have assumed @, = 1 for simplicity. Thus, the solution in the present case is given by
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_ V20(k — n logr)
b= exp[ A ], (4.3a)
Zu=Fn= - exp[ - \/f;ff%;,f 1°g')] PR G) 40 ar) 0
B= — exp[ —\/(2:—(:(%;/;1 logr)]yz[rz{(r T a() ) — 22 P —a(r)' b)),
Zoe = €XPp —\/Eﬁ(k—nlogr) PHO " —a() 12— 2% () P —a) )2
@+ ’
B By = enp| =Y 20 LB 2 [r 2y 5 — at)! —* )2 — ()0 — a(r)' ~* 121, (4.36)
(@+3)

(ii) For purely radial electrostatic field, through similar steps the solution (2.10c), after unit transformation, turns into

_ V20 (k — n logr)
D= exp[ @i D7 ], (4.42)
gnu=28n= — exp[ - \/(5“)6'(:(%;/: logr)]rz{d‘ _(an/m{(r)d +e(r)9}3
i = — exp| — V26 —Z 08D 211 2{() + ()~ 412 — 22{() + ()~} 2],
(@ +3"
_ ~V26(k —nl
T expl g P UO e @ o e )
Fru=Fu = exp| — V(zjf)"” R8I 120 [r 20 + o)~ 41— () + )~} 1. (4.40)
Let us again consider a static2 axially symmetric line element
ds* =Fdt™ — dr? +d?) — L dg?, (4.5)

vwith F, ¢, and L as functions of 7 only. Under unit transformation we get the values of F, zz, and L.
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(i) For pure static magnetic field, we consider the solution for Eq. (2.11). Under unit transformation (4.1), we get

6o exp[ V26 (k — nlogr) 63)
(Cl) + %)1/2 ’
- ~V20(k—n1089] ainr .
g =8 = _exp[ (a)+% > plo? —(Kn'/2) 1]{('.)1+b_a(r)l b}z’
—V20(k—nlogn]| ,
Fu= —exp PO —a) ),
33 [ (a) + %)1/2
B = exp[ — \/(252‘3;/;’ 1°g’)] () +° —a()'—*)2. (4.6b)
b
(ii) For purely radial electrostatic field, in a similar manner the solution for (2.11), after unit transformation, turns into
G exp( V26 (k — n logr) 4.7a)
(w 4 %)1/2 ’
= - — \/50 k — n logr R s
811 =8n= — exp[ @ :_ NE &) p O EEDUEY 4 e(r) )2,
— \/50 (k—nlogn| ,
833 = —exp rAHe) +c(n9)3
33 [ (0) + %)1/2
Buu= exp[ - \/(zjfé;,f l°g’)} [0+ ) ) (&.7b)
2
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If we put @ = 1, we get the solutions of Sec. 3.

5. CONCLUDING REMARKS

We have considered only two classes of exact solutions
of the Einstein—-Maxwell scalar and Brans-Dicke-Maxwell
fields corresponding to the observer’s two modes of descrip-
tion of the static field—either the static axially symmetric
magnetic field (2.10b) or the static axially symmetric radial
electrostatic field (2.10c). Of course, another class of solu-
tions may be obtained when B is different from £2. In this case
the solution would correspond to the observer’s descriptions
of the static axial magnetic field as well as the radial electro-
static field.
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A fqrmulation of the equivalence principle in quantum field theory is introduced. The quantum
equivalence principle yields implementable Bogolyubov transformations. In this way we find a
theory for a scalar field in curved space—time where particle creation is finite for every value of the
coupling constant. In the particular case of conformal coupling the initial conditions of positive
and negative frequency wave functions coincide with the ones of a first order WKB
approximation. The coefficients of the Bogolyubov transformations are exactly computed and the

created energy density is also finite.
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1. INTRODUCTION

The problem of quantizing a scalar field on a curved
background has been treated in several ways. We will con-
sider only two of these techniques:

(1) the “in-out” theory and

(2) the Green’s function general theory.

Although the first one can be considered as a particular
case of the second one, this last theory is older because it was
always considered as the natural way to generalize the field
formalism to curved space-time. If one can find some natu-
ral generalization of the flat space Green’s functions:

4 (x — x")and 4 (x — x') to curved space-time, one can also
find the positive and negative frequency parts of the field and
construct a reasonable quantum theory. One can find a
straightforward generalization of 4 (x — x'), that we shall
call G (x,x’'), but it can be shown (cf. Ref. 1) that it is not
always possible to find an unique generalization of

A, (x — x'); 1.e., G,{x,x) (unless space-time is static). The dif-
ficulty can be overcome if we suppose that each Cauchy sur-
face S of the universe (that normally is a globaly hyperbolic
manifold) has its own G '/, (x,x'}, and therefore it has its own
splitting into positive and negative frequency solutions, i.e.,
its own representation of the C.C.R. This implies the exis-
tence of a Bogolyubov transformation between the positive
and negative frequency wave functions of two Cauchy sur-
faces. This implies also that particles are created and/or an-
nihilated when we go from one surface to another. This is a
reasonable phenomena because if the gravitational field (the
curved background) is not static there must be a variation on
the number of particles. One the contrary if the gravitational
field is static G,(x,x’) is unique and the particle number is

constant.
The problem is to find a way to define the correct

G ®(x,x") for each Cauchy surface. In our opinion the solu-
tion must fulfill two necessary conditions:

(1) It must be based on physical principles.

(2) The number of particles created must be finite, i.e.,
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the Bogolyubov transformation between the different opera-
tor algebras must be implementable.

Since canonical quantization based on diagonalization
of the instantaneous Hamiltonian yields nonimplementable
Bogolyubov transformations (cf. Refs. 2 an 3) a lot of work
has been done in the “in-out” theory where the quantum
fields are studied in some particular universes which are as-
ymptotically static. In the “in-out” asymptotic states of
these universes G "°*(x,x") is unambiguously defined and
the Bogolyubov transformation among them can be comput-
ed yielding the number of particles created. The restricted
theory can be considered fairly satisfactory in many cases (as
in the Hawking effect).

But the real universal is not asymptotically static.
Moreover if we restrict ourselves to the “in-out” theory we
shall never be able to see how the particle creation reacts in
the universe evolution, i.e., to formulate a cosmology that
takes into account the quantum phenomena.

For this reason we have tried to find a solution in the
general case. Our point of view is that this solution must be
based on the two cornerstones of general relativity: covar-
iance and equivalence so we have developed a covariant for-
malism in the sense that the quantization is defined through
covariant objects like the G (x,x’) and G,(x,x"). (Therefore, it
is not an analogy of canonical quantization in a privileged
coordinate system.) If some coordinates (as 7 ) seem to be
privileged it is because they have some physical meaning
(e.g., the proper time of a fluid of particles that fills the uni-
verse). We base our solution on a version of the strong equiv-
alence principle that we call the quantum equivalence princi-
ple. The strong equivalence principle states that in every
point of space—time there exists a system of coordinates
where the inertial-gravitational forces vanish. In this system
space-time behaves locally as if it were flat. We suppose that
the biscalar G,(x,x’') behaves like A4 (x,x') when x—x’. How-
ever this condition cannot be imposed when x—»x" along ev-
ery direction, and at every point, in space-time (cf. Ref. 1). So
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we demand that G ¥'(x,x’) behaves like 4,(x,x’) when x—x’
on the Cauchy surface S. This is our quantum equivalence
principle that allows us to define the G {¥(x,x').

With these tools we find a self-consistent answer to our
problem.

The nicest features of our solution are the following:

(1) It is implementable for every value of the coupling
constant (we even have found a general class of implementa-
ble theories that contain ours; cf. Sec. 5) so the particle cre-
ation is finite.

(2) In the case of conformal coupling (& =) the
boundary conditions of our positive and negative frequency
wave functions coincide with the boundary conditions of
similar functions found with a first order WK B approxima-
tion. Therefore, our particle model at each time is an exact
solution of the Klein—-Gordon equation that satisfies at that
time the boundary conditions of a first order WKB approxi-
mation. This model combines two important features of the
flat space free particles. In fact flat space wave functions are
solutions of the Klein—-Gordon equation and are a first order
WKB approximation, of course, in flat space the first order
WKB approximation turns out to be exact.

(3) The coefficients of the Bogolyubov transformation
can be exactly computed directly from the wave function
with really simple formulas [cf. Eq. (6.21)].

(4) The most logical generalization to our theory of the
energy of the field in flat space-time, namely

E=L<T%> do,

where S is a Cauchy surface and do is the element of area in
S, is also finite in the case of conformal coupling (cf. Sec. 7).

The generalization of our method to fields with higher
spin as well as to the case of a curved spatial metric will be
considered elsewhere. The cosmological implications of the
particle creation predicted by our model will be the subject of
a subsequent publication.

2. DEFINITIONS AND NOTATION

In this Section we state well-known results, that will be
useful later on, using the notation of Ref. 1. We will work ina
space-time ¥V, endowed with a Robertson-Walker metric,

ds’ =dt? —d’(t)8 4dx"dx", a,f=1,2,3, (2.1)

that we shall call an expanding universe even in the case
where a(¢) is not monotonically increasing. §,, is Kron-
ecker’s function.

We will study the quantization of a neutral scalar field
¢ (x), that is, a real valued function on V* that satisfies the
Klein—Gordon equation

A—-p’—ER) =0, (2.2)
where 4 = — g"/V,d, is the Laplace operator, y is the mass,
and

. . 2 da

R=6(i+ (0)), 6= e

a a2 dt

is the curvature scalar. The coupling constant £ can take any
real value. The case £ = 0 is the “‘minimal coupling” and
& = lis the “conformal coupling.”
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We want to generalize the notions of positive and nega-
tive frequency solutions of Eq. (2.2), from flat space—time to
V,, using the kernels G (x,x") and G,(x,x’"), i.e., the general-
izations of the usual kernels

Ax—x)= 1 J. sinw, (x° — x"%)

(2w w,

Xexp[ — ipa+(x — x')d °p] , (2.3a)
Afx—x)= 1 f cosw, (x° — x")

(27 w,

Xexp[ — ipa(x —x')d’p], (2.3b)
where

p=1p", w,=(u*+p)"*,a=const

We remark tht the real physical lengths are a(¢ )x “ and
that the physical momentum p“ is canonically conjugated to
these physical coordinates. We shall call £ “ the momentum
conjugated to x* that is related to the p® as k “ = a(t )p°.

G (x,x"), the generalization of the commutator
4 (x — x'), has been found a long time ago by Lichnerowicz
(cf. Ref. 4) for all globally hyperbolic manifolds. In particu-
lar for our ¥, with metric (2.1). This G (x,x") has locally all
the properties of the A (x — x"); i.e., it is real and
Gx,x)=—G(x,xy, 4, —pu*—REG(x,x)=0.

24

It provides too the solution of the Cauchy problem for
Eq. (2.2) with Cauchy data: ¢, ¢, on a Cauchy surface S,

8 (x) = f [G (', X)ds(x) — & (InB,G (x,x) ] do.  (2.5)

G (x,x") satisfies the boundary conditions

G(x,x)=0 if x,x'eS, (2.6)

n'd,G(x,x") =8s(x,x") if x,x'eS, 2.7)
where 6 (x,x") is the dirac & on the surface S and # ‘is the
unitary vector normal to S pointing towards the future.

The support .. G (x, x") lies in the interior of the light
conoid with vertex x. There is a unique and well defined
G (x,x’) that fulfills all these conditions.*

On the contrary there are infinitely many G ,(x,x") that

generalize 4 (x,x") having its usual properties, i.e., such that
G, is real and

G(x,x)=G,(x', x), (2.8)
@, —1* —ER)G,(x,x") =0, 2.9
Gmx)= | [ (—"—G o y))G )
’ sk \a, e e
— G,(x' y) a_‘fy_ Gilx, y)] do, . (2.10)

Since G (x,x’') and G,(x,x’') define the solutions of positive
and negative frequency (cf: Ref. 1) there are infinitely many
possible quantizations, each one corresponding to a particu-
lar choice of G,{x,x’). (This phenomenon is the ambiguity
first stated by Parker.’)

Our point of view (as it was introduced in Ref. 6) is that
there exists a different G {¥'(x,x') for each Cauchy surface of
V, [in particular a different G {?(x,x") for each surface
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t = 7 = const of V,]. These different G, produce different
definitions of positive and negative frequency and cause par-
ticle creation or annihilation when we go from one time 7 to
another 7. The G {?(x,x’) must be defined by reasonable ini-
tial conditions based on physical principles.

The functions ¢ (x), G (x,x), and G,(x,x") can be ex-
panded as follows: Let us introduce an inner product in the
space of complex solutions of Eq. (2.2),

(u,v) = iJ‘ [@u*w — u*@@,v)]n' do . (2.11)

If u and v are solutions of the Klein~Gordon equation (2.2),
the inner product (2.11) is independent of the Cauchy sur-
face S on which the integration is performed. This inner
product is Hermitian so {u,u) is real number, but it is not
positive defined. Then we can classify the complex solutions
of Eq. (2.2) as positive, if (u,u) > 0, negative, if (u,u) <0, and
degenerated if {u,u) = 0.

Let {@, Ju{@; } be a base of the space of complex solu-
tions of Eqgs. keR is a set of three continuous parameters that
label the solutions [as we said we reserve symbol p for the
usual momentum as in Eq. (2.3)]. This base will be called an
orthonormal base if

(ﬁk’¢h> = —5(k—h),
(05, 0,) =8k —h),
<¢k’¢;> =0’

(2.12)

where 8(k ) is Dirac’s distribution. So vectors @, are positive
and vectors @, are negative. We can go from one orthonor-
mal base to another via a Bogolyubov transformation. We
candevelope ¢ (x), G,(x,x"), and G,{x,x") on the orthonormal
base,

6 (x) =f[ak¢k(x) +aFBx)]d%, (2.13)

G x, x) = if [B (10, () — B W () ] 4K, (2.14)

G,lx,x) = J[@k s (x) + By (xW0x (x) 1 d k. (2.15)

But while Eq. (2.14) is invariant under Bogolyubov
transformations because G (x,x’) is unique (and can also be
verified directly) Eq. (2.15) is not invariant, therefore G,{x,x")
depends on the base {0, Ju{, } we use. We shall call the
subspace of positive (resp. negative frequency) solutions the
space spanned by the {@} } (resp. {8, }). It can be easily
shown that if we know G,(x,x’) we can find the subspaces of
positive and negative solutions and vice versa (cf. Ref. 1).

As @, can be defined by its Cauchy data on a surface
¢ = r = const [that we shall call 8{(x), #"(x)], the G (x,x'} is
defined by its Cauchy data and so are the subspaces of posi-
tive and negative frequency. Then we must search for rea-
sonable @, @, or equivalently for reasonable G {"(x,x') and
(d /dt)G {x,x')ateach time r,in order to have the base of the
subspace of positive (resp. negative) frequency solutions
[that we shall call {,'"} (resp. {#{})] well defined at each
time 7. Once we have these bases we can develop ¢ (x) at two
different times:
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89 = ([t + 0] 0%, @163

¢ (x) = J.[aff)ﬁf(’" +af TG d k. (2.16b)

The base functions at times 7 and 7' are related by a

Bogolyubov transformation
0 = a, 8 + BB,
0 =0y, + B,
|y |* — |Bk|2= 1.

The corresponding annihilation and creation operators
are related by

.17

4 L] *,
a) =aa + a7,

@ = Ba? + g,

(2.18)

(2.19)

Let us assume that at time 7 the universe is in the vacu-
um state at that time |0) ,,, i.e.,

Ng(r)|0>(f) = a;(’)aff)m)(r) =0. (2.20)

Then the mean number of particle density in mode k at
time 7’ will be

@ OIN 0, = () (0lay"a10)
= Bi|?. 2.21)
This implies that the average number of particle density
at time 7' is
N(T")
= [ax 10, = [ak 8,1 2.22)
So if the universe is in the vacuum state at time 7 the

necessary and sufficient condition in order that the average
number of particles at time 7’ is finite is that

f\ﬁk Pdk< oo . (2.23)

This is also the necessary and sufficient condition in
order that the Bogolyubov transformation (2.18), (2.19) is
implementable.’ So we must search our boundary conditions
among the ones that produce a finite average number of par-
ticles from the vacuum or equivalently yields an implemen-
table Bogolyubov transformation.

3. THE QUANTUM EQUIVALENCE PRINCIPLE

We shall prove that the solution of our problem can be
based on an adequate interpretation of the strong equiv-
alence principle. One of its versions states that at every event
of space-time there exists a coordinate system where all
gravitational forces vanish. We assume that locally in such
an event (that can be taken as the origin of coordinates) and
in such a system of coordinates there is a box of side 2p (our
laboratory) and a time interval 26 (the length of our experi-
ment) where, since there is no gravitational field, we can use
flat space—time quantum field theory. This statement is only
approximately true but becomes more and more correct as
6, p—0. We shall call this assumption the “quantum equiv-
alence principle” and we shall study its consequences.
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Therefore, we shall place our space-time laboratory

with its time axis parallel to the curves x “ = 0 = contant
= variable of the above mentioned coordinate system and

with its plane ¢ = O tangent to the ¢ = 0 = constant, x*
= variable surfaces. The covariant derivative of the curve x*
= 0, t = variable vanish at the origin so it is locally a geode-
sic. In this way we are sure that there are no gravitational
forces and we locally have a free falling laboratory, that we
shall call a Galilean laboratory.

Let s be the space-time interval between 0 and an event
x placed outside the light conoid of 0 but inside our laborato-
ry and our experiment’s time. Based on our principle we can
say that when 6, p—0

G0, x) = 4,(5), (3.1)
whre 4 (s} is the flat space 4, [Eq. (2.3.2)] that, because of
Lorentz invariance is only a function of s, the length of the
universal interval between 0 and x. We shall see how we can
deduce from Eq. (3.1) the correct initial conditions for G "
(in the case 7 = O because of our particular choice of the
origin). We restrict ourselves to the system of coordinates
where the metric takes the form (2.1). Then we have a spheri-
cal spatial symmetry and we can consider only the coordi-
nates (7,R ) of event x, where T'is the time interval between 0
and x, and R = [x} + x2 + x3]"2% Of course T< 68, R <p.

Let us compute s = s(0,x) using a straight line from 0 to
x in the laboratory coordinates.® We have:

T T 2
szf (a2dr2_dz2)1/2=f (§7a2(t)—1)“2 dt. (32)
o o \T

Afterwards we shall take 70 leaving R #0 constant,
so we can develop the square root, and we obtain

T T
o= 2 (aya— LI (7
T g 2 RJo a(t)
1 73 (" ar
_rL ) 33
8 R3Jo &) S
We shall also need:
Js R r }
2= Ta(T) — t)dt
aT Tz{a() J;a()
T
-_1_( de T )- (3.4)
2R \Jo a(t) a(T)

When T'—~0 we can compute the limits of Eqgs. (3.3) and
(3.4),

(3.5)

Now we need to compute d4 ,/ds. From Eq. (2.3b) it follows
(notice that because of Lorentz invariance 4, is only a func-
tion of s)

. . Os .
= = =
ITlrrz) s = Ra(0), lTIE}) 3T 1Ra(0) .

2 HMus 2 HW(jus
so we have that
dd, _ gt HOw)
d (us) 4 US
”2 2 (Dys i My ;
= — L Re(— HOGQ) — L HPGus)
4 (p3) us
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2 w1
= — = A+ £ —Re[iH(us)] . 3.7
us 47 pus
Therefore,
2
a4, _ _ ial - LIm[Hé”(z;us)] . (3.8)
ds s 4ms
From (3.1), (3.5), (3.6), and (3.8) we have that when 7—0,
G](O: x)= 4 1(Ra(0)) ) (3.98)
G0 _ A0 V4 (ra)
aT a(0)
2
+ -';—;—Im[H(O”(ipRa(O))]l : (3.9b)
T

These equations are only true for 6—0, p—0. 6—0 is al-
ready taken into account as we have taken 7—0. p—0 im-
plies that Egs. (3.9) are only valid for R—0.

We really want to find the boundary conditions of
G (9(0,x) on the whole surface = 7 = 0. Now we know that
these conditions are given by Eq. (3.9) when R—0 (i.e., for
small spacelike distances between O an x) if we want to satisfy
the quantum equivalence principle. Therefore, when R is
large this principle tells us only the first term in an expansion
of the boundary condition in powers of R, but nothing about
the other terms.

Nevertheless the 3-surface ¢ = constant x* = variable,
are spatially flat and can be considered crowded with Gali-
lean laboratories. All points of this 3-surface are in free fall
following the geodesics x* = constant ¢ = variable, so we
can consider each 3-surface as a huge quasi-Galilean labora-
tory. Certainly we can say that Eq. (3.1) is valid in our quasi-
Galilean laboratory, because its only difference with a real
Galilean laboratory is that it is expanding. So instantaneous-
ly we can assure that both (3.9a) and (3.9b) are satisfied,
because the expansion of the quasi-Galilean laboratory has
been taken into account through the definition of Eq. (3.2)
and the computation of the time derivatives Eq. (3.4).

So let us adopt an extended version of the quantum
equivalence principle and state that Egs. (3.9) are valid in all
the 3-surface t = 0, x* = variable. So we forget the limit

p—0 and we adopt (3.9) as the initial conditions that
G x,x'} [G (0,x) with our particular choice of the origin]
must satisfy on the 3-surface, i.e., we neglect, for the mo-
ment, all the terms in the expansion of G, and (d /d T )G, but
the first ones, In fact: As we are dealing only with a first
order theory, then we can suppose that all the neglected
terms are of higher order. (This statement can be rigorously
proved in the context of the exact theory.)

Of course, to make sure that (3.9) are allowed initial
conditions we must prove that they satisfy Eq. (2.10), as we
shall see further on.

4. POSITIVE AND NEGATIVE FREQUENCY SOLUTIONS

To find an expansion of the initial conditions (3.9) that
yields to definition of positive and negative frequency solu-
tions it is necessary to expand the last term in the rhs of Eq.
(3.9b). To do so we take Eq. (3.6) and compute;
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Gy _ 28 ) | (g H

du u Ar us 4m \ dus us 4l

and using (3.7) we get @.1)
i o L lH )] (4.2)

du 47
If we call H = a(0)/4(0), i.e., the Hubble coefficient, we have

Hy? . d
_ —g'l;_lm[H(o”(tps)] = Hy? e 4, (4.3)
so the initial conditions (3.9) become:
G, x)=4,, (4.4a)
dG{(x, x'
—‘—;t—) = —HA,+ Hy? 0 4,, (4.4b)

£ x,x'eS (1), i.e., the surface ¢t = 7 = constant. Now it is easy
to find the expansion of all the terms in (4.4).
First we try to solve Eq. (2.2) by separation of variables

¢ (x) =@y (t)e "™ (4.5)
The differential equation for ¢, (¢) is
$ult) + 336 (1) + (42 + £R + k*/al)y = 0. (4.6)

From Eq. {2.3b} we know that 4 ,(x,x') and its derivative are
A l(x’x') = (2770)_3f EM

Wy, )
xexp| — ik(x — x)] 4%k,
dd\(x,x') _ (2ma)”* J‘(coswk (t—1t)
du? 2 ] (4.7)
i t—1t’
+ -Slnﬂ-(_—) ([ _ t'))
Wy

X [exp — ik+(x — x')/a] d’k,

where w, = (u® + a~?k?)"/2 and we have changed variable
of integration from p to k = ap, and the physical lengths ax
for the coordinate variables x.

When ¢t = ¢’ = 7 we have:

Afx, x') = (277_0)_3J exp[ — fke(x — x')/a] K,
Wy
(4.8)
dA\(x,x') _ _ (2ma)”® jexp[ — ke{x —xV/a] ;5
d,u2 2 wi

As we have solved (2.2) by separation of variables the
initial conditions for the @, will be in general:

077, x) = Ae ™ ™%, B, x) = Bye~**, (4.9)

where 4, and B, are arbitrary numbers. In this way we can
find all possible and negative frequency splittings. But as @7,
@ will be used to define the G and G, through Eqs. (2.14)
and (2.15) we can multiply the @, by a complex number of
unit modulus, e, without any changes in G and G,. As the
kernels define the subspaces of positive and negative fre-
quency solutions, these subspaces will also be invariant un-
der this change. So we can take the 4, as a real number

without any loss of generality.
Then the G,(x,x’) at S (7) will be [cf. Eq. (2.15)]
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Gylx, x') = J.{A iexp[ike(x — x')]
+ A2explik(x' —x)]} d°k. (4.10)

If we make the change k “— — k ® in the first term,
nothing will change because the A, are real functions of k?
due to the spherical spacelike symmetry, so

G,lx,x') = 2JA rexp[ — ik(x — x')] d %k . (4.11)
Then to satisfy (4.4a) we must have
A, = (2ma)~ ¥ 2w,) V2. (4.12)
The derivative of G,(x,x’) at .S (r) will be
d .
2 G x) = [(BEd, + 4,8,
Xexp[ — ike(x - x')] d°k, (4.13)

where we have used the same argument to perform the

change k “— — k . If we put
Bk =ak+ibk ’ (414)

where a, and by are real numbers and we try to satisfy Eq.

(4.4b) using Eq. (4.12), we have

a, = — H(2ma)"**2w,)""? (—1 + 1wy .
x , Zwk 4 wi

Finally, to satisfy Eq. {2.10) it is necessary and sufficient
that in expansions (2.14) and (2.15), the base {@,("}u{@{"}
fulfills Eqgs. (2.12).

But

(@l“(f)’ @l‘l(f))

— e[| (S 0) - 80 2 6] a>x

= ia’(B, A, — AB ,',)J-exp[ — ix«(k — h)] d>x

(4.15)

= (2ma)’i(B, A, — A, B )0k —h). (4.16)

So to satisfy Eq. (2.12) we must have

Ay (B, —B.)= —i(2ma)”?, (4.17)
therefore

b, = — (2ma)~ 3w, /2)"*. (4.18)

From (4.12), (4.15), and (4.18) we can state the initial
conditions of the negative frequency solutions of mode k:

BN £, x) = (2ma) 32w, )~ Ve ~ >, (4.19)
(3;:)(7, x) = (2770)“3/2[ —1 (—wzi)m — 2w, )2
X ( LS ).H]e““"‘ . (4.19b)
2w, 4w

The positive frequency solutions will have, of course,
the complex conjugated initial values.

Now we will prove that with these initial conditions the
Bogolyubov transformation (2.18), (2.19) is implementable
for all real values of the coupling constant &.
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5. IMPLEMENTABILITY

To prove the implementability of our theory we use the
rigorous results on the estimation of the error in the WKB
approximation due to Olver.®'° Olver’s results have pre-
viously been used by Fulling'® to prove the implementability
of his model.

Let us make a change of variable —% and of the field
¢— in order to put Eq. (4.6) in the standard form:

_ f Ay dr, 5.1)
b)) = OB, (1) . (5.2)

We emphasize that these changes have only a math-
ematical purpose and have little to do with the physics of the
problem.

With these changes Eq. (4.6) becomes

K H K+ (E— PR =0, (53)
where
-2
dy
Now we can use Olver’s theory in the equation
Y+ btk iy =0 (5.4
dn? ’ '

[cf. Ref. 9, p. 800, Eq. (4.7), Theorem IV, and Ref. 10], where
p(k,m)is astrictly positive C ? function of 5. We identify Eqgs.
(5.3) and (5.4) making

Pk, ) =14k + (£ — YR
2
= (Wi +(£-DR].

We see that p(k,n) > O for k large enough.

This is the only case in which we are interested since we
must prove (2.23).

Equation (5.4) has the following solution,’

¢(k 77)_ (Zk) l/2 -1/4

(5.5)

n
x [exp( — ik [ pa) + e, )] (56)
0
and its derivative,
dy -(k)WM[ ( -f”lz )
= —il= 4 le — ik “d
a7 2 4 Xp I OP n
i _3,2dp[ ( -J"]m ,) ]
_ — — |exp| — ik dn' |+ e
&’ ag 1P P
X + sk, 7],
(5.7a)
i de 1
Sk, m) = ‘k—T—l—E’ (5.7b)
le| ,|8]<exp % _1, (5.8)
d ’
F(k, n)—f lp ;2 | dn’ . (5.9)
But as p(k,7n) has the form
ptk,m) =1+ k>p(y), (5.10)
where
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P =a | +(£- YR, (5.11)
from Eqs. (5.8) and (5.9) we can easily deduce
€l,|8],k ~'p~3"? ar =0k ™) (5.12)
dn

where k— 0.
Now let @ (k,7) and ¢*)(k,77) be the solution of Egs.
(5.4) that satisfies the following initial conditions:

‘/Elﬁ(m(k, 0) =k —1/217,—1/4(k, 0) ,
- (5.13)
029/ Ok, 0) = k V27"V %k, 0),
J2U, €)=k~ ),
(5.14)

i\/E,/,’(;J(k’ g) =k 1/2ﬂ_r1/4(k’ §) ,

where § = fja(t')~" dt', and where 7(k,7) and ='(k,7) are
functions to be determined later on in such a way that the
Bogolyubov transformation between the ¢©, ¥*© and the
#¢) 4" is implementable. We assume that m(k,7) is always
different from zero and that 7~ '/* and 7''/* remain bounded
when k— oo

Let the functions y(k,7) and ¥*(k,7) be the solutions of
Egq. (5.4) that satisfy the following initial conditions [cf. Egs.
{5.6) and (5.7)):

\/Ell’(k, 0)=k ~"p~V4k, 0), (5.15)
i\/2¢/(k, 0)

= k12 ”"k,O(l——i— =32k 0 dP(k,O))_

P "k, 0) w? ( )——d
{5.16)

Notice that®

€(k,0)=5(k,0)=

So we have
YOk, 1) =4 Dk, 1) + B Oy*(k, ) . 5.17)

We must compute 4 ¥ and B {? in such a way that the
initial conditions (5.13) are satisfied. We obtain

- 1)
x (14 - p20 0 22 2, 0)
+(

08
o)

(1 0 o) - (z82)]

In a similar way

(5.18)

0)

1
2
X

Y0 = APk, 1) + BEY*k, 1) . (5.19)

Therefore, to satisfy the initial conditions (5.14) at = £ we
have
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o 1 mik, E)) - 174 i s d Now, between ¢ and ¢4 there must be a relation like
10 = 3| CRg) (14 2ok e L wl)) Eg @I it 0,750
'k, &)\ C— G SO L 4O
4+ (=220 v = a0 + B @ . (5:21)
( pik, i) ) ] Then we must have:
X expik J Pk, m)dn + 0 +0®), (520 A9 =44, + B, , (5.22)
B© 0 B’ =BPa, +A4;°8, . (5.23)
_ 17k I E 32 4P We can compute &, and 5, from this system. Its deter-
) [(p(k,g)) (1 AL (k’g)) minant is T
’ﬂ'l(k, é‘) 1/4
_(F5) [k, 0) -4 ( ' (k, O) \ /¢
(p(k,§))§ ] 4, = (p(k, 0)) (p(k’ 5 ) : (5.24)
Xexp( —ik J(; p"*(k, ) d’?) +O0(e) +0(5). Therefore, f, is
g, = [ (7', §)/pk, E)1'* Tatk, §)/pk, §)') }
* [w(k, 0)/p(k, 0)]""* [7'(k, 0)/p(k, 0)]""*
: 12 [mk, £)/ptk, X1 (7' k, &) /ptk, §)1
sink L” e+ 2| T 70 0/ 01 |
X cosk '[)gp"z(k, mndy+ 0 +0(@)+ 0( p32(k, 0) (k 0)) +0 (k 1p32(k, §) (k §)) (5.25)

A sufficient condition in order that our Bogolyubov
transformation (2.18), (2.19) be implementable is that
1B,1=0(1/k>**), >0 when k—o.

In fact, from Egs. (5.2) and (5.21) we have
a(t)p & =a,a(t)p O + F.a(t)p @ (5.26)

where 7 is such that { = fja~'(¢') dt'. Comparing with Eq.
(2.17) {with 7" = 0) we have

ﬂk = Bk .
Therefore, if 5, behaveslike O (k
the integral (2.23) is convergent,

f!ﬂk|2d3k=4fro Bk dk < oo

ak - &k 3 (5.27)

072+ <) when k— oo,

(5.28)

From Eq. (5.12) we see that there is no problem with the
last four terms of Eq. (5.25). Now let 7 and 7' be written as

ik, 1) = plk, )Q *(k, 1) , (5.29a)
7'k, ) = plk, 7)Q "k, 1) . (5.29b)
Then in order that |8, | behaves like O (k ~ /% * ) we
need
Q(k, 0)Q'(k, 0)Q (k, mQ'(k, 7) — 1 ' P ( 1 )
Q(k, mQ’(k, 0) k¥2te
(5.30a)
‘ Q(kyO)Q'(k,O)—Q[k,n)Q'{k,??)‘zo( 1 )
Q(k, mQ'(k, 0) k32+e
(5.30b)
For example if for some constant C> 0,
Qk,n)=C +Plk,7m), (5.31a)
Q'tk, M= +1/C + P'tk, 1), (5.31b)
|Ptk, m) | =O(1/k*2*9), (5.32a)
[P'(k, 1) |=0(1/k>2*¥), (5.32b)
(5.30a) and (5.30b) will be satisfied.
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Now it is easy to verify that our initial conditions (4.19)
are included in this general class of boundary conditions
from all possible implementable theories. In fact if we make
the transformations (5.1) and (5.2) we have:

W) = 2m) > [2almhw, ]2,

(5.33)
dy?(n) _ (217)‘3/2[ —I_(M)l/z
dn 2
— [2a(myw, ]l/2 .qu ) ] ]
4w}

We can write k '/ p'"4(k,n) as
k'2p Ak, ) = (aw ) 1+ w (E— DR (5.34)
and
(aw, )2 = g 12 1/4[ 1 — 2(§—— YR /k 2p] L4 (5.35)

So if we put the initial conditions (5.33) in the form of Eq.
(5.14),

7 = pQm)° (1 (6 ")R) , (5.36a)
k’p
R i 4
oo (1ol DR (ay
Qm?® k?p 2w}

(5.36b)

Then in the notation of Egs. (5.29) and (5.31)
C=Qn)"”, (5.37a)
P:(27r)3/2[ (1 (6~ I)R)W— 1] , (5.37b)

k°p

— BR\W* -2
BTSN |
(2m?? k?p 2w;

(5.37¢)

and it is now straightforward to see that (5.32a) and (5.32b)

Mario Castagnino and Ricardo Weder 148



are satisfied, so our transformation is implementable and we
have the creation of a finite number of particles for every real
value of the coupling constant £.

Remarks:

(1) If we choose the naive initial conditions

G'(x, x') = A(x, x'), (5.38a)
d =y 1) =

—GPx,x)=0 (5.38b)
dt

the Bogolyubov transformation is not implementable {this
was proven in Refs. 2 and 3). These initial conditions are
widely used (see Ref. 6 for example). They were thought to be
the most natural generalization of the flat space-time condi-
tions, besides these conditions diagonalize the Hamiltonian.
But if we compare Eq. (5.38) with the present initial condi-
tions (4.4) we see that in (5.38) the expansion of the universe is
neglected [i.e., to obtain (5.38b) we make H = 0 in (4.4b)].
(2) If we eliminate the term

— (2ma) = 2w, )} p*/ 4wi \H

in {4.19b) [or equivalently, the second term in the rhs of Eq.
(4.4b)] we have Fulling’s initial conditions {cf. Ref. 11) that
yields aimplementable theory. But it seems to us that there is
no physical reason to adopt these initial conditions. (As a
matter of fact, Ref. 11 anticipates that all the initial condi-
tions differing in terms ~ k ~* are essentially equivalent. So
we can say that the quantum equivalence principle picks the
right one.)

(3) Ifin Fulling’s theory we choose the vacuum state |0)
as the state of the universe at time ¢ = 0 and we use the time
evolution a(t) = a4 ¢ we arrive a the Mamaev, Mostepan-
enko, and Starobinskii theory (cf. Ref. 12) that is, of course,
also implementable, but in our opinion also deserves the
same criticism. The initial condition of these theories are
only conditions that resemble the flat space ones in coordi-
nates 7 and field 1. But the change of coordinates and the
change of field are only made for mathematical convenience,
and we think that a theory cannot be based on this
resemblance.

6. COMPUTATION OF o AND 8 WITH CONFORMAL
COUPLING

From now on we shall only study the conformal cou-
pling, i.e., we make £ = 1. Then we can have an idea of the
relevant phenomena predicted by the theory in the easiest
way. Besides, in Sec. 7 we shall see that there is a good phys-
ical reason to prefer the conformal coupling: The energy is
also finite.

From Eq. (5.5) we see that in this case

pk,m)y =1+ pw'a*()/k > = (@/k i . 6.1

We first remark that with this p, Eqgs. (5.15), (5.16)
become

Wk, 1) = (aw, )",
(6.2)
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D gy = i (22 )1/2(1 _ v )
dn 2 2w;

i.e., exactly the boundary condition (5.33) if we disregard the
unimportant factor (27) 2. Therefore, in the conformal
coupling case the boundary conditions (5.33) obtained from
the quantum equivalence principle are the boundary condi-
tions that we would find if we take the first approximation of
the WK B method [multiplied by (27)3"?]:

A
PPk, A) = m) > 2k ) ' *p*exp ( — ikJ p'” dn') ,
Q

(6.3)
[cf. Eq, (5.6) with €(k,A ) = 0] and its first derivative
W 2)
- . k2 i d
= (2m=3Y (_) 1/4(1_ o —3/2_17_)
(2m)™ 4 1)12 p wP
Xexp( — ik )f p'*dy) (6.4)
0

[cf. Eq. (5.7) with €(k,A ) = § (k,A) = 0].

Therefore our particle model at each time is an exact
solution of the Klein—Gordon equation that satisfies, at that
time, the boundary conditions of a first approximation of the
WKB method. This model combines two important features
of the flat space-free particles. In fact, their wave functions
are solutions of the Klein—-Gordon equation and the WKB
approximation, only that in that case the first approximation
turns out to be exact.

Let us define® the following new variable x, and field #:

vl i
¥ =J [ptk, 7)1 dy’ = iJ aw, di’
o k Jo

1 t
= —\|w,dt',
k.[)k

W= (2k)" "y

(6.52)

(6.5b)

(we modify the definition of Win Ref. 9 with a new constant
factor (2k )'”* for our convenience). Then Eq. (5.4) becomes

d 2
Y o k= fl 0w =0, (6.6)
dx
where
d’p d?
f(k, x) — [4]7 ( ) ]/16 -3/4 -1,4
dn? P = dn? ar ?
1 u?k? (
=_—H£° [ 2E _ 6.7
2w} 2w} 1 )H €7
where g is the deacceleration parameter
—(d/a)H > .
It follows from (6.5b) and (5.6) that
Wk, x)=e "=t ¢, (6.8)
Moreover from (5.7b),
1 de 1
8k, ) = % ax p7 (6.9)

and since (6.5a) implies
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e de 1
an  ax 7 (610
we have
1 de
= o (6.11)

Now we are ready to find ¢, and B, . As we have shown,
function (6.9) multiplied by (27)~>? satisfies our boundary
condition (5.33) at § = 0. Therefore, 4 ¥ = 27)>?and B

=0in (5.17).
Then from Egs. (5.19), (5.22), and (5.23) we have

¥PA) = Qr)y P la ik, A) + Bk, 4)] (6.12)
This function must also satisfy the boundary condition
(5.33) at A = 7. So we have

ay [exp( — tkx) + h ] + B, [exp(ikx) + h *]

=1- [ak (exp( - tkx) + %%)
-~ B (exp(ikx) _ é—%—)

. 2
— B {akenp( — ikx) + b ] + B, Lexplikx) + h*)
w

k

.2
_ [(1_ LM)] (6.13)
2 wi
That yields the system
e~ + da, + (™ +e*)B =1,
(6.14)

. .
@”+%%ﬁ‘@“7z%FL

Now, let us observe that the Wronskian of Eq. (5.4) is a
constant, which we can find with the initial conditions (6.2),

dy* dy
e
dn dn
i : ; i Jde
=12 ixk * — ixk __etxk
2 ( e
. . : *
_ L O€ i I Oe EE):,‘, (6.15)
k dx k ox k ox
So we have that
) . Je [ de* _.
ikx 6* — ikx ! v ixk L — tkx
L L v A
ie* de e Je* =0 (6.16)
k ox k ox

Now if we compute the determinant 4 ; of the system
(6.14) and use (6.16) we find

A = —2. (6.17)
Therefore, @, and 5, are

— oivk i(*_i?ﬁf) 6.18a
B=et S\ T =) (6-182)
B. = — i(e— —’—ﬁ). (6.18b)

2 k ox
Again using (6.16) we can easily verify that

(@ )2— (Bk)2= L
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These are very simple formulas, but the real nice thing is
that we can even compute directly the a, and 58, from the
function W.

From Eq. (6.8) we have

e=W—e %, {6.19)
de dw ;
— =" 4 ke, 6.20
dx dx +ike ( )
that, with Eq. (6.18), yield
)
2 k dx
(6.21)
1 i dW
= — —|W—- ——}.
B 2 ( k dx )

Wealso have an integral representation of o, and 3, . In
fact, the recurrence relation of the sequence of approxima-
tions of € is [cf. Ref. 9, Eq. (2.26)]

€lkx)= o f “Sink (x — ) £k, )

X [e,_\(k,y)+e®]dy, n>1. (6.22)

If we take the limit »— 0, since the sequence converges
uniformly, we have the exact integral equation

ek, x) = ‘,1{ _[:Sink (x — Jf(k, y)letk, y) + e~ dy.

(6.23)
Then from Eqs. (6.18) and (6.19) we have
. kx
a, _—.e""‘(l — I—J e""’W*GdG), (6.24)
2 Jo
. kx
B, = % e""‘J e~ “WGdO, (6.25)
0

where the integration variable is @ = kx and

- 1y’ 54 )Hz
G k, =k 2 k’ = 2 — —_— ,
(k, x) Sk, x) 2wl ( 2wl q
(6.26)

7. THE ENERGY DENSITY

Of course energy is not a well-defined notion in curved
space~time. Strictly speaking, energy is the zero component
of the momentum, a global 4-vector that we cannot define in
this case.

The best thing we can do is to compute the (0,0) compo-
nent of the energy-momentum tensor of the field, obtained
from the Lagrangian that corresponds to the field equations
(2.2) and integrate in a t = constant surface. The (0,0) com-
ponent of the energy—-momentum tensor is given by'>"

TO = 43,6)° + 6£HSAb + ﬁ (Vo)

2 3
Hwet 3R~ X $50090). (10
i=1
The total energy density operator at time ¢ = 7 will be
E(7) =JT°oda, (7.2)
N
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where do is the area element of the Cauchy surface, S,
t=71=etc.

Using Eq. (2.13) and the boundary conditions (4.19) we

| obtain

E(r)= fd3k [wk +0- 3§)—Iﬁ(1 + ﬁz_) + _{12_/5‘1] P

Wy wy

+fd3k [(g—sg);iz (1+ "7:)+

Wi
LW

2wy wh
where we have taken the usual prescription of normal
ordering.

As before, we assume that at time 7 the universe is in the
vacuum state |0) ,,. The mean value of the energy density at
time 7’ will be, in the conformal case (£ =})

© OlE()0),, = fd k e(k)IB 17, 74
where
etk)=w, + (1 —3¢) —H—2(1 + ﬁj—) + iz‘lj—z (7.5)
Wy wy 8w;,
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 H i
+i—(1+ —6
: (1 2y )]

2 2 47r2 : 2
XaLﬂdﬂk+fd3k 4—3) 2 (1+L)+ J—E—’L_ifi(u s
16 w 2

— 65 )]a;‘ﬂa‘y’k , (7.3)

2
2wy

| To derive (7.5) we have used (2.18), (2.19), and (7.3).

Clearly

k)| <CIk|, (7.6)

for some constant C. It follows from (5.25), {5.29), (5.31), and
(5.37) that

s -ofit) e

Then in the conformal case the integral (7.4) is conver-
gent, and then the energy of the created particles in finite.
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An important magnitude in percolation theory is the critical probability, which is defined as the
supremum of those values of the occupation-probability p, for which only finite clusters occur. In
1964 Sykes and Essam obtained the relation P¥(L ) + PY(L *) = 1, where L and L * are a pair of
matching lattices and P denotes the critical probability (site-case). The proof was not complete,
but based on certain assumptions about the mean number of clusters. Though Sykes and Essam
suggested that the above relation holds for all mosaics (i.e., multiply-connected planar graphs) and
decorated mosaics, we have constructed a counterexample. Subsequently, for a more restricted

class of graphs, an alternative derivation of the Sykes—Essam relation is given, this time based on
the usual assumption that below the critical probability the mean cluster size is finite. The latter
assumption is also used to prove for some nontrivial subgraphs of the simple quadratic lattice S,
that their critical probability is equal to P ¥(S). Finally, for a certain class of lattices, sequences of
numbers are constructed, which converge to the critical probability. In the case of the site process
on S, the number with highest index we found, is 0.5925 + 0.0002, which seems to be a reasonable

estimate of P¥(S).
PACS numbers: 05.50. + q, 02.50.Cw

1. INTRODUCTION

Percolation problems arise in many branches of science
and engineering. Concerning physics, the most interesting
example is the dilute ferromagnet, where the concentration
of magnetic particles is p and the concentration of nonmag-
netic impurites is 1 — p. Below a certain value of p, the so-
called critical concentration P,, there are only finite clusters
of magnetic particles and therefore no spontaneous magne-
tism occurs at any temperature. On the other hand, ifp > P,
spontaneous magnetism will occur below a certain
temperature.

Generally, percolation can be described mathematical-
ly as follows. A graph G consists of abstract points, called
vertices (or sites or atoms) and connections between some of
these points, called bonds. These bonds may be oriented, in
which case they connect in only one direction, or nonorient-
ed. In this paper we only deal with nonoriented graphs, i.e.,
graphs of which all bonds are nonoriented.

With the graph G we now relate a so-called random
coloring as follows: Each vertex of G has, independently of
all other vertices, a fixed probability p of being colored black,
and g = | — p of being colored white. For such a realization
of this random coloring we distinguish two section-graphs of
G, oneg, called G, containing all black, and the other, G
containing all white vertices of G.

Percolation theory studies the properties of G, and G,
Especially, in the case that G is infinite, we are interested in
the critical value P, of p, above which infinite black clusters
appear.

A related model is that in which the bonds of G, instead
of the vertices, are randomly colored. This model and the
model above are known as the bond- and the site-percolation
process respectively. It appears that the site process is the
more general one, because the bond process on a graph G is,
in a certain sense, equivalent with the site process on the

wr
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covering graph G ° of G. Therefore, quite often certain re-
sults are proved for the site- and then translated to the bond-
case.

In 1964 Sykes and Essam' published some interesting
results for two-dimensional percolation processes. We shall
use much of their terminology. A more general introduction

to the subiect is to be found in, e.g., Refs. 2 and 3.
Remark: In this article we shall only deal with lattices

which are mosaics or decorated mosaics.
One of the main results of Sykes and Essam is the
relation

PO(L)+POUL* =1, M

where L and L * are a pair of matching lattices and P de-
notes the critical probability for the site-percolation process.
This relation follows from the fact that the mean number of
black L clusters per vertex differs from the mean number of
white L * clusters per vertex by a finite polynomial ¢ ( p)
(where p is, as it will be throughout this article, the probabil-
ity of a given vertex being black), in formula:

k(pL)=k(1 —pL*)+¢(p). )

Now Sykes and Essam derive (1) immediately from (2)
by the assumption (which has not been proved) that in the
domain 0<p< 1 the function k is singular at P&’ and nowhere
else.

Next they remark that the triangular lattice T is self-
matching, which implies, by (1), that:

PO(T) =, 3

and that (3) more generally holds for any lattice of which all
faces are triangular. However, it is easy to construct such a
lattice for which (3) is not true, as follows.

Figure 1(a) shows a sequence of triangles A, 4, 4,,-,
each of which (except 4,) has six vertices on its perimeter,
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(b)

FIG. 1(a) Lattice, consisting of a sequence of nested triangles 4, 4,, A,,--.
(b) The lattice obtained by triangulation of the lattice in (a). It appears that
the critical probability (site-case) of this lattice is, in contrast with the
Sykes-Essam relation, not  but 1.

one at each corner and one at the center of each of its edges.

The fully triangulated graph G in Fig. 1(b) is obtained
by drawing a bond in every nontriangular face of Fig. 1(a).

Considering the site-percolation process on G, we note
that, if p < 1, for each i > O the probability of the event that all
six vertices of 4, are white is ¢° > 0. Further, we observe that
any pair of the triangles with odd indices 4,, 45, 45,+-, has no
common vertex, hence the number of white vertices on the
perimeter of one of these triangles is independent of that on
the others. But then it follows from a well-known law of
probability theory that there is with probability 1 at least one
such 4; of which all six vertices are white. It is obvious that
such a triangle blocks all possible black walks starting in one
of the corners of 4,. This is the case for every p < 1, so we
may conclude that for this graph, which obviously is a mosa-
ic, P = 1, so that (3) and therefore (1) does not hold.

In Sec. 2 relation (1) will be derived for a restricted class
of lattices in a way that is totally different from that of Sykes
and Essam. The proof'is based on the following assumption:

Assumption 1: If p < P then the mean number of ver-
tices that can be reached from a given vertex via black walks
(i.e., the mean size of black clusters) is finite.

Though not proved, this assumption is not unusual. [t is
even the main idea behind the method of estimating the criti-
cal probability by means of cluster-size expansion (see
Domb, Sykes?).
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It will appear that, besides (1), the assumption has other
interesting consequences. In Sec. 3, e.g., we shall use it to
prove for a certain class of subgraphs of the simple quadratic
lattice S, that their critical probability is the same as for §
itself, In Sec. 4 assumption 1, combined with a theorem of
Hammersley, leads to another mathematical approach of a
method to estimate the critical probability for certain lat-
tices. This method is rather similar to the renormalization
group method used by Reynolds ez al.>*

2. AN ALTERNATIVE DERIVATION OF:
POL) + PELY) = 1.

We shall first discuss some definitions and arguments
which lead to Lemma 1. Then we are ready to prove (1) for
certain lattices.

Let v be a vertex of some graph G.

N "(v) denotes the set of all vertices of G that can be
reached from v in » or fewer steps.

Further we define:

B°v) = N°v) = [v},
B"(y) = N"wI\N"~ (o).

We shall call B "(v) the sphere with center v and radius
n. Now consider the site-percolation process on G of which
every vertex is colored black with probability p and white
with probability 1 — p. Let S'( p;v) be the mean number of
vertices that can be reached from v by black walks, and de-
note by S, ( p;v) the mean number of such vertices which lie
in B*(), n = 0,1,2,---. It is clear that

S(pw= 3 5.(p). @)

n=0

Further let P, ( p;v) be the probability of the event that
at least one vertex outside N "(v) can be reached from v by a
black walk.

Every walk from v to a vertex outside N *(v) obviously
visits some vertex of B "(v) and the probability that at least
one vertex of the latter kind can be reached from v by a black
walk is not larger than S, ( p;v), so that

P, (pv) <S, (pv); &)
this, combined with (4) and assumption 1 gives:

Lemma 1: If p< P9, then £7_ , P, ( p;v) < o.

For reasons of simplicity we shall first study as an ex-
ample the site-process on the simple quadratic lattice S, for
which with the help of Lemma 1 we shall prove (1). After-
wards the results will be generalized. Because for this lattice
the functions S, , S, and P, do not depend on v, we shall omit
this parameter.

For p < P¥(S), it follows, by Lemma 1, that the series
3 P,( p) converges and so, for some MeN and positive real
number r:

S P(p=r<l. (6)

n=M-+1

Denote by W_, W, and C the events that the vertex
0 = (0,0) belongs to an infinite white S * cluster, that all ver-
tices (0,0), (0, —1),...,(0, — M) are white, and that the vertex
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0 is black or surrounded by a black S circuit, respectively.
From the matching—property (see Appendix 1 of Ref. 1
for a proof) it follows that either W _ or C occurs. We also
note the following: If all vertices (0,0), (0, —1),...,(0, — M)
are white, then the event C can only occur if there is a black .S
walk from a vertex on the ¥ axis below (0, — M) to a vertex
on the Yaxis above 0. Further, for each positive n, all vertices
on the positive ¥ axis lie outside N "((0, — n)), so that the
probability of the event that at least one of these vertices can
be reached from (0, — ) by a black walk is smaller than
P, ( p). Therefore, if for events E, and E, Pr{E,|E,] denotes
the conditional probability of £, given E,, it follows for
p<PS):

PriC(W)< 3 Plp=r<l, (7)
n=M+1
and hence
Pr{W_}>Pr{W ) Pr{W_|W)
=g"* (1 - Pr{C|W})>¢"+ (1 —r)>0. (8)

So we have proved that, forp < P (S ), there is a positive
probability that a given vertex belongs to an infinite white S *
cluster. In other words, if p < P(S), then 1 — p> P(S*).
This immediately yields, by taking p = P'(S) — ¢, with €
positive and arbitrarily small:

PAS)+ PSS <L (9)

Fisher,” generalizing Harris’ method,® proved that for a cer-
tain class of lattices, to which S belongs, P*)(L )

+ PPAL P)>1, where L ? is the dual lattice of L and P®)
denotes the critical probability for the bond-percolation pro-
cess. This result can be extended to the site-case, so that we
have, for S,

PR(S)+ POS*)>1, (10)
which, combined with (9), yields the wanted relation:
POS)+POSH =1L an

When we call two vertices v, and v, equivalent if, for all # and
D, S, (p;vy) = S, ( p;v,), then we can generalize the above re-
sult as follows:

Theorem 1: Let L be a lattice which has only a finite
number of classes of equivalent vertices and which possesses
a pair of orthogonal symmetry-axes. Then

POLY+POUL*)=1
The proof of Theorem 1 is similar to that of the special
case of the simple quadratic lattice (see also Fisher’).

3. SOME NONTRIVIAL SECTION-GRAPHS OF S WITH
CRITICAL PROBABILITY P¥(S).

In this section it will first be shown that P (S (37))
= P¥(S), where S (i) denotes the quadrant of S with ver-
tex-set {(n,m)|n,m>0}. Analogously S *({7) will denote the
quadrant of § * with the same vertex-set as S ({7).

From the matching-property (see Ref. 1) it follows that
the vertex 0 = (0,0) belongs to an infinite white cluster of
S *(1m)ifand only if thereis noblack walk in.S (}7) from some
vertex (n,0) to some vertex (0,m),n,m>0. Itis trivial that the
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probability of the latter event is smaller than the probability

of the corresponding event for S, which, in the case that

p < P9(S), can be proved (in a similar way as in Sec. 2) to be

smaller than 1. So we have that, for p < P (S (which, by

(11), is equivalent with 1 — p > P&(S'*),

1 — p>P (S *(4m)). Hence it follows that
POSHAMN<PIS™). (12)
Ontheotherhand, because S *(1m)isasubgraph of S *, it

is clear that the critical probability of the first cannot be
smaller than that of the second; hence

PO(S*(m)) = PO(S ™). (13)

The analog of (13) for S'is obtained by changing the roles
of Sand S*.

In the same way we can prove the following theorem:

Theorem 2: Let u be a positive real number and let S’ be

a connected subgraph of S containing the section-graph of S
with vertex-set

{(n,m)|0<n;0<m<un},
then
PO(S") = PS).
Remark: It is noted that similar results hold for many

other lattices, particularly for the triangular and the honey-
comb lattice.

4. ESTIMATES OF THE CRITICAL PROBABILITY

In this section for a certain class of lattices we shall
construct sequences of numbers which converge to the criti-
cal probability. As in the last two sections, we shall first take
as an example the simple quadratic lattice S.

Let K (n) be the so-called “box” with (n + 1) X (n + 1)
vertices (see Fig. 2).

By the upper, the lower, the left, and the right side of
K (n) we mean the sets {(0,n),(1,n),....(n,n}},
{(0,0),(1,0),...,(n,0)}, §(0,0),(0,1),...,(0,n), and
{(n,0),(n,1),...,(n,n)}, respectively.

°

S

nass

ot

2
FIG. 2. The box K (4) of the simple quadratic lattice.
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FIG. 3. Example of a coloring of the box in Fig. 2. In this example the event
B, and not W ¥ occurs. The numbered vertices mark a black S walk from the

lower to the upper side.

Let B, (W,) be the event that there is a black (white) §
walk, entirely lying in K (n), from the lower to the upper side
of the box.

Analogously B *(W ¥) denotes the event that there is a
black (white) $ * walk, entirely lying in K (n), from the left to
the right side.

Further we define:

f.(p) =Pr{B,};fX(p)=Pr{B}}. (14

From this definition and the fact that the probability
that a vertex is white is 1 — p, it follows that

PriW,} =f,(1 = p) Pr{W3} =fx(1 —p). 15)
Because of the matching-property either B, or W#*
takes place (see e.g., Fig. 3). Hence, by (14) and (15):

fi(p) =171 ~p). (16)

It will be shown that, for p < P¥)(S), the sequencef, ( p)
tends to zero. Analogously, if p < P(S *), then f*( p) tends
to zero. For this we shall first state a stronger version of
Lemma 1.

Consider the site-percolation process on a graph G. Let
vbe a vertex of G. Define the following functions [with B "(v)
as defined in Sec. 2): E, ( p;v)= the mean number of vertices
in B "(v) that can be reached from v by at least one black walk
of which all vertices, except the last one [which, of course, is
in B "(v)], are in N "~ '(v). Further,

F.( p)Esgp E,(p;v).

In the case that G is a so-called medium”® the following
holds: If, for certain n and p, F,,(p) = A < 1, then, for each
nonnegative integer m and each vertex v:

F,(pv) <A tm/m, an

where [m/n] denotes the integer part of (m/n) and with
P, (p;v) as defined in Sec. 2. This theorem, which is due to
Hammersley,'® was formulated and proved by him for the
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bond-case,!! but it is easily seen that also the above site-
version holds.

Now if the medium G contains only a finite number of
classes of equivalent vertices (equivalent used in the same
sense as in Sec. 2), then it follows from assumption 1 that in
the case that p is smaller than the critical probability, for
each vertex v, 22 _ o E,,( p;v) < « . Hence, (because of the
finite number of equivalence classes) in that case there will be
some n such that F,( p) < 1. Next, application of Hammers-
ley’s theorem leads to the following lemma:

Lemma 2: If p < P(G), then there exists a4 (p) < 1,
such that for all m and all vertices v:

P, (pv) <A "(p).

Remark: If, in Hammersley’s theorem, [m/n] would be
replaced by (m/n), then Lemma 2 follows trivially from the
above reasonings (take A ( p) = A '/"), with A as in Hammers-
ley’s theorem). The presence of the [ ]-function makes only a
slight change of the proof necessary.

We are now ready to prove the statement about the
limiting behavior of £, ( p): From the definition it is clear that
/,,(p)is smaller than the probability of the event that there is
ablack S walk, not necessarily lying entirely in the box K (n),
from some vertex (i,0) to some vertex (j,n) (0<i, j<n). Fur-
ther, for each 7 and j, the vertex (j,n) lies outside
N"~((i,0)) so that, for p < P(S), it follows from Lemma 2
that

F(D< S P (pGO) <+ DA™ (p),  (18)

=0

so that £, ( p)—0 for n—o0.
Of course the same arguments hold for S'*, i.e., if

p < PY(S *) then, for n— oo,

Sr(p)—0. (19)
But, from (11), p < P XS *) is equivalent with

1.09
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FIG. 4. The function £, ( p) for n = 5 and n = 20.
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1 — p> PY(S). Hence, by combining (16), (18), and (19), we
have the following theorem.

Theorem 3: Denote by f, ( p) the probability of the event
that there is a black S walk, which connects the lower and the
upper side of the box X (1) and which does not leave this box.
Then, for n— oo

Su(p)—>0, for p < PY(S),
falp)—1, forp>P‘j)(S).

Of course, by symmetry, an analogous theorem holds
for S *.

Remark: The substance of this theorem is already men-
tioned in earlier papers, e.g., by Reynolds ez al.>® (who show
even more, namely that the “unstable” fixed points of the
f..’s converge to the critical probability), but our proofis new.
Their theory is based on scaling-arguments, which are very
interesting but rather heuristic. On the other hand, our ap-
proach does not give insight in the theory of critical expo-
nents. The interested reader is also referred to work by
Kirkpatrick.'?

Though Theorem 3 says nothing about the limiting-
behavior of /, ( p) in the case that p = P¥(S), we do have the
following theorem:

Theorem 4: Let rbe any real number in the open interval
(0,1) and let g,,:[0,1]—[0,1] be the inverse function of £,,,
then:

lim g,(r) =P(S).

H— oc

This theorem follows from Theorem 3 and the fact that
every f, ( p) is continuous (it is a polynomial) and increasing
in p, while, for each n, f,(0) =0 and f, (1) = 1.

Every polynomial £, is computable (because for every n
there is only a finite number of ways in which the vertices of
B (n) can be colored black and white); hence Theorem 4 in-
deed provides sequences of numbers which converge to the
critical probability. Unfortunately, even for rather small #, it
takes very much time to calculate £, . For various values of n
and p, estimates of f, ( p) are made by Monte Carlo simula-
tions (see e.g., Fig. 4). These values lead to estimates of g,, (»).
Though every number between 0 and 1 is allowed, we made
the most natural choice and took r = L.

TABLE L.

(a)

&

[ (b)

FIG. 5(a) The box K (2) of the covering-lattice of S. (b) Unit-cell of the
lattice in (a).

Linear interpolation in the intervals [ p, , ,,, ], where
Pn1(p,,) is the largest (smallest) p in Table 1 such that the
uncertainty region of f, ( p) lies entirely below (above) | (that
i8: Pryg1 = 0.591, p1yo> = 0.593; preo, = 0.592,

Dico2 = 0.593), yields:

8120(3) = 0.5922 + 0.0003, (20)

The results (20) give the impression that the last value,
0.5925 + 0.0002, is a reasonable estimate for the critical
probability. This estimate is within the uncertainty region of
the less precise result of Sykes et al.,'* who obtained P (S)

= 0.593 4 0.002, and a little smaller than the estimate of
Reynolds er al.,® who found 0.5935 + 2302

Finally it should be remarked that analogs of Theorems

3 and 4 hold for many other lattices, specifically for those

f£.(p) 0590 0591 0592 0593 059 0.595

0.454 0.560
80 + +
0.009 0.009
0.433 0.462 0.495 0.527 0.533 0.567
n[ 20 o+ o+ o+ o+ o+ 4+
0.012 0.012 0.012 0.012 0.012 0.012

0405 0450 0477 0526 0.539 0584
160 + + + + + +
0012 0012 0012 0012 0012 0012
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7

F

FIG. 6. By drawing one diagonal in each face of the simple quadratic lattice,
we obtain this lattice, which is isomorphic with the regular triangular
lattice.
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which have a pair of orthogonal symmetry-axes and are reg-
ularly built up of rectangular unit-cells (see e.g., Fig. 5). In
these cases we take for K () the box consisting of # X n unit-
cells.

Remarkable cases are those of the lattice in Fig. 5,
which is the covering-lattice of the simple quadratic lattice,
and of the triangular lattice 7, which is isomorphic with the
lattice formed by drawing one diagonal in each face of the
simple quadratic lattice (see Fig. 6).

From the self-matchingness of these lattices and the
symmetry of their boxes it follows that in these cases f, ( p)

= f*( p), which, by (16), yields for all n and p:

LH(p)+f,0=-p =1, (21)
and hence
LB =13 (22)

But, for these lattices, | is exactly the value of P, (S'), so
that £, ( p) is constant at the critical probability.
From (22) it also follows that, for all n

8.(3) = P.(S). (23)

So if we take r = | then, for these lattices, Theorem 4 yields
an exact result.

Added in proof: In Sec. 4 a theorem of Hammersley is
used to prove that, for
p<PYS) lim,  _ (n+ 1)P, ,(p;v)=0and hence
lim, . f,(p) =0 [see Lemma 2 and (18)]. It is possible to
derive this result directly, i.e., without using Hammersley’s
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theorem, namely as follows: P, { p;v) (see definition in Sec. 2)
is obviously decreasing in n. Further, if p < P19(S), then, by
Lemma 1 (Sec. 2), 2 P, ( p;v) < . Hence, if p < PYI(S), then,
with [#/2] denoting the integer part of n/2:

0<nP, (p) <2 3. P,,(psv)—0, for n—oo.

n/2
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A solution is given for the (inverse) problem of determining the scattering laws for a multigroup,
anisotropically scattering medium, in terms of the boundary fluxes corresponding to finite slabs.

PACS numbers: 05.60. + w

I. INTRODUCTION

The problem of determining the scattering law for a
medium by measuring and processing the results of one-di-
mensional experiments has been considered in a number of
recent articles,'~"* In much of this work, the angular fluxes
on the boundaries of and within the system must be mea-
sured to obtain a solution. From the experimental point of
view, it is preferable to have to measure only the incident and
outgoing fluxes. Pahor’s solution’ does require just the mea-
surements of these boundary fluxes, but his solution is ap-
proximate and applicable only for thin slabs.

Siewert®!® and McCormick,!! however, have recently
derived exact solutions for one-group, anisotropic scattering
problems in a finite slab, in which only the boundary fluxes
need to be measured. Siewert’s first solution [Ref. 9, Eq. (12)]
is based on the assumption of a two-term (linearly anisotro-
pic) scattering law, and is derived by manipulating Chandra-
sekhar’s X and Y functions.'® Siewert'? later extended this
result to a three-term scattering law and reduced the deriva-
tion to direct manipulations of the transport equation.
McCormick'! then found a solution for a general (N + 1)-
term scattering law. McCormick’s analysis makes use of azi-
muthally asymmetric fluxes and leads to a linear ““triangu-
lar” system of equations, whereas Siewert’s analysis makes
use of only the azimuthally symmetric flux and leads to a
nonlinear set of equations. In spite of these differences,
McCormick’s analysis'! is similar to that of Siewert,'” and
both analyses give the same result for isotropic (N = 0)
scattering.

More recently, Siewert and Maiorino'? and McCor-
mick’? have solved inverse problems for Rayleigh-scattering
atmospheres. Also, McCormick and Sanchez have studied
various numerical solutions of inverse transport problems,*
and have developed solutions for more general inverse
problems. "’

In this note we consider multigroup transport in an ani-
sotropically scattering, finite slab medium. We require that
the number G of energy groups and the number N + 1 of
Legendre moments in the scattering law are given and finite,
and that the total cross sections for each group are known.
(Actually, it suffices to know the total cross section for only
one group.) We then derive linear equations from which the
scattering laws can be determined by performing G *(N + 1)
slab geometry experiments and measuring only the bound-
ary angular fluxes. Our method is similar to that of Siewert '°

“Research performed under the auspices of the U.S. Department of
Energy.

158 J. Math, Phys. 22 (1), January 1981

0022-2488/81/010158-03$1.00

and McCormick,'! although we do not make use of the azi-
muthally asymmetric fluxes, as McCormick did. (If we had
followed McCormick’s treatment of the azimuthally asym-
metric fluxes, the number of necessary slab experiments
would be reduced to G2, but the algebra would become more
difficult. Such a solution could be less sensitive to experi-
mental error; however we shall not develop this solution
here.) Finally, we show that our solution reduces to the ap-
propriate parts of McCormick’s'! and Siewert’s'° solutions
for the special cases of one-group scattering with an (¥ + 1)-
and a three-term scattering law, respectively.

Il. ANALYSIS

We shall consider forward transport problems of the
following form:

12 ) + Sdip)
ox

=13 i P,(p)C,¥,(x), O<x<a, (2.1)
= [ P d 22
YOu)=f (1), O<pu<l, (2.3)
Yap)=f(p), —1<p<0. (2-4)

Here P, ( u) are the Legendre polynomials, 2 is 2 known
diagonal G X Gmatrix,C, areunknown G X G'matrices, and
the angular and incident fluxes ¥, f; , f; are G X1 vectors.
We shall also consider adjoint transport problems of the
form

—u ai VA0 + PHg)E
X

=1 $ PusmC, O<x<a, 2.5)
ww= [ Pl 2.6)
YHOu) =ff(p), — 1<u <0, (2.7)
P*apu) = fR(p), O<p<l. (2.8)

In these equations, ¥*, f}, and f¥ are 1 X G vectors.
To begin, we multiply Eq. (2.1) on the left by d*/dx
and integrate over u. This gives
1

[ A8 (i (L) 508

N
=1 5 (L e, 29)
n=0 dx
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Next we multiply Eq. (2.5) on the right by d{/dx and inte-
grate over u. This gives

[ ) (et [ o ()

=1 i tb’:-Cn-(irbn)- (2.10)
n=0 ax
Now we add Eqgs. (2.9) and (2.10) and get
(" yrspau= L LS g, @0
dx —1 dx 2 n=0

Finally, we integrate Eq. (2.11) over 0<x<a to obtain the
main result:

[ wr0mz40m du - I Wb S du

=1 $ [¥10)C, 4,0 - $2(@)C, 4, @) (212)

This equation relates the boundary values of any pair of
forward and adjoint angular fluxes to the unknown matrices
C,,0<n<N. There are G *(N + 1) unknowns in these matri-
ces, and there is no restriction on the boundary conditions
given by Eqs. (2.3), (2.4), (2.7), and (2.8). Thus, if boundary
conditions for G (N + 1) distinct pairs of forward and ad-
joint problems can be prescribed such that the outgoing an-
gular fluxes and the incident adjoint angular fluxes can be
measured by experiment, then Eq. (2.12) would provide a set
of linear G*N 4- 1) equations for the same number of un-
knowns. These unknowns could then be determined by solv-
ing this linear system. [It is clear that if only one total cross
section were known, then the remaining cross sections and
the scattering law could be detemined by performing
G3N + 1) + G — 1 experiments.]

As an example, let us consider an experimental situa-
tion in which measuring devices are situated on both sides of
a slab, and beams of neutrons are incident on one or both
sides of the slab. Then for G (N + 1) different incident angu-
lar fluxes, one can measure the outgoing angular fluxes, and
thereby obtain G ?(NV + 1) distinct sets of angular fluxes de-
fined on the boundaries of the slab. In order to make use of
these functions in Eq. (2.12), it suffices to obtain just one
solution of the adjoint problem (2.5)—2.8) which can be mea-
sured experimentally. Such a solution exists if we prescribe

YrOp) =1, 1<g<G, (2.13)
Yrlau)=1, 1<g<G. (2.14)

O<pu<l,

Then {* has the following physical (and measurable) inter-
pretation at x = 0 and for 0 < <1:
¥¥(0,u) = the total current exiting the slab due to a unit
incident beam at (0,) in group g. (2.15)
Also,
VHapu) =940, —p), — 1< <O, (2.16)
To verify this, we consider the following forward trans-
port problem for a function Wix,u;g,.k0):
u%w+2-\v=; S P(ulC,¥,,

n=0

(2.17)
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1
¥, (x,8ofto) = f P, (Wt ot ', (2.18)
-1
W, (04:80120) = 1" 8(1t, — Po)Bg,» O<p<1, (2.19)
VY (ap:80k0) =0, —1<u<O0. (2.20)

Multiplying Eq. (2.17) on the left by the solution ¥* of the
problem (2.5), (2.6), (2.13), and (2.14), and integrating over u
and x, we easily obtain

v20u = 3 | [ wilonsgon du

- r 1Y (0:25804t0) du],
—1

1<go<G, O<pup<l. (2.21)

This verifies the interpretation (2.15), and Eq. (2.16) follows
by symmetry.

Thus, suitable boundary values of 4* can be determined
by performing the same type of experiments for the forward
angular flux as described earlier, measuring the outgoing
currents, and then introducing these currents into Eq. (2.21).

The above formulas simplify if the matrices C, are a
priori known to be symmetric. Then for any solution ¥(x,u)
of the forward transport equation, a corresponding solution
of the adjoint equation is

P*oop) = V'(x, — p), (2.22)
where T denotes “transpose.” Since the Legendre polynomi-
als satisfy

P,(—p)=(=1)P,(u) (2.23)
then Eq. (2.22) and (2.23) give
Pr(x) = (= 1"y (x). (2.24)

With the choice of ¥*, Eq. (2.12) reduces to
[ 70— w2 w0 du — [ ¥iap)Zblaw)

=4 3 1= 17 [¥50}C, ,(0) — 41(@)C, b, al).
. (2.25)

In this situation, only the forward angular fluxes on the
boundary need to be measured.

In the special case of one-group scattering and the
change of notation 2, = o, (C, ), = oc,, Eq. (2-25) reduces,
after dividing out o, to

[ w10, ~ pto du - [ v~ agn do
=1 ¥ (= 1%, [0 la))

This equation has been derived by McCormick, ! and for the
special case N = 2 was derived earlier by Siewert.'’

(2.26)
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Thermodynamics. ll. The extended thermodynamic system
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The algebraic theory of thermodynamics developed in a previous paper is extended to include the
algebraic structure that arises from the introduction of a physical body into the theory. The
extension is based on very general definitions of both the thermodynamic states of a body and
subsystems of that body. The algebraic analysis, which includes bodies in nonuniform states,
shows that the set of all thermodynamic states of a body has the same algebraic structure as the set
of thermodynamic states and that composite systems are induced by the algebraic structure of
thermodynamic states. The analysis also justifies a variational treatment of thermodynamic
bodies in uniform as well as nonuniform states. The variational calculation includes all
conventional methods of calculation as special cases and helps to illuminate the origin and

interpretation of the electrochemical potential.

PACS numbers: 05.70 — a

INTRODUCTION

Thermodynamics has long enticed scientists from di-
verse disciplines to its service with the twin attractants of
utility and simplicity. While the utility was always there in
abundance, the proffered simplicity was often evanescent. I
examined the mathematical structure of thermodynamics in
a recent paper' with the intent of stripping it of those as-
sumptions and notions which are inessential for its develop-
ment and which only seem to obfuscate the underlying sim-
plicity. It proved possible to construct an algebraic theory of
thermodynamics which was devoid of partitions, composite
systems, and the zeroth law of thermodynamics, indepen-
dent of any particular brand of mechanics, and had a global
character in the set of thermodynamic states. Surprisingly, it
was never necessary to mention what is the essence of any
physical theory: a physical body to which the theory is ap-
plied. In this paper I shall remedy this hiatus in the theory
and focus on the algebraic structure that arises when this
aspect of a physical theory is brought into play.

The inclusion of a physical body in a thermodynamic
analysis can complicate the theory considerably because it
forces one to choose a suitable definition for the thermody-
namic states of such a body. This inevitably makes the theory
dependent on the structure of that body to some extent. Tra-
ditionally thermodynamic states of bodies have been taken
to be uniform over the body. The chief virtue of such a defini-
tion is that it effectively makes the states of the body coincide
with the abstract set of thermodynamic states, a fact I al-
luded to in my first paper {p. 1595). The greatest deficiency of
such a definition is the restriction it imposes on the applica-
bility of thermodynamic analysis to real world problems.
Physical bodies in the real world are seldom in uniform
states and this is especially true when electromagnetic and
gravitational fields are present. More often bodies exhibit
large gradients in properties and it would be advantageous to
be able to treat bodies in such nonuniform states by thermo-
dynamic analysis. The primary purpose of the analysis de-
scribed in this paper is to extend the algebraic analysis of the
first paper to include nonuniform states within the scope of
thermodynamic analysis. The algebraic approach will be
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global relative to the thermodynamic states of a body and it
will lead to results which will be applicable to bodies which
can be characterized as being in local equilibrium states.

The paper will not be confined only to working out the
algebraic details associated with the introduction of a body
into the formalism. Some space will also be devoted to the
development of a continuum realization of the algebraic for-
malism. There are three objectives which will guide this de-
velopment. One objective is to give a more equitable treat-
ment of constitutive relations in deriving a realization of the
first law. The second objective is to demonstrate that the
formalism contains conventional thermodynamics as a spe-
cial case. The final objective is to use the formalism for the
thermodynamical treatment of systems in the presence of
electromagnetic and gravitational fields and thus to shed
some light on the origin and interpretation of the electro-
chemical potential and the related gravitational function.

This paper will rely heavily on the results contained in
the paper which preceded it and I shall presuppose a knowl-
edge of that paper’s contents. The notation to be used here
will be identical to that used there insofar as that is possible.
When it becomes necessary to refer to a specific result from
the first paper, such as an equation or a theorem, the refer-
ence will be preceded by the letter A. For example, Theorem
A.1.42 is Theorem 1.42 from that paper.

Since the publication of the first paper I have found
some minor typographical errors and these are corrected in
the Appendix. Also to be found in the Appendix is the proof
of an extended version of Theorem A.I 42 from the first

paper.

I. ALGEBRAIC CONSIDERATIONS

As in the first paper, I shall adopt the approach of sub-
dividing the algebraic analysis into two parts. The first of
these will be devoted to developing those algebraic ideas
which are necessary for a complete thermodynamics but
which were not needed in my previous paper. The treatment
is largely confined to establishing an order on a collection of
the partitions of a given set. In the second portion of this
section I shall look at the enriched structure of algebraic
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thermodynamics that is a consequence of a physical body’s
presence and the interaction of the body’s algebraic struc-
ture with the algebraic structure on 2.

A. Some algebraic preliminaries

Partitions of sets will play an important role in the fur-
ther development of those aspects of algebraic thermody-
namics to be examined in this paper. A partition of a non-
null set is any collection of its disjoint, non-null subsets
whose union is the given set. There is a direct connection
between equivalence relations and partitions because every
equivalence relation on a set induces a partition of that set
and conversely. Several cases of partitions induced by equiv-
alence relations were described in the first paper. Here we
shall be concerned, not with the origin of a particular parti-
tion, but with the relationship of one partition to another.
The partitions themselves will arise in a natural way from the
thermodynamic discussion. We shall now begin to establish
an order structure on a collection of partitions.

Definition 1.1: Let X be a nonempty set and P(X ) a col-
lection of its partitions. Define relations <, and = , on P(X)
by the prescription that if P, = { P(a)|aed }eP(X) and
P, = {P,(A)|AeA }eP(X ) then (1) P,<p P, iff ¥V acd I some
AeA such that Pi{a)C P,(4 ), and (2) P, = P, iff P,CP, and
P,CP,. If P,<pP, then P, is said to be a refinement of P, or
P, is said to be a coarsening of P,. If P, = , P, then P, is said
to be equal to P,.

Figure 1 shows the Venn diagrams of three partitions of
a given set. The partition P, is obtained by further partition-
ing the elements of the partition P, and therefore P, is clearly
a refinement of P,. On the other hand, the partition P, is
neither a refinement of P, or P, nor are they refinements of
P.. If we anticipate that (P(X ), <p, = p) willbeshowntobea
partially ordered set, then we realize that P(X ) will not neces-
sarily be a chain, that is, <, may not be a linear order on
PX).

Theorem 1.2: The triplet (P{X ), <,, = p)is a partially
ordered setand P, = P, iff P, = , P, iff P,<pP, and P,<,,P,.

Proof: The relation = , is an equivalence relation on
P(X ) because it is obvious from its definition that = . is
nothing more than the usual equivalence relation of set equa-
lity. That is, P, = P, iff P, = P,. The relation <, is (1) re-
flexive because P;(a)C P,(@)Vaed and thus P,<,P,. Itis (2)
antisymmetric for, suppose that P;<,P, and P,<,P,. Then
this=>Vaed Isomeied suchthat Pi{a)C P,(A JandVAieA 3
some a'e4 such that P,(A )C P,(a’) and so we see that

P9
W

Py Py P3

FIG. 1. An example of three partitions of a set X illustrating P, <, P, and
P& P,
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P,(a)C P,(A)CP,('). But then Py(a)C P,(’) and
P,(@)nP,(a’')#0 which =P (a’) = P,(a) because P, is a parti-
tion of X and therefore P,(a) CP,{A )C P\(a’) = P,(a). Thus
weseethat P(a) = P,(4 )and therefore P, C P,. Inexactly the
same way we see that VAeA 3 some a’ed such that
P,A)CP\{a')and Va'eA 3 some A 'eA such that
P(a')CPyA"). Now
PyL)CP\(a')C PR [P A NPAA ) AB=PA )

= P,(A )=>VAeA 3 some a’ed such that

P,(A) = P,(a")=P,CP,. But since P,C P, and P,C P, we
have P, = P,&=—=>P, = pP,. Therelation < is also (3) transi-
tive for suppose P, <P, and P,<,P,. This implies that
[VaeA 3 some A€A such that P,{a) C P,{A }] and [VieA 3
some yel"such that P,(4 ) C P;(¥)]=>Vaed I some yel such
that P,(a)C Py(y)=>P;< »P;. There still remains the simple
chore of proving the converse of the antisymmetry property.
P, = ,P,iff P, = P,iff P,CP,and P,CP, iff [Vaed 3 some
A€A such that P,(a) = P,(A }=P,(a) C PylA )=>P,< pP,) and
[VAeA 3 some aed such that
P,(A) = P(@)=>P,(A ) C P,(a)=>P,< pP\]. Ifthisresultis com-
bined with the antisymmetry property, then P, <, P, and
P,<pP,iff P, =, P,

Corollary1.3: Let (P(X ), <p, = p)be a partially ordered
collection of partitions of X and define a relation < , on P(X)
by P, < pP, iff P,<pP, and P, P,. Then (P(X), <,)isa
strictly ordered set and < ,, is the strict order induced by <,
and = .

Proof: The proof is an immediate consequence of the
preceding theorem and Theorem A.L.21(1).

As a general rule, it is not necessary for a partially or-
dered set to have either a largest or a smallest element nor is
it necessary for its subsets to possess upper and lower
bounds. Butin the case of the triplet (P(X ), <p, = p)itiseasy
to show that each subset possesses both an upper and a lower
bound and may contain a smallest or a largest element.

Theorem 1.4: Let (P(X ), <,, = p)bea partially ordered
collectionofpartitionsof X,P® = {X },and P, = {{x}|xeX }.
Then (1) P %is an upper bound for every subset of P(X ), (2) Py is
alowerbound for every subset of P{X '), and (3) P(X' ) contains a
maximal element. (4) If P°, P,cP(X ) they are the largest and
smallest elements, respectively, of P(X).

Proof: The collection P{X ) can be regarded as a subset of
the collection of all partitions of X and clearly, P,and P°are
partitions of X. Because every subset X ' of X satisfies X ' C Xit
is true that P,<,P°VP,eP(X ) and therefore P° is an upper
bound for P(X ) and each of its subsets. The elements of the
partition P, are one element sets and there can be no further
refinement of P,. Hence, P,< P,V P,eP(X ) and therefore P,
is a lower bound for P{X ) and each of its subsets. Since every
subset of P(X ) has an upper bound then every chain of P(X)
has an upper bound and, by Zorn’s lemma A 1.25, P(X') con-
tains a maximal element. Clearly if P,, P°€P(X ) they are the
smallest and largest elements of P(X ).

The next two results explore the relationship between
comparable elements of the partially ordered set (P(X ), <p,

= ,). Specifically, I shall show that if P, is a refinement of P,
then every element of P, is expressible as a union of elements
of P,. This is equivalent to the statement that every refine-
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ment of P, can be generated by partitioning the elements of
P,. A similar result will also be obtained for the situation
where P,<pP, and P, P,.

Theorem 1.5: Let (P(X ), <p, = p) be a partially ordered
collection of partitions of X, and P,<pP,. If
P, = {P,(a)|acd } and P, = { P,{4 )|A1€A } then, VAeA,
Py{A ) =U,ean)Pila) where ADA (A }={a|aed } and
P\(a)CPyA )} #0.

Proof: From P, <, P, and the definition of <, given in
Definition I.1(1) it follows that 4 {1 ) 2@. From the definition
of 4 (A) it follows that U,., 1, Pi(@)C P54 ). Next suppose
AxeP,(A ) and x4 4, Py(c). But since P, is a partition
xeP,(a’) for some a'ed and because P < P,3 ad 'eA such
that P,(a') C Py{A ') and therefore xeP,(A '). Hence,

X€P,(A NP, ') #Band because P, is a partition it follows that
PA") = PfA | P (@' |CPyA") = Pyd |=a'ed (A )
=>X€Uqes 1) Prl) and hence Py(A ) CU, 4 1) Pyila). Thus we
have established that P,(1 ) = U, 1, Pi(@).

Corollary1.6: Let (P(X ), <p, = p)beapartially ordered
collection of partitions of X, P,<,P, and P, <P, where
P, = {P\(a)|aed }, P, = { P, )|Aed | and
P, = {Pyy)|yel }.1fA (1) = {a|acd and P,(a)C P,(4 )} and
A (y) = {a|aed and P,(a)C P;(y)} then
PoA )NP3(¥) = Usea 4 1na (n Prla)VAeA and yerl”.

Proof: By Theorem L35 Py(d ) = U 44, Prl@’) and
Py(y) = 2,4 (» Pila”). By applying the distributive law for
set intersections we see that P,{A JnP4(y)

= Py(A )N(Uprea (y)Pl(a”)) =Ugrea iy (PoA )nPy(a”))
= Ugeat)Yarea i (Pi{@)NPy(@”)). But P, is a partition and
P,(a@')nP,(a”) = @ unless P,(a’) = P,(a”) and therefore
Py[A NP5(¥) = Ugea s mPila).

I shall require some algebraic properties of real valued
functions and their integrals for some of the discussions to be
given later in the paper. Those properties which I shall need
are generally available in numerous textbooks on abstract
algebra, real analysis, and measure theory, but for conve-
nience I shall simply list, without proof, the few properties
which I will use. The proofs of the measure theoretic results,
for example, can be found in the textbook by Royden.?

Theorem 1.7(a): Let (R, +, -, €, =) be the extended
real number system with the usual order and /(X, R ) be the
collection of all real valued function on a set X. Extend addi-
tion, multiplication, and order from R to /(X, R )ina
pointwise manner. Thus if £, g, he/(X, R ) then

(1) h=f+giff h(x) =f(x) + g(x)VxeX, (2) h = fgiff
h (x) = £ (x)-glx)VxeX, (3)/<gifffx)<glx)VxeX, and (4)f = g
ifff(x) = gix)¥xeX. Then (£{X,R ), +,-, <, = )isaparitally
ordered ring and f= g iff f/<g and g</.

Theorem 1.7(b): Suppose B is a o-algebra of subsets of X,
that is, B is a collection of subsets of X which is an algebra of
sets and is closed under a countable union of the elements of
B. Further, suppose that v: B—R is a real valued function on
B. The triplet (X, B, v) is a complete measure space iff (1)
V(E)>0VYEeB, (2) v(@) = 0, (3) if { E,€B|ieN } is a disjoint se-
quence in B then v(u>_ E;) = 22 | vE,), and (4) if E€B,
v(E) = 0and A CE, then 4eB. The function v is called a
measure.

Theorem 1.7(c): Suppose f, g&/(X, R ) are measurable
with respect to B and denote the integral of fover EcB with
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respect to the complete measure space (X, B, v) by [ fdv.
Then (1)if />0 then §; fdv>0and also f; fdv=0iff f=0
almost everywhere with respect to v, that is, everywhere ex-
cept on a set of v-measure zero. (2) Suppose E is the union of a
disjoint sequence { E,eB|ieN } in B and either />0 or f'is
integrable over E. Then f fdv=237_, z fdv. Iffand g
are integrable over E and r,, r,€R then (3) f o (r.f + r.8) dv
=7, g fdv+r, ¢ gdv, and (4) if f<g almost everywhere
then fz fdv<fg gdv.
Theorem 1.7(d}: Suppose me£(X, R ), m>0 and define a
functionu:B—Rbyu(E) = fz m dvVEeB. Theny isamea-
sure and is absolutely continuous with respect to the mea-
sure v since (E ) = 0=u(E) =0.
We can now draw an interesting conclusion about
chains of integrable functions in /(X, R ) with these facts at
our disposal.
tions, integrable over XeB with respect to a complete mea-
sure space (X, B, v), and let G: {f|fe/(X, R ) and finte-
grable}—R beamapdefinedby G (f) = f fdv.ThenG |Cis
an order isomorphism and G (r,f + r,g) = r,G( ) + r.G ().
Proof: We begin by establishing a preliminary result
which depends only on the fact that C is a chain. Obviously
f<g=/<g almost everywhere and f = g=f = g almost ev-
erywhere. To establish the converse suppose f = g almost
everywhere and f #g. But f #g=>f < g or g < f=>f < g almost
everywhere or g < falmost everywhere =f # g almost every-
where which is a contradiction. Thus f= g iff f = g almost
everywhere. Finally, suppose f<g almost everywhere and
fg. But fLg=g<f—g<falmost everywhere=>f = g almost
everywhere =f = g—=f<g. Hence, we have that f<g iff f<g
almost everywhere. We are now ready to establish the prop-
erties of the map G. The relation G (r, f + 7,g)

=r,G(f) + r,G (g)isanimmediateconsequenceof Theorem
I.7(c.3). Now f = g=f — g = 0 and therefore
0=G(0)=G(f—g =G(f)—G(g) Hence,
f=g=>G(f) = G (g). Conversely, suppose G (f) = G (g). Then
0=G(f)—G(g =G (f—g) and also

0=G(g) — G(f)= G(g —f) But Cisachain and therefore
J<gorg<f=g — f>0or f — g>0 and by Theorem 1.7(c.1)
g —f=0orf— g =0almost everywhere iff f = g. Thus,

G (f) = G(g)iffif = gand G |Cisa 1-1 function. Westill need
to establish that G |C is a homomorphism. By Theorem
L.7(c.4) f<g iff f<g almost everywhere=G ( /)< G (g). Con-
versely, suppose G ( )< G (g) and f£g. But since C is a chain
f£g=g<f=G g)<G(f)and thus G(f) = G (g) iffl f= g
=f<g. Therefore, f<g iff G f)<G (g) and G |C is an order
isomorphism.

Corollary 1.9: Let Cand G be asin Theorem 1.8. If Chas
a maximal element, it is unique, is the largest element of C,
and the map, §: C—/(X, R ) defined by § (g) = g — f°, where
/? is the maximal element, is an order isomorphism and
G |Im § is an order isomorphism.

Proof: Suppose f° and g° are maximal elements of C.
Then f°<g° or g°<f°=g° = f° or f° = g° and thus if a maxi-
mal element exists it is unique. We know that g<f° or
(f°<g=g = f°=g<f°)VgeC and therefore g<f°VgeC and
hence f° is the largest element. Now & (g,)<8 (g,) iff
g, —f°<g, — f°iff g,<g,. From this it follows that
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8 (g,) = 6g,) iff 5(g,)<S(g,) and & (g,)<Slg,) iff g,<g, and
8,<g, iff g, = g,. Hence, § is an order isomorphism. Now
G [5(81)1<G [8(g,)] iff G (g, — f°)<G (g, — f°) iff

G(g) — G(f)<G(g,) — G (f)iff G (,)<G (g,)iffg,<g, From
this it follows that G [6(g,)] = G [6(g,)] iff g, = g,. Thus the
range of G |Im$ is order isomorphic to C which, as was just
shown, is order isomorphic to Imé and thus Imé is order
isomorphic to the range of G |Imé.

From the foregoing it should be clear that if we were to
defineamapé: Im G |[C—R by b [G (g)] = G (g) — G (f°) then
we have the situation depicted in Fig. 2 and the relationship
(G [Im 6 )08 = 6°(G |C). Of course, the set Im & is order
isomorphic to the Im & by virtue of the order isomorphism
G |Im . We have that Im & = {6 (g) = g — f°|geC, f° maxi-
malinC } anditisclear that8 (g)<0VgeCand § (g) = Oiffgis
the Pniqu_e maximal element of C. Similarly, we have
Imé = {6 [G (g)]|geC, f* maximalin C } and by isomorphism
4 [G (g)]<0VgeCand & [G (g)] = 0iff g is the unique maximal
element. To clarify the relationship between the set Im & and
the set Im & we observe that § [G (g)] = G (g) — G (/)

= G (g — f°) = G [(g)] and using the definition of G this
becomes

5 [Lg dv] = L&(g) dv.

Thus we have here a situation similar to that encountered in
the calculus of variations. The set Cis analogous to the space
of competing functions while Im & is analogous to the space
of admissible variations. Note, however, that the analogy is
not exact. In the calculus of variations both the space of
competing functions and the space of admissible variations
are required to be subsets of a normed linear space over R
and the space of admissible variations also must be a normed
linear space over R. These conditions were not necessary for
Corollary 1.9 and Theorem 1.8.

B. Algebraic thermodynamics of extended
thermodynamic systems

We are now in a position to extend, in a relatively simple
and direct manner, the algebraic theory of thermodynamics

F Im GIC

onl

p

Z ImGIm B =1md

f(X,R)

FIG. 2. Interrelationship among the isomorphisms of Theorem 1.8 and
Corollary L9.
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from a theory constructed only on > to a theory which takes
into account not only 2 but also the physical body which is
to be described by the rules of thermodynamics. It is the
combination of body and states which is the essence of phys-
ical theory. That is, in a physical theory we are dealing with
two primitive, and hence undefined, abstract concepts: the
notion of a body and the notion of states. We are constrained
to learn about the properties of the two only by studying
their combination. A nonpedestrian analog is easily con-
structed from a set of automobiles and a collection of road-
ways for those automobiles together with their synthesis into
traffic. Certainly, in this example, we could study separately
the automobiles and the roadways. But the analog to phys-
ical science in this example is what can be learned about
automobiles and roadways by studying only their combina-
tion in traffic. Thus a physical theory may be though of as an
amalgamation of the mathematical structure of the body
with the mathematical structure of those states used to de-
scribe the body. The explicit inclusion of the body in the
formalism of the theory is essential if the theory is to be a
physically meaningful one for it is precisely the behavior of
the body that we seek to describe by the mathematics. With-
out a body a theory cannot have a physical expression and so
would be devoid of physical meaning even though names
with a physical connotation were given to elements of the
mathematical structure. All tests of a physical theory are
performed by carrying out measurements on the body. In
this sense the introduction of a body can be interpreted as a
realization of the abstract theory of states.

To begin the development we must first introduce the
body and define the manner in which it is to be described
thermodynamically.

Axiom 1.10: There exists a set U called the universe.

Definition 1.11: Any subset BC U'is called a body in the
universe. A body is said to be a thermodynamic body iff 3 a
function o: B—23. The function o is said to be an extended
thermodynamic state (or simply a thermodynamic state) of
B. The collection of all thermodynamic states of B, namely
the set of all 3-valued functions on B, /(B, X), is called an
extended thermodynamic system.

The body B will not vary but will remain fixed for the
balance of the paper and we can simplify the notation a little
by suppressing B as a label. Henceforth, /(3 ) will be used in
place of /(B, ). From Definition I.11 we see that the ther-
modynamic state of a body is specified by assigning a ther-
modynamic state to each of its points. This pointwise defini-
tion of a state of B immediately suggests the pointwise
extension of relations on < to relations on /(2 ). That is, the
relations on 3 can be used to induce relations on /(Z) in
exactly the same way that the relations on R were used to
induce relations on /(X, R ) in Theorem 1.7(a). This proce-
dure will be applied to the relations induced by a collection
of simple processes {Definitions A.L. 17 and A.L 31).

Definition 1.12: Define relations on /(2 ) as follows: Vo,
o'e/(Z) (1) 0% iff alb)? o' (b)VbEB, (2)o = , 0 iff
olb)= ,0'(b)VbeB,and (3)o< ,; o' iffo(b )YbeB where 7 is
either Z or &

A great advantage to this natural pointwise extension of
mathematical structure is the fact that the relations on /(%)
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inherit all the properties of the corresponding relations on 2.
For example, we know that Vx, x'eX, x = _ x"iff x< , x'
and x'<_, x. But then from this we see thato = , o’ iff o{b )
=, o'(b)VbeBiff o(b )<, 0'(b)and 0'(b )<, 0(b )VbeB iff
o< _, 0 and 0'< , 0. In a similar way all the algebraic struc-
ture of 3 is passed on to /(% ) intact and we may restate all
theorems for 3 as theorems for /(3') without the necessity
for reproving them in the new context. We must only make
sure that the definitions in 2 and /(2') are compatible and
use similar notation. As an example, we used [x] as the nota-
tion for the equivalence classes of = _, in %;in /(Z') the
equivalence classes of = _, could be written as [¢]. For com-
pleteness and clarity I shall restate the theorems and defini-
tions from 3 as theorems and definitions for /(2'). Accom-
panying each restated theorem or definition will be the
number of its counterpart in 2 shown in parentheses.

Definition 1.13: (Definition A.I. 34) A process P on Bis
a map from B to the set of all processes on S, P: B—{P |Pa
process on Y }. A process P on B is said to be (1) a physical
process or & -process iff PElmP—=Pis a & -process on 2, (2)
an adiabatic process or an .« -process iff PElmP—Pis an .o/ -
process on 2, (3) a reversible process or a ZnZ *-process iff
PelmP=Pis a #ZnZ *-process on Z, and (4} a reversible
adiabatic process or an /N *-process iff PEImMP—=P is an
&N/ *-process on Z.

Theorem 1.14: (Theorem A.1.36) The relations .« ,

=, ?,and = , are equivalence relations on /() and,
furthermore, (1) each equivalence class of = (= . )isa

subset of some equivalence class of « ( #')and (2) therelation
Z possesses only one equivalence class, namely /(2 ) itself.

Definition 1.15: (Definition A.I. 37) If 0¥ ¢’, then o and
o’ are said to be adiabatically equivalent. The equivalence
classes of - are called the adiabatic components and denot-
edby I';, AeA and A is an index set. If o = _, ¢, then o and
o’ are said to be adiabatically equal. The equivalence classes
of =, aredenoted by [0], 0€£(Z ).

Theorem 1.16:(Theorem A 1. 38) The triplet (/{2 ), <,

= _ ) is a nonbranching partially ordered set whose maxi-
mal chains partition the adiabatic components. For each
o€/ (2 ), [0] is a subset of some maximal chain, and Vo,
ogef(Z), o= 0 iffo< 0’ and ', 0.

Theorem 1.17: (Theorem A.1.39) Let
S = {[o]|oeAZ )} be the collection of equivalence classes of
the relation = _, on AY ). If = is the equivalence relation of
ordinary equality in . and if [o]<[0’] if o< , 0, then (7,
<, =)is a nonbranching partially ordered set whose maxi-
mal chains partition .. Let I" = {I", |[1€A | be the collec-
tion of adiabatic components of /(3 )and .7,

= {[o]|oel;}. Then (1) { ¥, |A€A | is a partition of .7, (2)
the maximal chains of ¥ partition .%,, and (3)

¢ = {[o]|oeC, Cachainin /(F)} is a maximal chain in .~
iff C is a maximal chain in /().

Corollary 1.18: (Corollary A.1.40) There exists a 1-1 cor-
respondence between the maximal chains in % and the
maximal chains in /().

Definition 1.19: (Definition A.1.41) Let C be a chain, not
necessarily maximal, in (/(2'), < ,, = ., ). A thermodynam-
ic body B is said to be in an equilibrium state with respect to
C iff its thermodynamic state is a maximal element of C.
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Only Definition I.13 and Definition I.19, in the string of
theorems and definitions following Definition I.12, contain
new ideas. The others are mere restatements of results for 3
in the context of /(2 ). Definition I.13 introduces the new
idea of a process on B by relating it to processes on 2, which
were previously defined, while Definition I.19 defines an
equilibrium state for a body. I have elected to define relations
on /(X ) as extensions of relations on 2 rather than define
them by means of processes on B which would be analogous
to the procedure used to define relations on 2. Consequent-
ly, we must establish the relationship between processes on B
and relations on /(') by a theorem. The definition of an
equilibrium state for B given in Definition I.19 does not men-
tion the previous definition of an equilibrium state of a chain
in 2, Definition A.1.41, and this naturally raises questions
about their consistency. The following theorems deal with
these two matters.

Theorem 1.20: (Definition A.1.31 and Definition A.1.17)
Ifo,0’c/ (3 )then(l)jo< , o' iff o> o’ and Pa % -process on
B,(2)o= ,0 iff o5 o' and P a #n% *-process on B, and
(3)o~ , 0 iff 65 o' and Pa U *-process on B where 7
is either Z or 7.

Proof: To establish (1) we need only observe that o<, o'
iffalb )<, o'(b)¥beBiffa(b )2’ o’ (b)¥beBand P(b)a B-
process on 3 iff &% ¢’ and P a % -process on B. I used in
succession Definition I.12, Definition A.I,31, and Definition
I.13. Analogous proofs hold for (2} and (3) if Definition A.I
17 is substituted for Definition A.1.31.

Definition1.21: Let Cbe a subset of /(). The collection
of subsets of X, Z'(C), induced by C is defined by
¢ (C)={C(b)|beB }, where C (b)=={x|x = o(b) and 0€C}.

Theorem 1.22: Let C be a subset of /(). Then Cis a
chainin /(%), <., = . )iff €(C)is a collection of chains in
(& <0y =)

Progf: Weknow that Cisachainiff Y o, 0,6C, 0 <, 7
oro,<, 0,iffo,(b)< , o,(b)oray b )>0,(b)VbeBIff C (b )isa
vhain in & VbeB.

Theorem 1.23: (Theorem A.1.42, see Appendix of this
paper) Let Cbe a chainin (£/(2), <, = ., ) and € (C) be the
induced collection of chains in 5. Then € is an equilibrium
state of B with respect to C iff €(b } is an equilibrium state of
C(b)VbeB. Further, (b ')ele(b )InC (b)¥b 'eB such that
Cb')=Clb).

Proof: By Definition I.19 € is an equilibrium state of B iff
itis maximalin Ciffe<, 0 =0 = _ eVoeCiff €(b)
£, olb)=olb) = _ €(b)VbeBand VoeCiffe(b ) isan equilib-
rium state of C (b )VbeB. If C (b ') = C (b ) then the maximal
elements at b’ coincide with the maximal elements at 4, that
is, [e(b )InC (b ') = [e(b )InC (b Jand by the versionof Theorem
A_.1.42 givenin the Appendix of this paper €(b ')e[e(b )InC (b ).

I have already pointed out that the basic algebraic
structures of (A ), <, = ., }and (T, <, = ., )areidenti-
cal by virtue of the definition of relations on /(2 } as
pointwise extensions of relations on 3. This made it possible
to transfer a number of results from 3 directly to /(% ). But
certainly the two partially ordered sets are not identical in all
of their properties. What is the precise relationship between
these two sets? The next theorem demonstrates that /{3 )
contains an order isomorphic copy of 3 embedded in it.
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Theorem 1.24: The partially ordered set (2, <_,, = )

is order isomorphically embedded in (/(X), <, = _).
into

Proof: Define a function h: ¥— (2 ) by the prescription
that 4 (x) = o where o is the constant function on B whose
range is the one element set {x}. Then, obviously, 4 (x,)<_.
h(x,)iff o,<,, 0, iff (b )<, 0,(b)VbeB iff x,
<. X,. Hence, A is an order homomorphism because it satis-
fies Definition A.I. 23(1). The second condition of Definition
A.L 23 is redundant because = _, satisfies Theorem A.IL
21(1). This redundancy was pointed out in the first para-
graph following Definition A.1.23(1). Each o€lm A has only
one preimage and therefore 4 is 1-1 and an isomorphism.

The partially ordered set /(X ), <., = . )canbegiven
some additional structure, not possessed by (2, <, = ),
by coupling the known structure of 3 with the one funda-
mentally new algebraic element accompanying the body B,
namely the thermodynamic states of B. The specific compo-
nents I shall use are the partition of X into chains, established
in the first paper, and the preimages of these chains for the
thermodynamic states of B. This combination will enable us
to define some partitions of /(2 ) which, in turn, will help in
the analysis of the structure of /(). The ultimate objective
is a better understanding of the maximal chains in /(3 ) and
their relationship to the maximal chains in 2.

Theorem 1.25: Let ¥ = {C, |aed | be a partition of
into chains and define a relation =, called 2-chain equiv-
alence, on /(T )by 0,= 0, iff o, (C,) = 05 '(C,)Vaed.
Then =, is an equivalence relation on /(') and its equiv-
alence classes are denoted by (o) .. If 0,=., 0, theno, and
0, are said to be -chain equivalent with respec to €.

Proof: The proof is a trivial consequence of the defini-
tion of the relation =, .

Theorem 1.26: The equivalence classes (o), are chains
in /(Z).

Proof: Suppose 0,=, 0, and beB. Then because
o, '(C,) = 0o, '(C,)Vaed we know YbeB that o(b ),

o.b )eC, for some aed and thus VbeB, o,(b) and o,(b ) are
comparable. Hence, o,(b )< ., 0,(b)or o,(b )<, o(b)VbeB
iffo,<,, o,0ro,< 0.

Definition 1.27: Let P(Z )={% | ¢ a partition of 2 into
chains} be the collection of all partitions of 2 into chains, P,
={(0), |0e/(Z )} be the partition of /(Z) induced by the
relation of 2-chain equivalence where % €P(2'), and
P/ (Z)=[P.|€eP(Z)} the collection of all partitions of
/(2 ) induced by the relation of 2-chain equivalence.

Theorem 1.28: In the partially ordered sets (P(Z), <p,

= p)and (P(£(2)), <p, = p) we have that €<, ¢ iff
P, <P, iff (o), C(o), Yoel(2)

Proof: The theorem will be established by first showing
that € <, %€ " iff (o)., C(0), Yoe/(Z)and then demon-
strating that (o), C(0) . Voe/(Z)iff P, <, P, . Let
¢ ={C,|laed }and €' = {C, |AeA }.Thenby Theorem1.5
C <p€'=C; =Ugan,C, and using a property of inverse
set functions we see that VAeA, 07 (C)) = 0™ (Ugen 1), Ca)

= Ugea)0 ' (C,). From this result and the definition of
chain equivalence given in Theorem 1.25 we find that
o=, 0,iffo (C,) =0, (C,)Vaed=Uyey 1,07 '(Cp)
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=Uaea )05 (Co )20, Y(C)) = 07 (C3)VAed=0,=,.
0,.Butifo,=., 0,=0,=. 0, then each equivalence class of
=, meets only one equivalence class of = . and therefore
(o), C(0o), Yoe/ (). Conversely, suppose (o).,
C(0o), Yoel(Z)and € £, %" . Now & £ ,%'=3 some
aed such that C, ZC , VA€A. But clearly, 3 some A€A such
that C,nC, #@ because %’ is a partition of Z. Therefore,
since C, Z C,, AxeC,, such that x¢C; =31 'eA such that
xeC; . and therefore C,nC;. #@. Thus, we have
A(a) = {A|Aed and C,nC, #0} is a set with a least two
members and C, CU; 4 C, . Suppose A, A 'eA (@) and as-
sume B has at least two elements. Then we can always parti-
tion Bsothat B = B,UB,,and B;nB,. = @. Define two ther-
modynamic states, o, and g, of B such that o, }(C,nC,)
=B, #0,0, '(C,nC,.)=B,. #P and 0; {(C,nC,) = B.
Then it follows (see Fig. 3)thato '(C,) = B = 0, '(C,)and
o7 (Cy)=0=0; "(C,)Va'ed and a' #a. Consequently,
0,=,0, Buto; (C;)=B, #Band o, '(C;) = B and,
therefore, 0,# .. 0,. Thus 0,€(0,), and o,£(0,) .. and
hence (0,) ., Z {(0,) .- which contradicts (o) , C{0o)
Yoe/(X). Therefore it follows that (o), C{0)..-

VYoe/ (2 )=>% <% if B has at least two elements. Suppose
B = {b,} has only one member. Then the elements of /(')
can be labeled by the image of b, that is, /(Z)

= {o,|o:B—2 and o, (by) = x} = {0, |x€X }. A pair of
functions in #(2 ) will then be 2-chain equivalent iff they
map b, into the same chain, that is, o, = 0. iffx, x'eC, for
some aed. In this notation we have the translation (o),
Co) Yo/ (2)iff Yx, x'e3, 0=y 0,20, =.0,.
Thus Vaed we know that x', xeC e¥ if o, =, 0,20,
=0, iff x', xeC, €€’ for some AeA. Therefore, Vaed 3
some AeA such that C, CC, iff € <, % '. Hence, regardless
of the cardinality of B, (o)., C{0), =% <,% ' and thus
E<pC iff (o), C{o) Yol (2). To complete the proof
of the theorem suppose that (o), C{0) .. Yo/ (T ). But
then this = that Yo€/(X )3 some '€/ (2 ), namely ¢’ = o,
such that (o)., C{0"), and, by Definitions I.1 and 1.27,
P <pP,.. Conversely, we know from the definition of <,
that P, <,P.. iff Voe/(Z )3 some o’'s/(Z ) such that (o),
C {0’).... But then by the properties of equivalence relations
oe{o)., =0oe(0’) , =o=..0=>{0) ,» = (d')., and thus
P, <pP,={o), Cla"), = (o), Voe/(Z).

FIG. 3. Definition of functions ¢,: B—.2 and o,: B—% used in proof of
Theorem 1.28.
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Corollary 1.29: The partially ordered sets (P(Z), <p,
= p) (P2 (<p, =) and ({(0)« |€ePZ)}, C, =),
where 0€/(Z ), are order isomorphic.

Proof: From Theorem 1.2 and 1.28 we see that € = ¢’
iff € =,¢ if €<, ¢ and €'<p ¥ iff P, <pPy and P,.
LpPy if P, = P, if P, = P,..Similarly, € = €' iff
C =,F" €<% and €'<, % iff (o), C{o),. and
(0) 4 C(o)4 iff (o), = (0)-. It follows that the func-
tions 8: P(Z }»P(/ (2 ))and 6, :P(Z }>{ (o) | € cP(Z )} de-
fined by 6 (€)= P, and 8,(%) = (o) are order isomor-
phisms because they are order homomorphisms by
Definition A.1.23 and are 1-1.

Corollary 1.30: Consider the partially ordered sets
(P(Z), <p» = ph(P(£(Z)), <p, = p)and({{o) ¢ |FeP(Z)},
C, =).Let €° = {C, |AeA and C, a maximal chainin Y }
and €, = {{x}x€Z }. Then (1) €° (¥ ) is the largest (small-
est) member of P(Z), (2) P. (P ) is the largest (smallest)
member of P(£(2 )), and (3) (o). ({0),) is the largest
(smallest) member of { (o) |Z eP(Z)}.

Proof: The set ‘¢ °is amember of P(T ) because, by Theo-
rem A.1L38, the maximal chains partition 2. Then for any
chain CC 3 3 some AeA such that CC C; and therefore if
€' ={C,|acd }eP(3)weseethat €'<, €'V € 'eP(Z)and,
by Definition A.1.24, € is the largest element of P( ). The
set € o is also a member of P(Z ) because its members are one
element chains of 2 which partition 2. By Theorem 1.4 € s
the smallest element of P(Z ). The balance of this corollary is
a consequence of the isomorphism expressed by Corollary
1.29.

There is an important ramification of Corollaries 1.29
and 1.30. From these corollaries we see that a chain in P(Y)
induces a nested collection of chains in (£/(X), <, = ).
Forexample, if € <, € ,<p % 3<p-isachainin P(Y)thena
corresponding chainin /(X )is (o), C{0) ¢, C{o) 4, C--.
But ¥ °is the largest member of P(3 ) and so the largest chain
we could find in such a nested sequence would be {7} .. Isit
possible that (o) .. is a maximal chain in £{2) or, equiv-
alently, is P;. the partition of /() into maximal chains? We
have no assurances that this is the case. For while P(3 ) is the
collection of all partitions of X into chains this is not neces-
sarily true of the relationship between P(/(2 ) and /(X ). Itis
true that every element of P(/(X )) is a partition of #(Z ) into
chains but we have not shown that every such partition is a
member of P((Z')). The conjecture about the maximal chains
in /() is valid and is proven in the next theorem.

Theorem 1.31: Let €° = {C, |A€A ] be the partition of
(2, < = ., )by its maximal chains and C a maximal chain
of (£(Z), <., = ). ThenC = (o). for some o/ (T ) and
P,..€P(/(Z)) is the partition of /(% ) into maximal chains.

Proof: By Theorem 1.26 we know that (&) ... is a chain
and hence a subchain of some maximal chain in /(X ), that is,
(0) 4o CC. But (o). is an equivalence class and therefore
0€{0) »» and therefore o€C. Now suppose 5€C. Then o, 5&C
and hencearecomparableiffo< , Fora< , oiffolb )< , &ib)
or (b )<, olb )¥beB. Thus for each beB, o{b) and 5{b ) are
comparable and thus are elements of the same chain in 3 and
therefore elements of the same maximal chain in 3. Conse-
quently, we see that if an element of beB is mapped into a
given maximal chain in 3 by oeC then every other element in
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C will do likewise. But then YaeC we see that & ~'(C;)
=07 YC,)VAeA iff =00 iff (T} 4». Thus CC (0) o
and since we already showed that (o) .. C C it follows that
C = (0) 0. Since (o) - is a maximal chain, we see that P,
= {(0) ¢ |0€e£(Z)}, whichis thelargest member of P(£(Z )
by Corollary 1.30, is a partition of /(F ) into maximal chains.

In Definition A.1.46 entropy was said to be an order
homomorphism from a chain in (2, <, = 4 ) onto a subset
of the reals with the usual order. That is, the entropy was
defined to be a real-valued function which reflected the order
induced on 2 by the adiabatic processes. Does this concep-
tion of entropy have a counterpart for the states in /{2 )? Do
there exist real-valued functions which mirror the order
properties of chains in /(3 )? The answer certainly is yes for
the two special cases where /(X ) and 2 become virtually
identical. One of these special cases is obtained by requiring
the memebers of /(2 ) to be constant functions on B (see the
proof of Theorem I.24) and the other arises when B has only
one member (see the proof of Theorem 1.28). But what about
the general case? If such order preserving real-valued func-
tions exist under more general circumstances they, unlike
entropy, cannot be intrinsically significant. The reason is
simple; a concept can be intrinsically significant only so long
as it is independent of the particular body B to which it is
applied. But the members of /(2 ) depend upon the choice of
body, a fact clearly conveyed by the more complete notation
2B, 2). Thus £(Z ) itself lacks intrinsic significance and ac-
quires meaning only within the context supplied by a par-
ticular body. It follows that any mathematical object which
is to mirror the order properties of /(2 ) must itself depend
on B and, consequently, must lack intrinsic significance. De-
spite the lack of intrinsic significance such order preserving
real-valued maps would be very useful computationally for
they replace chains in /(') with chains of real numbers.
While it might be conceptually useful to refer to such a func-
tion as an “entropy” for a body B we must keep clearly in
mind the distinction between these functions and the intrin-
sically significant entropies of Definition A.1. 46.

I shall begin a sequence of analysis which will ultimate-
ly lead to the construction of “entropy” functions for AX)
from the entropy functions for 5. I shall first explore the
close connection between order homomorphisms for A% )
and entropies for chains in (2, <, = _, ). This will be fol-
lowed by taking a look at “entropies” for chains in A3 ) and
their connection with entropies for chains in 3.

Theorem 1.32: Let C be a chain in (AS), <, = ),
% (C) the collection of chainsin (2, < ,, = _,)induced by C,
and ¢ = {C,|aed | a collection of disjoint chains in (3.
< = &) (1) If each C_ €% possesses an entropy ¢, and
C(b)e? (C)=C(b)CC, for someaed then Cis order homo-
morphic to { Poo|oeC} C AB, R ) where @ is the real-valued
function @: u,_, C,—R defined by @ (x) = @_ (x) for xeC,,.
(2)Ifg: C—AB, R )is an order homomorphism then 3 entro-
pies for each chain C (b )e% (C).

Proof: @ is clearly a function because
X, = X,=®P (x,) = D (x,) is a consequence of the disjoint na-
ture of the members of € which implies that xeu,_, C, can
be a member of only one member of 4 and, hence, there is no
ambiguity in the value of @ (x). Both pairs of relations < ,,
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= . and €, = satisfy condition (1) in Theorem A.I.21 and
so we need only consider the relationship of < , and <. Now
suppose a,, 0,€C. Then 0,< , 0, iff 0,(b )<, 0,(b )V beB iff
@ (01(b ))<@,(0,b ))VbeB and someaed, because g, areen-
tropies, iff @ (0,(b ))< P (o,(b ) VbeB by the definition of the
function @ and, by definition of the composite function, iff
Dog (b )< DPoa,(b )¥beB iff oo, <Pog,. Thus the map
8:C—{Pog|oeC} where g(o) = Poo is an order homomor-
phism. To prove the second part of the theorem we shall use
the notation g(o) = h,€AB, R ). Suppose o,, 0,€C. Then
since g is a homomorphism 0,< , 0, iff glo,)<g(o,) iff &,
<h,, iff h, (b)<h, (b)VbeB. Therefore, for a given beB,
a,(b)<,, o,b)iffh, (b)<h, (b)and, hence, the map h,:
C{(b)—R defined by A, (0o(b)) = h_(b) is an entropy for the
chain C(b).

Theorem I.32 essentially says that chains in (A2 ), <,

=, )areorder homomorphic to subsets (chains) of (4B, R ),
<, = )if and only if entropies exist for appropriate chains in
{2, <., = ) Consequently, it follows that if entropies
exist for each maximal chain in (2, <_,, = _ ) then each
chainin A2'), and, hence each maximal chainin A% ), will be
order homomorphic to some chain in (4B, R), <, =).

We will now use Theorem 1.32 to construct “entro-
pies”, in the sense of real-valued functions which mimic or-
der properties, for a certain class of chains in (A2), <_,,

= ). This class is not all inclusive for we will need to im-
pose a requirement of integrability and require the existence
of entropies for chains in (X, <, = _,). Notwithstanding
these conditions, the class is general enough to accommo-
date all of the usual thermodynamic calculations as we shall
see shortly. The next theorem is a generalization of the “en-
tropy maximum” criterion for equilibrium states and, as
such, it is the basis for all applications of thermodynamics to
the real world.

Theorem 1.33: Suppose a chain Cin A% ) is order homo-
morphic to a chain Cin /4B, R). If the members of C are
integrable over B with respect to a complete measure space
(B, B, v) then C is order homomorphic to a subset of R.

Proof: Let F: C—C be an order homomorphism and
G |C be the order isomorphism of Theorem 1.8. Then
(G |C)oF is an order homomorphism from C to R.

A common feature accompanying many thermody-
namic discussions is the composite system. It is formed by
the assembly of other systems or, equivalently, by partition-
ing a particular system into subsystems. Such composite sys-
tems have not yet been used in my treatment of thermody-
namics. If they are to be intrinsically meaningful they cannot
be arbitrary but must come from the fundamental thermody-
namic structure of (2, <, = ., ). Partitions can arise quite
naturally from this structure and the details are presented in
the next series of theorems and definitions. I shall begin the
theoretical treatment by defining such thermodynamically
induced partitions and studying some of their properties.
This will subsequently be used to impose additional algebra-
ic structure on AX).

Theorem1.34: Let € = {C, |aed }eP(X ) be a partition
of X into chains and oe/% ) a thermodynamic state for B.
The collection of non-null preimages of C,€% is a partition
of B induced by o and ¢ and denoted by P_(%).
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Proof:- Let A’ = {a|aed and 0~ '(C,)#0} and P, (%)
= {07 Y(C,)|acd '}. Observe thatifaed — 4 'theno~!(C,)
= @. Therefore, it follows that u,_,.a~}(C,)
=Upes 0 NC,) =0 YUpes C,) = 0~ (2 ) = BwhereIused
a property of inverse set functions, the fact that ¥ is a parti-
tion of X and the fact that o is a function with domain B. To

complete the proof that P, (%) is a partition we must only
show that its members are disjoint. Suppose a, fed ' and
o~ (C,)no~!(Cy)#0. Then 3 an element beB and
beo~HC, o~ (Cy) =07 (C, nCz)and, therefore, o(b JeC,,
NCy #@. But since % is a partition C,nCz #6—C, = C,
and, hence, 0~ '(C,,) = 0~ !(C,). Therefore, P, (¥ ) is a parti-
tion of B.

Definition 1.35: The elements of P, (¥ ), 0 AX ) and
¢ €P(X), are called the subsystems of B relative to o and % .
The thermodynamic body B is said to be a simple system,
relative to oand ¢, iff the cardinality of P, (%) is one. If Bis
not a simple system then it is said to be a composite system.
The set P(B) = {P,(€)|ocAZ) and ¥ eP(Z )} is the collec-
tion of all partitions of B induced by some o and some % .

The set P(B ) is a collection of partitions of B but it is not
necessarily the collection of all partitions of B. It is simple to
establish the conditions which must be satisfied in order that
P(B ) becomes the collection of all partitions of B.

Theorem 1.36: P(B ) is the collection of all partitions of B
iff the cardinality of B is less than or equal to the cardinality
of 2.

Proof: Suppose the cardinality of B is less than or equal
to the cardinality of X. Then by the definition of cardinality
J afunction f: B153. Clearly, fis a thermodynamic state of B

by Definition I.11 and because it is a 1-1 function we know
that f(b,) = f(b,)iff b, = b,. Let € = {{x}|xeZX }eP(Z)and
let { B, |1eA } be a partition of B. By the Axiom of Choice
A.1.43 3 a choice function y: A—B such that {1 JeB,. We
can now use the choice function to define a thermodynamic
state o: B—2 be defining its restrictions to B, to be constant
functions with range Im o|B; = {f(y(4))]. But then it fol-
lows from the definition of o and ¢ that { B, |1eA | = P_(%)
and, therefore, every partition of Bis an element of P(B ). But
obviously every element of P(B }is a member of the collection
of all partitions of B, so P(B ) is the collection of all partitions
of B. To establish the converse we suppose that P(B ) is the
collection of all partitions of B. But this then implies that 3
some ¢ {C, |aed }eP(Z ) and some o€AZ ) such that

P (€)=1{{b}|beB }.buttheno(b)=ol(b')iffb=0b"'

and 0: B—2'is 1-1 and onto a subset of 2 and, therfore, the
cardinality of B is less than or equal to the cardinality of 3.

The set P(B ) is a collection of partitions of B and can,
therfore, be regarded as a partially ordered set with relations
<pand = ,.

Theorem1.37:Let €, ¢ 'eP(Z2 ) and consider the partial-
ly ordered set (P(B), <p, = p). Then (1) € <€ =P, (¥)
<pP,(¢'\VoeAZ ) and (2) if B has at least two members
then P, (% )<, P, (€ WoeAZ |2 <, 7.

Proof:Suppose ¢ = {C,|acd },¢"' = {C,|AeA },and
% <p%'. Then by the definition of <, (Definition I.1) we
know that YaeA 3 some AeA such that C, CC,, and by the
property of inverse set functions ¢~ (C,)C o™ }(C,)
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VoeAX ). Butthisthenimplies P, (¥ )< P, (% ')VoeAZ Jand
establishes (1). To prove (2) suppose P, (€ )<pP,(€’)
VoeAS)and € £,%'. But € £, %' and B a set with more
than two elements permits us to construct the function o,
used in the proof of Theorem 1.28 (see Fig. 3) for {B }
=P,(€)#P,(?¢')= {B,, By} and which implies that

P, (¢') <pP, (T). But P, (T')<pP,, (Z)and P, ()

<pP, (¢')iff P, (€)= pP, (¢') which contradicts

P, (Z)#£P, (¢'). Hence, €<, %"

The restriction that B possess at least two members in
Theorem 1.37 (2) is essential. For if B = {b,} then P,(¥)

= {B |YoeAZ } and V¥ €P(X') and one cannot then draw
any conclusions about ¥, ¥ 'eP(Z ) from AZ).

Theorem 1.38: Let € €P(Z ) be a partition of X into
chains and define a relation =g, on A2'), called subsystem
equivalence with respect to €, by 0,=5,0, iff P, (¥)

= pP, (€). Then =g, is an equivalence relation on AZ')
whose equivalence classes are denoted by (o) s The
equivalence classes of =, contain only complete equiv-
alence classes of =, that is, 0,=, 0,=0,=5, 0>

Proof: The proof that =, is an equivalence relation
follows from its definition and the knowledge that = , is an
equivalence relation. Now 0,=.. 0, iff o !(C,) = o5 '(C,,)
Vaed=P, (¢)=P, (¥ )iff P, (€)= pP, (€)and the
proof is complete.

From Theorem 1.38 we can conclude that each chain
(o), contains only subsystem equivalent states with respect
to ¢ because (o), C(0) s, This applies even if € = €°
in which case (o) . is a maximal chain by Theorem 1.31. Of
course, the equivalence class (o), might contain several
chains of the type (o). .

There are still two items which should be mentioned to
complete the algebraic analysis of the thermodynamics of an
extended thermodynamic system. One concerns coordinate
systems for B and the other deals with coordinate represen-
tations for thermodynamic states of B. Neither topic will be
given any comprehensive discussion because, for the most
part, it would be similar to discussions already given in an-
other context. The subject of coordinate systems for B is a
case in point. Its discussion would be word for word identical
to the discussion of coordinate systems for  (Definition
A.1.60 and Theorem A.1.61) with X replaced by the universe
U and 2 replaced by B. But the existence ot these two kinds
of coordinate systems, one for 3 and another for B, compels
us to use a more precise terminology to make the necessary
distinction between the two. To make the distinction I shall
specifically refer either to 3-coordinates and S-coordinate
systems or to B-coordinates and B-coordinate systems.

When it comes to coordinate representations of abstract
objects we must now contend with two types; one arises from
the B-coordinates and the other from the 2-coordinates. The
abstract objects which concern us in extended thermody-
namic systems are functions with domain B, such as the
states g€/{2 ) and the processes P on B. The B-coordinate
representations of such quantities are defined in exactly the
same manner as the coordinate representations of measure-

ments on X or 2 defined in Definition A.1.64. If e, is an
evaluation map induced by a coordinate system for B, then
the B-coordinate representations are composite functions
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with domain Ime,, and as typical examples we have the com-
posite functions goe,; ' and Poe, . The 3-coordinate repre-
sentations of o and P deal with their range and so are analo-
gous to the coordinate representation of a process on 2 also
given in Definition A.1.64. The following definition and
theorem deal with the 2-coordinate representation of states
of B.

Definition1.39: Let 7 = {7|i = 1,2,...,n} beacoordi-
nate system for X, ¢(.7") the evaluation map induced by 7~
and 7, i = 1, 2, ..., n the projection maps, that is, 7 = 7’
oe(.7). A X-coordinate representation of the state o A% ) is
the collection of real-valued functions {¢’|o’: B—R, o'=7"
°g,i=1,2,..,n}.

Theorem 1.40: Let 0, 0,642 ). Then 0, #0, iff &, #0%
for some /.

Proof: Since B is the domain of all thermodynamic
states, two states, o, and o0, cannot differ because of domain
and therefore o, # 0, iff o, (b ) # 7,(b ) for some beB. But 7 is
a coordinate system for 2 and separates its points and there-
fore 0,(b )#0,(b ) iff &’ (b ) # 0% (b ) for some i. But then it fol-
lows that o, #0, iff &, (b ) # o} (b ) for some beB and some i iff
o, #05 for some i.

The algebraic thermodynamics developed in this paper
possesses one conspicuous and, perhaps, surprising feature
and that is the behavior of the members of B. Their behavior
could aptly be anthropomorphized with the observation that
one point of B neither knows of, nor seems to care about, the
behavior of the other points in B. That is, the elements of B
seem to exhibit completely independent behavior. But a little
reflection should easily dispel the initial surprise. The set B
has, as yet, been given no topology and so there is no concep-
tion of nearness, neighborhood or continuity in B. This situa-
tion can be rectified by two actions: (1) The assignment of a
topology to B, perhaps through the notion of measurements
on B, as was done for X, or perhaps in some other experimen-
tally significant manner. (2) The imposition of the require-
ment that the restriction of each state of B to a subsystem of
B must be continuous. That is, the state itself need not be
continuous, only its restrictions must be. These two actions
would establish a communication among the points of B and
would thus generate the desired correlation of behavior. This
aspect of the problem, although interesting, will not be con-
sidered further in this paper.

Il. CONTINUUM CONSIDERATIONS

Three topics related to continuum thermodynamics
will be discussed in this section. The first topic will deal with
constitutive relations and, for the most part, will merely
serve to introduce some notational changes. This will be sup-
plemented by some specifics concerning the expression for
free charge and free current which will be required for subse-
quent calculations. The second item for discussion will be
the development of continuum consequences of the algebra-
ic theory, developed in the first part of this paper, and some
ramifications of this analogue. The last subject for discussion
will be some specific examples of the application of the con-
tinuum analogue which demonstrate not only that all of con-
ventional thermodynamics is contained in it but also that a
whole new spectrum of problems is amenable to thermody-
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namic analysis. These examples will also shed some light on
the origin and interpretation of the electrochemical potential
and the related thermodynamic functions which are used to
take into account the presence of the gravitational potential
and centrifugation.

A. Constitutive equations

In the first paper' I made some very nonspecific choices
for the constitutive relations which nonetheless were adequate
to enable me to obtain a realization of the first law. However,
in so doing I made some choices which, in effect, apeared to
treat some constitutive equations in a way which was some-
what different from the treatment accorded others. I now
wish to make some minor adjustments, little more than nota-
tional changes, which will rectify the situation and give a
more equitable treatment to all constitutive relations. Much
of the detail will be eliminated for the mathematical manipu-
lations are unchanged and, in order to facilitate a simple
comparison of the new equations with the old, each new
equation will be given not only its own number but also the
number of the corresponding equation from the first paper.

The first notational change to be made is in the expres-
sion for the internal energy flux which now is written as

J = mw* + ¢ +ad5, (IL1.1, AIV,12.3)
where /i * has the decomposition

A=pt4 Apt (IL.1.2)
}

E, 8P* /3t —\M* 3B,,/3t

and p* is identified with the chemical potential based on its
role in the realization of the first law (A.IV.17.1). This choice
slightly alters the appearance but not the content of the ex-

pression for the energy flux J § and the evolution equation
for internal energy;

v,
J;)Em(u+ > +0)v’+ql+ﬁ‘di

— 7y, + H*E, + ®D'/e,, (I1.2.1, A.IV.13.1)

Su
m__.__
5t
P, pk
= Vg +pMdN) B~ 2L — V0
€o €o
Ho 0P> 8.() X .
B 0P _ 22 4+,
2 Ot at Tx iV
k JB
+E, aP W"’ il (I1.2.2, A.IV.13.2)

The expressions formerly used for the polarization and mag-
netization are replaced by

P*=mp* + APK,
Mkl= mmk1+AMk1
which then lead to

(IL3.1, A.IV.15.1)
(I1.3.2, A.IV.15.2)

= m(E, 8p* /8t — \m*' B,,/6t) + E, [3AP* /3t — V (mp"v')]
—_ %AM K aBk,/at + %mmkIUiVinI-

(I1.3.3, A.IV.15.3)

If all of the changes made to this point are combined then we obtain
m|bu/8t — S* be,, /5t — E, 5p* /6t + ym* 6B, /6t —u? 6n, /6t = — V. (g" + Autdk)

+ ATV b, — v, — m 30 /3t — 'R

akl

+ E, [08P* /00 =V (mps)] — 44+ =

_dkvk/‘/{'*'Ekj;_'

—— + Imm*v'V B,,.

Pp, /g — (P*/€)) Vi ® + § o 3D 2/t

(IL4.1, A.IV.16.1)

The definition of heat (A.IV.17.1) when combined with I1.4.1 gives the final result.

mBQ /5t + V. (g" + Au*d ) = ATV v, — v*f, —m 802 /3t — 'R,
(P*/€)V, D + L uodP /3t + E, [0AP* /3t —

— @p,/€e, —

Equations (II.1)~{I.5) have the same content as their
counterparts in the previous paper and reduce to them exact-
ly if we set Au* = AP* = AM ¥ = 0. The chief advantage
conferred on the analysis by the new version is not in the
form of the temporal evolution equations but in the equiv-
alent treatment shown to all constitutive relations which
contribute to the first law and the implication of this treat-
ment for the decomposition of the set of physical states X
into thermodynamic states 3 and nonthermodynamic states
X-Z. Each constitutive relation (4%, P*, M*, and 77) is de-
composed into two parts but only one of these parts appears
in the first law. Consequently, it seems reasonable to refer to
ut, m¥, p*, and §*' as the thermodynamic portions of their
respective constitutive relations and to refer to the balance of
each constitutive relation as the nonthermodynamic por-
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—diV, 1t + By
V.(mp*v)] — 1AM~ 3B,,/dt + imm*v'V.B,,.
(IL5.1,A.1V.17.4)

r

tion. It is the function of the nonthermodynamic part of
these constitutive relations to account for all phenomena
which cannot be described adequately by the thermodynam-
ic part alone. This decomposition of the constitutive rela-
tions suggests that perhaps the decomposition could be used
as the basis for an indirect definition of the separation of
physical states into thermodynamic and nonthermodynamic
states. As a part of such a definition we might impose the
following stipulations: (1) The thermodynamic portions of
the constitutive relations should be independent of the
nonthermodynamic coordinates, that is, independent of the
elements of .#-7 . (2) The thermodynamic portions of the
constitutive relations should be continuous on the maximal
chains of 3 and give an integrable first law there. (3) The
nonthermodynamic portions of the constitutive relations
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should vanish on 2 and be nonzero only on X-3.

Heretofore I have found it neither necessary nor desir-
able to say anything of a specific nature about the expres-
sions to be used for the constitutive relations and have in-
stead dealt in broad generalities. But because I shall shortly
examine the thermodynamics of systems with free charges I
must become just a little more specific about the expressions
for free charge and current densities. The free charge density
Py is customarily expressed as the superposition of the free
charge densitites of each of the charge carriers. Suppose z* is
the free charge per mole of species A. Then z* is an integer
multiple of the Faraday constant and

py=mz'n,. (IL6.1)

By analogy to the expression for the flux of internal energy
(II.1.1) we may decompose the free current jf into three parts
by the expression

Ji=ppt + o + 25, (IL6.2)

where p,v* is the convective flux of free charge, z*d § is the
diffusive flux of free charge and o* represents the flux that
still remains in the absence of convection and diffusion. But
p, and j; are not independent since they must satisfy the
conservation equation for free charge given as the first equa-
lity in (A.IV.7.1). The substitution of (I1.6) into the charge
conservation equation, coupled with the use of the mass and
species conservation equations (A.IV.2.1, A.IV.2.3), and
8z* /8t = 0, produces the equation

O¢ =R, + V,0". (11.6.3)

Thus we see that if (I1.6) is to be used to represent the free
charge and free current densities then the function ¢, which
appears in the expressions for the bound charge and bound
current densities (A.IV.6.5, A.IV.6.6), cannot be chosen in-
dependently but must be regarded as a solution of the inho-
mogeneous wave equation (I1.6.3). Consequently, & must be
regarded as an explicit function of time and position and not
an independent constitutive relation. The right side of
(I1.6.3) cannot be expected to be identically zero for that
would imply that bound and free charge are separately con-
served. This is inconsistent with the existence of insulator to
metal transitions which may be viewed as the conversion of
bound charge to free charge. If the reactions themselves are
to be charge conserving then, of course, the R, will satisfy
the constraint 'R, = 0 identically.

B. Consequences of algebraic thermodynamics

The exact algebraic result expressed by Theorem 1.33 is
fundamental for the application of thermodynamics to actu-
al physical problems for it is a generalization of the “entropy
maximum” criterion of equilibrium. It is not, however, a
useful computational device because it represents a global
exploration for an extremum. While it is important to know
the exact result contained in Theorem 1.33 it is also impor-
tant to have a computationally workable scheme for deter-
mining the actual equilibrium state in a given situation. This
means restricting the exploration to a local exploration in the
vicinity of the extremum. With computational utility as my
objective I shall now begin a program of specializing the
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general result of Theorem 1.33 until it becomes computa-
tionally useful. Since thermodynamics is invariably applied
to continua it is essential to translate the algebraic result first
into a form directly applicable to continua. The next theo-
rem summarizes the content of Theorems 1.32 and 1.33 in
suitable form for continua.

Theorem 11.7: Suppose that (1) Cis a chainin /(X'), (2)s
is the Z-coordinate representation of a real-valued, extensive
function with domain in X whose restriction to chains in its
domain is an entropy, (3} Im o is a subset of the domain of
sYoeC, (4) the measure v of Theorem 1.7 coincides with the
mass, M, of the body, that is, the function m of Theorem
1.7 (d) is the mass density, and (5) s is integrable over B with
respect to mass measure YoeC. Then (6) C is order homo-
morphic to a chain C of integrable functionsin /(B, R ). If C
possesses a maximal element, S={,5 dM = (zsm dv for
each member of C, the maps & and & are as defined in Corol-
lary 1.9 and the discussion following Corollary 1.9, then
(7) 8S = 5 z8(ms) dv, (8) 55<0, and &S = 0 only for the
unique maximal element in C whose preimages in /(% ) are
the equilibrium states of Ciff § (ms)<0and & (ms) = Oonly for
the unique maximal element in C whose preimages in AY)
are the equilibrium states of C.

Proof: This theorem is a direct consequence of Theorem
1.32(1), Theorem 1.33, Corollary 1.9, and the discussion fol-
lowing corollary 1.9.

Theorem I1.7(8) gives two criteria for finding the largest
member of C, one in terms of S and the other in terms of ms,
but neither identifies the equilibrium states of C directly. To
actually identify the equilibrium states we must know the
order homomorphism from C to C. While both the criterion
8S = 0 and the criterion & (ms) = 0 do locate the largest ele-
ment of C, neither represents a practical computational
method. Nevertheless an eminently practical method can be
based on the first part of Theorem I1.7(8) which identifies the
largest member of C with the maximum value of S and is a
generalization of the conventional entropy maximum princi-
ple. Since S is defined as an integral it immediately suggest
the implementation of techniques from the calculus of vari-
ations. Indeed, I have already commented on the similarity
between the calculus of variations and the results of Theo-
rem 1.8 and Corollary 1.9 in the duscussion following 1.9. All
of the computational machinery from the calculus of vari-
ations can be made available to thermodynamics merely by
imposing the conditions involving normed linear spaces over
R mentioned in the discussion following Corollary 1.9. This
converts the first part of Theorem I1.7(8) into a variational
statement and, hence, is expressible in terms of the first and
second variations. Furthermore, if we require that all vari-
ations on the boundary and all boundary variations satisfy
the transversality conditions, then the thermodynamic prob-
lem of locating the largest element of C is converted into the
mathematical problem of solving the Euler-Lagrange equa-
tions. This is summarized as a corollary to Theorem I1.7.

Corollary 11.8: Suppose C, s and S are as in Theorem
I1.9. Furthermore, let C be a subset of a normed linear space
over R and the space of admissible variations be a normed
linear space over R. If 85 and 6 S are the first and second
variations of § then f°eC'is the largest element of Ciff 65 = 0
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and § %S < 0 at /. If members of the space of admissible vari-
ations satisfy the transversality conditions then £ is the solu-
tion of the Euler-Lagrange equations implied by 65 = 0.

Proof: This corollary is a direct consequence of the cal-
culus of variations except for the sufficiency of the variation-
al criteria for /°. Sufficiency follows from Theorem I1.7(8)
which says that .S decreases monotonically from its value at
the unique largest element in C.

Corollary II.8 is the variational counterpart of the “en-
tropy maximum” criterion of conventional thermodynam-
ics. The calculus of variations computation is a local explo-
ration for an extremum, that is, an exploration in the vicinity
of the extremum. Such a calculation then can only locate
relative extrema. In principle, such a local exploration for
the largest element represents no loss in generality for the
thermodynamic computation because if the chain C pos-
sesses a maximal element then, as has been shown [see Theo-
rem 1.9(8) and Corollary 1.9], that element is unique. In par-
actice, a lack of uniqueness in the solution of the Euler—
Lagrange equations can imply only one of two things. Either
C is not a chain or the restriction of s to some chain in its

domain is not an entropy for that chain as was required in
Theorem I1.7(2).

The particular function in C which satisfies the condi-
tions 88 = 0 and § 2S<0is determined, in part, by the choice
of chain. In particular, we might be interested in subchains
of the chain C. From the variational point of view, the selec-
tion of a subchain can be thought of as the imposition of
constraints which limit the set of values of § which must be
explored to some subset. These constraints are of two basic
types. The first type is the more obvious of the two because it
is simply a restriction of the permitted set of variations to a
subset of the set of admissible variations. Such constraints
may be handled either directly, perhaps by a change of varia-
bles, or indirectly by means of Lagrangian multipliers. A
more fundamental, but less obvious type of constraint deals
with the choice of the Lagrangian itself. That is, how much
of the integrand is to be subjected to variation. For thermo-
dynamics this choice amounts to deciding whether to vary
the product sm or only s. Clearly dv represents geometrical
properties and in a nonrelativistic calculation, such as the
one being discussed in this section, the geometry is indepen-
dent of matter. The two choices of Lagrangian will yield the
same solution only if the set of variations is the same in both
cases and if these variations do not permit a variation in the
mass density.

Before going on to some applications of algebraic ther-
modynamics, in the form of Corollary IL.8, I shall derive
alternatives to Corollary 11.8 which are suitable for a par-
ticular category of constraints which may be imposed with-
out the use of Lagrangian multipliers. Specifically, I shall
derive, from Corollary I1.8, the variational equivalent of the
“internal energy minimum” criterion and the Legendre
transforms of these two variational problems. The trans-
forms are the variational analogues of the Massieu function
and the thermodynamic potential criteria for equilbrium

states in thermodynamics. The thermodynamic Lagrangian,
either ms or s, is an especially simple one since it is only a
function of the thermodynamic coordinates and contains no
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derivatives. Because of this and the transversality conditions
there is a simple relationship between 85 and the first vari-
ation of the Lagrangian, either § {ms) or 8s,

6S=f8(ms)dv or 5S=J‘6de.
B B

Note that & (ms) in this context is a variation and does not
have the same meaning as the corresponding symbol in
Theorem I1.7. However, even with the transversality condi-
tions, the second variation 8 2S could still contain contribu-
tions from the boundary of B in addition to those which arise
from second variation of the Lagrangian, either 6 %(ms)or § ’s.
But it is always possible to impose sufficient additional con-
ditions so that § 2S is the integral of the second variation of
the Lagrangian over the body B. Under such circumstances
itisclearthat5S = Oand & >S < 0iff§ (ms) = 0and § *(ms) < 0
(or 85 = 0 and & %s < 0) for all permitted variations and then
one only needs to consider the first and second variations of
the Lagrangian. With this in mind let us separately examine
the relationship of the first and second variations of func-
tions which are not independent and whose variations are
linearly constrained for this is the case of thermodynamic
importance. While thermodynamic notation could be used
in this analysis, the derivation is more concise and consider-
ably less awkward in a more general notation.

Theorem 11.9: Suppose that Latin indices i, /, k ... use the
range 1,2, ..., n, n + 1, Greek indices use the range conven-
tion of Definition A.III1.13 and no summation convention is
used with either Latin or Greek indices. Consider n + 1
functions y,, k = 1, 2, ..., n + 1 which satisfy the constraint
D(y,) = 0, where Dis a function, and let 4, =0dD /dy,,iand
be two fixed indices, (8y;),, and (6%,),, be the first and second
variations of y, subject to the constraint 8y, = 0, and sup-
pose that 4; and 4, vanish nowhere on B. Then (1) (8y,),, = 0
iff (8y,),, = 0, (2) if (6y,),, = O then (5 %y,), = Oiff
(6 %p,),, = 0,and (3)if (8y,),, = 0, (8 ’p,),, #0, thensgn(8 %y, ),,

= [sgn(4,4,)] [sgn(é *y,),, ]. Suppose D has the form
D=y, . —EW; Y. =Yu 1 +Z,A4,), is the Legendre
transformofy, , ,,(6f), and (8 2 4, are the first and second
variations of f subject to the constraints 64, =0,y =1, 2,
ey AWith 6y, 1), (6%¥, 41 ), having analogous definitions
and E,,;=3E /dy, dy, fork,j#n + 1. Then(4),(6f),, = Oiff
9 1)y, = 03 (5) (620, , 1)y, >0 (<O)iff E,, is positive
(negative) definite; (6}, (5 °f) 4, >0(<0}iff E 5 s nonsinguiar
and E,, — 2,2,4E, E ;'Ep, is positive (negative) definite;
and (7), E,; positive (negative) definite implies E,; and E,,

—32,34E, . E ,5'Ep, are positive (negative) definite.

Proof: From D = 0 it follows that we may write
8D =0= 3, 4,8y, where 4, =3D /dy, = ¥, (y;) and,
hence, 4,(6y,), = — Zi «1,4x8yi = A,(8y;),, and since 4;
and 4, vanish nowhere on B, the first part of the thoerem is
proved. Solving 8D = O for 8y, gives 8y, — 2, ., 4,6y, /A,
From this expression for 8y, and the definition 5 %y, = 8(8y,)
it follows that 4,8%y, + 8,84, = — 2, 04,6y, . But 64,
= X, 4,;6y;, where
AkanAk/ayj = al/}k/ayj =D /a)’kayj = Aj,

and thus
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A,6%, + (2., A;6y; + Ay6y,1)
= — 3 ;él(zj;él Akj‘S,Vj + A,,69,)8p,.
But using the symmetry of 4,; in the last term on the right
and rearranging terms we find that the second variation can
be expressed as 4,6%, + 8y, [4,6y, + 22, .4,y ]
= — 34 4 Z;,; A6y, 8y,. From this it follows that if we
impose the condition 8y, = 0, then

k #i
AB),, + 690, [Auleyi), +2 5 Auty |

= — z Z Akj(sykﬁyj.
k#Lij#Li
The right side of this expression is symmetricin/and i, thus
interchanging / and i to obtain a similar expression for the
second variation (5 ’y;), we conclude that

A,8,),, + 69)), [A,,(ayny, +2F A,kayk]
k #14i

= 45, + By, [Aule, +2 3 Autni|
If (5,),, = O then this simplifies to 4,(8%,),, = 4,(6%,),, and
the second and third parts of the theorem follow immediate-
ly. We now suppose that D takes its special form. Then 4,, |, ,
=14, =¢.05,5.)= —E/Iy,, 4, =¥, 5,)
= — JE /dy, from which we have 8y, ., + 2,4,6y,
+32,4,8y, =0.Nowsince 4, ,, = | wehaved,  ,
=0=4,,, and from the previously derived expression
for 2%y, with / = n 4 1 we can write
2 4,696y,

k#n+1j#tn+1

= E z Ekjaykayj'

ks#xn+1j#n+1
Thus (6yn +1 )yY = - sz,u&yy and (a zyn +1 )yv
=2,3,E, 8,0y, and (5) is an immediate consequence of
the expression for (6%, , | )y, Next we consider the Le-
gendre transform fof y, , , and it follows that

8f — Sp.04, + 4,8, =0.
a n

wherenow df /04, =y, = @,(Ag,y,)and — df /Ay, = A,
= @.(45,¥,). The expression for 6f gives (6f),
= — 2,4,8y, and comparison with (8y, , , ), establishes
(4). The second variation of fsatisfies § f — =,6y,64, + 2,
64,6y, = 0. Butsince 84,, = 2,64,9¢p, /04, + 2,6y,
3¢, /3y,,, the expression for § ’f can be rewritten in the form

8f— Y54, [6ya — '6y,0p,/04,
a “

52yn+1 = -

+ > X0, /d,)8y,8y, =0.
® v

It is desirable to re-express the derivative dg, /dy, in terms
|

5s[ = u — S¥be,; — E, 8p* + \m"“6B,, — p'*én,
= 8u + pd(1/m) — E, 6p* + \m"8B,; — u*én,

To write down the translator when dealing with the vari-
ations in ms it is convenient to introduce first some notation
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of derivatives of the functions ¢,. First observe that in the
transform the variables 4, and y, are independent and,
hence, d4, /dy, = 0. But since we also know that
A, = ,(vg,y,) we can use the chain rule for differentiation
to establish the relation 0 = 34, /dy,
= Z43(0¢,/dys)dys/dy,) + O, /dy,. If we suppose 4,4
=Y, /dy; = — 3°E /dy,dy, to be nonsingular, then
3y /9y, = 2,E 5,'0¢,/dp,. If we now use this result and
@.A45,9,) =4, =¥,(vg, »,), then we find by differenti-
ation that

09, /3y, = Y (0V,./3y5)ys/y,) = Y, /9y,
B
= N(3Y./3y5)E 5. (0% /yv) + 3¢, /9,
a B

= 2 ; E#BEAEEIIEGV - Euv’

where I used 8y, /dy; = — 3°E /3ysdy,, = Y/, in the
last step. If this is substituted into the expression for & °fif
follows that

5~ S 64, [6ya _ zayﬂa%/aAa]
a “
= — Y Y(09,/%,)0y,5,
JEY

= 2 Z(EI“’ - EgE#BEB_aIEav)‘Sypayv
u v a

and thus

(52f)AY = 2 Z(Ey,v - z ;EyﬁEﬁvalEav)ayﬂayv'
uoov a

This immediately establishes (6). To prove (7) it is simpler to
use matrix notation rather than subscript notation. A sym-
metric matrix E = E T is positive definite iff y’Ey > 0 for all
vectors y#0. Suppose E and y are similarly partitioned, that

is,
E=@“ EIZ)’ y= (}’1)’
2 Exn Y2

where E,, = ET,, and E,, and E,, are square and symmet-
ric. For y, = 0 we have y"Ey = y[E, p,, for y, = 0 we have
yTEy = yIE,,p, and fory, = — E || 'E,,p, we obtain
Y'Ey = yJ(E,, — E,\E [ 'E ,)y,. Thus the positive (nega-
tive) definiteness of E implies the positive (negative) definite-
ness of E,,, E,,, and E,, — E, ,E ; 'E,, as well as the exis-
tence of E |7 ' because if E,, is positive (negative) definite it is
also nonsingular.

To apply this theorem to thermodynamics we only need
a translator from the notation used in its proof to thermody-
namic notation. When dealing with the variations in s such a
translator is supplied by the first law forms for solids and
fluids (A.IV.17.1, A.IV.18.1, and A.IV.18.2),

(solids)
(fluids)’

(I1.10)

to denote the product of an extensive variable and the mass
density. Such product will be denoted by the same symbol
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with a tilde over it,
§=ms, ti=mu, SH=mS¥,

= (IL11.1)

~Kkj___

mf=mmY, f,=mn,.

ags

= 8ii — E, 85" + }¥6B,; — u’6ii, (fluids)

The only difference in form between (I1.10) and (IL.11) oc-
curs for fluids where the pressure term is present in (I1.10)
but absent from (IL.11). This is really not surprising because
if 5 is extensive then § = m|[s(u, 1/m, p*, B,;, n;)]

=s(i, 1, p*, By, i;).

Consequently, while we can obtain the variational analogue
of the Gibbs free energy criterion for fluids in mass measure,
we cannot do so in volume measure.

With the translators {I1.10) and (I1.11) available, it is
now a simple but tedious task to translate the variational
form of the “entropy maximum” criterion, Theorem I1.8, to
other forms. For this reason I shall only deal explicitly with
the internal energy and Helmholtz free energy “minimum”
criteria in volume measure.

Theorem 11.12: Suppose f=ii — T5 = m(u — Ts) and
for d equal either §, &, or fsuppose 4 = f,d dv, 64 =
§50d dv, and 8 °4 = §,6% dv. Then (1) (8S), = Oiff
(6U)s =0, (2)if (8S), = 0 and {62S), <O, then (§U)s =0
and sgn(T')}(6>U)s >0, and (3} (6F ) = 0iff (5U )g = 0. If
sgn [(6%)7] = sgn[(6%a); ], then (4), (SU ) =0,
sgn(T)(6°U )s > 0=(6F ), = 0, sgn(T' )5 °F ) > 0.

Proof: Since 84 = 0iff 6@ = 0and § °4 = 0iff § %4 = 0,
we need only identify p, with § and y; with & in Theorem
I1.9(1, 2, 3). This identification together with the identifica-
tionof A, = 1,4, = — Tbymeansof (I1.11) proves parts (1)
and (2). In Theorem IL.9 weidentifyn = 1,y, ., = #,y, =5§,
and, hence, 3ii/0§ = T = — A,. Then part (3) of this corol-
lary is a consequence of Theorem I1.11{4}. Finally (4) follows
from Theorem IL.9(5, 6, 7).

The sign conditions on (6 >f), and (8 %i); leading to
Theorem I1.12(4) were not replaced by the definiteness con-
ditions on combinations of submatrices of E,; because the
thermodynamic notation for these matrices is too cumber-
some. It probably should be mentioned that the notation
(6F )y in Theorem II.12 does not imply that T is a constant
function on B but merely says that T'is not to be varied in the
variation of F. On the contrary the notation (6S'),, does im-
ply that the value of U'is fixed. It should also be observed that
U [and also Fin the context of Theorem II.12(4)] takes on its
minimum value for an equilibrium state only if sgn(7") >0
which does correspond to the usual situation. If sgn(7T") <0,
thenits valueis amaximum. Ify, , | had beenidentified with
§, and y, with 4, then instead of the Helmholtz free energy
per unit volume, f, we would have encountered the Massieu
function ( — £ /7). Finally if I had chosen to work with mass
measure instead of volume measure, then the only change
would have been the replacment of dv by dM and the use of
the symbol a instead of 4 in the integrands.
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Tos [ = 8i — §"8e,; — E, 5p* + \#W"8B,;, — u*8h, (solids)

We can obtain the appropriate translator from the relation

T8s = mT8s + Tsém, the expression for the variation 8s and
the Euler relation for T,

(11.11.2)

[

C. Applications

Theorem II.12 brings us to the conclusion of what I
regard as the development of the continuum analogue of the
algebraic results given as Theorem I.33 and I shall now look
at three examples of the application of this formalism. The
purpose of the examples I have selected is to convey some
sense of the breadth and versatility of the theory rather than
just to serve as computational exercises. My first example is
one which will demonstrate that all of conventional thermo-
dynamics, with its partitions and composite systems, falls
within the purview of the theory developed here. Thermody-
namics is often applied to a composite system with a finite
number of sybsystems where the state of each subsystems is
constrained to be a constant function. It is easy to show that
such states formachainin{f(Z2), <., = . ). Suppose that K
is a finite index set and { B, C B |keK }eP(B )is a partition of
B. Then by the definition of P(B ) given in Definition I.35
there exists a partition of X into chains. € = {C, |aed }
eP(Z ) and a thermodynamic state o such that P_{¢) = { B,
CB |keK }andbyTheorem1.38 (o) . isachainin{f(2), <., ,

= _ ) containing only subsystem equivalent states. Then for
any function f: K—A, where f(k ) = a,, we can define a sub-
set C of (o)., by the prescription C = {¢'|o’e(c), and
VkeK, Imo’|B, CC,, and 0’| B, is a constant function].
Then since CC (o)., we know that C is a chain and is, in
fact, the collection of states encountered in conventional
thermodynamics. Suppose that C and s satisfy the conditions
of Theorem I1.7, then since o|B, is constant

S:zsk=z§ka=zskMk5 UGC,
keK kek

keK

(I1.13)

where V, is the volume and M, is the mass of the k th subsys-
tem and §, and s, are the functions § and s evaluated for the
k th subsystem. The expression for S givenin (II.13}is exactly
the form ordinarily used in the thermodynamics of compos-
ite systems and the direct maximization of § in this form
corresponds to the ordinary computations of
thermodynamics.

The two examples which will follow differ from this
first one in three respects. First, the states of the body are not
required to be constant functions when restricted to subsys-
tems. Second, the states cannot be described adequately by
thermodynamic variables alone. Third, constraints will be
imposed by means of Lagrangian multipliers. Constraint
equations used in the calculus of variations can be placed
into one of two categories. Either they are functions, whose
arguments perhaps may include derivatives and whose val-
ues need not be zero, or they are integrals of such functions
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over a body. The treatment of both types of constraints is
similar for the purposes of generating the Euler-Lagrange
equations and the only difference is in the interpretation of
the multipliers associated with the constraints. Suppose we
have a Lagrangian L and # constraint equations G, =0,

[ = 1,2,...,n as constraints. Then the Euler-Lagrange equa-
tions are obtained from .7 = 0, where .¥ = L 4+ A4 ‘G, and
the A ‘are functions with domain B, subject to the variational
procedure and determined by the Euler-Lagrange equa-
tions. By contrast, if we wish to impose the constraints

S G; dv = K, where the K, are constants and G, 0, then
the Euler-Lagrange equations are also obtained from

8. =0butnow . = L + A 'G,, where the A ‘ are con-
stants, actually constant functions on B, which are not to be
varied but whose values are determined by the constraints.
Thermodynamic systems constrained solely by integrals
correspond to closed systems. The thermodynamic systems
which are constrained only by functions correspond to open
systems. There also can arise hybrid systems which are si-
multaneously constrained by integrals and by functions.
With these preliminaries explained we can now go on to con-
sider two additional examples where the variational tech-
nique will be used to derive the equations which describe the
system. The first of these two examples will be a closed sys-
tem whose Euler-Lagrange equations turn out to be a sys-
tem of nonlinear simultaneous equations for the thermody-
namic variables at each point of the body. Of course, these
equations can be converted to a system of first order partial
differential equations in spatial coordinates by differenti-
ation. The second example will be an open system for which
the governing equations are partial differential equations. I
will discuss some implications of the closed system equations
but I will not go beyond the derivation of the equations for
the open system.

Electrolyte solutions have been, and continue to be, a
fertile field for the application of thermodynamics. An im-
portant source for the thermodynamic data of these solu-
tions have been the measurement of the electromotive force
of galvanic cells. The chief advantage of electromotive force
measurements as a source for thermodynamic data liesin the
relative ease with which one can achieve rather high preci-
sion. But the quality of the resultant data is a function not
only of the precision of the measurement but also of the va-
lidity of the connection between electromotive force and
thermodynamics. There are two components to this connec-
tion: one the electrochemical potential and the other the cell
reaction. The derivations of the electrochemical potential
generally seem to be based more on physical arguments
coupled with appeals to plausibility>* than rigorous deriva-
tion and, at least for me, have not been very convincing. The
requirement for a posited cell reaction is contrary to the spir-
it of thermodynamics. Thermodynamic analysis, presum-
ably, is path independent and therefore should be indepen-
dent of particular reaction schemes® (p. 307). If the
connection between electromotive force and thermodynam-
ics is real then it should be possible to deduce it without
resorting to ad hoc assumptions or cell reactions. I intend
to accomplish just this with my closed system example and,
since the thermodynamic treatment of the effect of the gravi-
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tational field and centrifugation can be similarly faulted, I
shall look at all three effects simultaneously. In this example
I assume that (1) we are dealing with fluids, (2) volume mea-
sure is used for the calculation of S, (3) greek indices from the
last part of the alphabet are used to label species, and (4)
greek indices from the first part of the alphabet are used to
label constraints imposed on the composition variables. The
specific constraints we wish to impose are all integrals,

K. =Lg(¢)d"’

K, =\ mdy, (IL.14)
B
K, = | mb, dy,
B
where
loy=mu+v’/2+02)+ %,
(IL.15)

- 1
ba _'aanv

and a;, are constants such that the matrix rank of a}, does not
exceed the number of species. The function & | is just the
energy density so that K| , | is the energy of the body B. Thus
the first member of II.14, with positive sign, represents the
conservation of energy for the body B and obviously the sec-
ond member is the conservation of mass. If the constants a’,
represent the number of atoms of element « in species v then
the last member of I1.14 imposes the conservation of ele-
ments on the body. If M” is the molecular weight of species v
then, if follows that

M'n, =1, (IL16)

and if this is used to rewrite the integrand of the second
member of I1.14, then the Lagrangian for our problem is

L =5+AFa+ Q2 +v/2MFA, + %]
+A'ME, + A%, (I1.17)

In carrying out the variation of .#° I shall assume that
802 = 0and & (v°/2) = v*6v, = 0. This is consistent with the
fact that the potential £2 and the velocity v* are nonthermo-
dynamic quantities and implies that they are to be deter-
mined by nonthermodynamic considerations. Thus they are
to be regarded as “‘external” fields which can affect the ther-
modynamic state but which cannot be affected by the state
directly. On the other hand, the electromagnetic energy %
will be assumed to be at least partly determined by the ther-
modynamic state and so its variation must be calculated.
From the definition of % (A.IV.9.2) we know that

8% = €,E,8E* + B,;6B"/2,,
but because the electrochemical potential contains the scalar
potential we must reexpress § 7 in terms of the scalar poten-
tial ¢ and the vector potential 4, , whose existence is guaran-
teed by the homogeneous Maxwell equations (A.1V.2.9) and
(A.IV.2.10), and which can be used to replace E, and B,; in
8%,

B, =V, 4, — V,4,,

R (IL.18)
E, = —V.$—d4,/0t.
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This substitution, integration by parts and the use of equa-
tions (A.IV.6.7), (A.IV.6.8), (A.IV.7.2), and (A.1V.7.3) estab-
lish an expression for 6% involving ¢ and 4,,
8% = ¢8p; + A, 8] — E,6P* + B, ;M /2

+ Vi (A,8H" + 4*8& — §6D*) + 4, 306D %)/t

— 8D X (A4, /3t ) + poeo 8PS /3t — AP )/t |

— (Vi ¥ + poedd /3t )o0. (I1.19)
The divergence term in §% will not contribute to the Euler—
Lagrange equations because when it is converted to a surface
integral it vanishes because of the transversality conditions.
The terms involving time derivatives will not contribute in
the steady state while the last term can be made to vanish
because one can always choose 4 * and gr; to satisfy the Lo-
rentz condition, V, 4 * 4 ,uoeoat;‘; /8t = 0, by choice of a suit-
able gauge function. Under these circumstances only the
first four terms on the right side can contribute to the Euler—
Lagrange equations. We shall need only one final bit of infor-
mation before writing down the expression for §.%. The
function m" is extensive, that is, m*(Au, A /m, Ap', B,, An.)
=Am"(u, 1/m, p', B,, n,) and from this it follows that

/i = Im*/u, O/ Ip' = Im"/dp),
3m/3B, = mamkj/aBd’ amt/on, = om"/an,
and, therefore,

. omb W
S = 9~ s 4 I o
du i ap'
am" am"
+m2" 5B, + 9™ 55
JdB; t n "

o
o

If the vector potential A, and the scalar potential q§ satisfy
the Lorentz condition and

80 =0, v, =0,84P%) =0,
SAMK) =0, 8(c* +2'd*) =0, (I1.20)

then under steady state conditions and subject to the trans-
versality conditions we have a relatively simple expression
for 6.7,

8% =[T~'+A'=(1 4 1B, ;,0m"/du) )61
— (T~ + A SNE, — 1A' *B, .0m"/3p'16p'

+ 1"2—[T “'m¥ + A'*)B,(m'" /3B,; 6B,

—{T ' — A D[(f + A )"
+ (2 + v*/2M° + 1B, .dm"/dn,, |
— A'M7 — A “a? )80,

The conditions (I1.20) do not imply that £2, v,, AP*, AM ¥,
and (o* + z'd ) necessarily vanish nor do they imply that
these quantities must be prescribed in advance. But, as my
earlier remarks intimated, these conditions do imply that
these quantities are determined by nonthermodynamic con-
siderations (equations). Thus the state of the body is only
partially determined by the thermodynamic Euler-La-
grange equations. The Euler-Lagrange equations for this
problem are obtained from 6. = 0 and clearly are not a
system of differential equations,
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T~'+ A% (1 + 1B, .dm"/du) = 0,
(T~'+A*)E, — 1724 (+1B,,(0m"/dp') = 0,
T~'mY 4+ A'*)B,(0m" /3B,;) =0,
T — A + A0k + (2 + v?/2)M°

+ iBy;(0m"/on,,)] — A 'M° — A “al, = 0.
From this system of equations we can obtain an interesting
result for A ' £)£0,

(T™'+A4'*)=0
[ IMY

(IL.21)

iff¢

B+ + A 042 + (2 072+ A /A M
| +1By(0m"Y/dn,) + (A /A £ )ag =0
(IL.22)

The multiplier A '+!is a constant and, therefore,

T~'+ A'*) =0 implies that the equilibrium state for the
body is one of constant temperature. Clearly then, the first
three equations on the right side of (I1.22) may be regarded as
a system of first order partial differential equations which
might not be satisfied but which the function m* must satisfy
if the equilibrium state of the body is to be one of constant
temperature. One class of solutions to these equations is easi-
ly written down by inspection,

mlq — C kjilBﬂ ,

C kil _, C kjil(nv)’

C¥'(An,) = ACHki(n,), (11.23)
ijil — Cilkj
CHl = __ ikl — kWi,

This includes, as a special case, m*' = 0 which comes from
(I1.23) by choosing the tensor C % as the zero tensor. Sup-
pose we ignore the constraint on the total mass by choosing
A '=0, and also choose v* = 0, and C %" independent of
composition. Then the last equation on the right side of
(I1.22) specializes to

1+ 2% + QM7 + (A /A g% =0 (I1.24)

and for q§ = 0 = {2 these equations have exactly the same
form as the equations normally used to determine chemical
composition for complex chemical equilibria and, conse-
quently, contain all the equilibrium constant relations [Ze-
leznik and Gordon,®> Egs. (9, 16)]. Furthermore, the second
term in (11.24) is precisely the modification of the chemical
potential which forms the electrochemecial potential while
the third term is the modification used in conventional ther-
modynamics to take into account the gravitational potential.
But the manner in which (I1.24) was obtained makes it clear
that the sources of the second, third, and fourth terms are the
constraints, that is, the members of (II.14), and not thermo-
dynamics. This leads me to question the propriety of regard-
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ing the electrochemical potential, 1” + qu", as a thermody-
namic function as is the practice in conventional
thermodynamics. Certainly I know of no comparable sug-
gestions that the combination u° + (A °/A *))a? be regard-
ed as a thermodynamic function. Similar comments apply to
the combinations ° + 2M° and u° + ¢ ° + 2M°.

We have not yet exhausted the interpretive content of
(I1.22) and I wish to look at one other special case. That
special case is obtained by neglecting all electromagnetic ef-
fects (p' = 0, m¥ =0, ¢ = 0, 4, = 0) and ignoring the mass
constraint (A ! = 0). For these conditions the last member of
the right side of (I1.22) specializes to

1+ (2 + /M 4 (A%/A g% =0 (I1.25)

and for £2 = 0 and the negative sign for the »* term this
implies

u’ — (V¥ /2QM° =Ce, (11.26)
where C? is a constant function. These equations are the ones
normally used to determine chemical compositions during

steady state centrifugation [Ref. 3, p. 244, Eq. (15-14)]. If u”
= u°(T, p, n,) then

navk/t”= ‘—sva+ m—lvkp

because by the Gibbs-Duhem relation, n,du°/dn, = 0.
Therefore (I1.26) implies a characteristic property of cen-
trifugation, namely

V.p =mV, (v%/2) (IL.27)

because V, T = 0. This result seems to be the basic justifica-
tion for the use of I1.26 in the thermodynamics of centrifuga-
tion. The usual derivation of I1.26, at least for me, is unsatis-
fying. Of course the derivation given here is no less ad hoc
than the usual derivation because the constraint based on
& _, has no obvious physical interpretation in contrast to
the obvious physical interpretation of the constraint based
on# , ,=¢&.

How does one construct an acceptable thermodynamic
treatment of centrifugation? The fundamental objective of
such a treatment of centrifugation is the determination of
composition by the simpler equations of thermodynamics,
rather than the evolution equations (A.IV.2.3), in a manner
that is consistent with the fluid dynamics of the problem. But
since the fluid dynamical computation must be carried out in
any event, there seems to be little point in atempting to incor-
porate the dynamics, as typified by (I1.27), into the thermo-
dynamic equations by what are artificial means, at best. By
this reasoning it is clear that only the second and third mem-
bers of (I1.14) would be used as constraints in a thermody-
namic variational calculation for centrifugation. If these
constraints are used in conjuction with the equilibrium crite-
rion §F = 0, 6T = 0 of Theorem II.12(3) then the resulting
equations which determine the composition are

ﬂo—{»A lMa—i-/i "ag =0
and these must be supplemented by equations to determine
T, m, and v,.. These supplementary equations obviously
would include the mass continuity equation (A.IV.2.1) and

the momentum conservation equation (A.IV.2.4). For fluids
the latter takes the form
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v i
m Ftk— = — V2 +p) + [ +8.V;(47),

wherep = — d(u — Ts)/d(1/m)and this contains (I1.27)asa
special case. To see this we need only assume that the motion
is purely rotational and, hence, that the velocity is described
by the skew symmetric vorticity tensor w; = — w;,. That s,
Vv, =@y = — V,v;. Then bv, /8t = v, /3t + V'V v,
= v, /9t — V'V v, = I, /3t — Y (v*/2). Hence, momen-
tum conservation becomes
Vi@ +p) — mV, (v*/2) = — v, /3t + fi + 8.V, (A7)
which clearly specializes to (I1.27).

The last example is an open, thermodynamic, fluid sys-
tem constrained by the differential counterparts of X, , |, K|,
and K, in (I1.14),

k(_,_)EVkJ; =0,

k, =V, (mv*) =V, (M i v*) =0, (I1.28)
k,=V,(mb,) = V,(a i v*)=0.

The Lagrangian for this problem has the form
L =5+A"k  +A%k +1%, (11.29)

but I shall make some assumptions about § and &, , which
are not essential but which are made solely to simplify the

calculation somewhat. I shall neglect all electromagnetic ef-
fects in §and &, ,. With this condition § becomes a function
of & and 7i, alone and the energy flux takes the simpler form

JE = [a + M7, (2 + v?/2) " + (" — ATkj)vj
+q-+pds,
where — p,=mS*B,,; = mS,g"*G,;. Now for a fluid G,

= Gg,; and thus p; = 3p and the energy flux can be written
in the form in which I will use it,

JE = [+ MA, (2 + v*/2) + p

+ (p¥ — pigh/3 — AW, + ¢* +pd .
In this expression for the energy flux p = 79s/3(1/m)
= p((u, 1/m, n,) and since p is intensive p = p(d, 1, 71 ). Ob-
serve that the combination & + p is the enthalpy per unit
volume. We can now calculate §.% subject to the conditions
802 = 0,80 =0, 5(p% — g¥pi/3 — A7) = 0, and
8lg" +p*d’) =0,
8L =k, 6A'T) + kA + k84

+ [T — (1 + 3p/dap* v, A ))ba

—A{T "0 + M2 + v*/2) + 3p/A, |

XUV A ) 4 MUY, A Y + a2k Y, A 9 Y8R,

+ V [AH8T % + (A M7 + 4 %a2)6A, 0" ].
To obtain this form for §.%° I used, for example, relations of
the type A 'V, 87 =V, (A F6T%) — 6TV, AH). The
divergence terms in 8.7 will not contribute to the Euler—
Lagrange equations for the problem because they vanish by
the transversality conditions when converted to integrands
on the boundary. Thus these terms can be ignored when we

write down the Fuler-Lagrange equations implied by
8% =0,

(I1.30)

Frank J. Zeleznik 177



Vi@ + M, (2 + v/2) + pIo* + ¥ — g¥pi/3
— A7, +¢* +pd L} =0,

V. (MY, 0%) =0,

Velala, vk) =0,

T~ — (1 +dp/3ap*v, A+ =0,

T ~'u” + [M2 + v%/2) + p/3h, "V, A1+
+ MV, A 4 %V, A =0. (I1.31)

CONCLUDING REMARKS

In this paper I have extended the algebraic theory of
thermodynamics to include the effect of algebraic sturcture
induced by the body itself. The extended theory leads direct-
ly to, and justifies, a variational method of thermodynamic
calculations which encompasses the traditional thermody-
namic calculations as special cases. More importantly it per-
mits the extension of thermodynamic calculations to states
which heretofore were considered to be outside the province
of thermodynamics. The traditional thermodynamic states,
constant functions on a subsystem, are the ones that are im-
portant for thermodynamic experiments because they mini-
mize the number of measurements which are necessary to
characterize the state of a body. But states with gradients are
more common, and technologically more important, so the
extension permits thermodynamics to become a more versa-
tile and useful tool.

APPENDIX

Some typographical errors have been found in the first
paper and the corrections are listed below.

1. p. 1586, Definition I.24, line 3 should read “ment of
M iff m<,,m°YmeM. It is said to be maxi-.”

2. p. 1586, Definition 1.27, line 6 should read
“mypem i =m,<my or My, ym,¥m,, m,, meM.”

3. p. 1588, Theorem 1.38, line 4 and line 5 should read
“ a subset of some maximal chain and, V x, x'eS, x = _ x"iff
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x<,, x'and x'<, x.”

4. p. 1589, Theorem 1.42, line 2. The statement “ecfe]”
should read “e’e[e]nC.”

5. p. 1599, Corollary III. 5, line 6 of the proof. The
symbol ”dz*” should read “dz*.”

6. p. 1600, the first line after Definition II1.7. The word
“cited” should be deleted.

7. p. 1601, the third line after Theorem I11.9. The word
“chain” should read “chains.”

8. p. 1606, the fifth line after Eq. (IV.2.10), the symbol
€, should be e,,.

9.p. 1608, Eq. (IV.17.3). The symbol § W should be 3W.

10. p. 1609, line 9 of the first paragraph. The beginning
of the line should read “ that is, 3y,.”

11. p. 1609, line 22 and line 23. The upper case letter
“P” should be replaced by a lower case letter “p.”

The theorem below is an extended version of Theorem
A .1.42 obtained by proving the converse of the original
theorem.

Theorem 1.42 (extended): Let Cbe a chain, not necessar-
ily maximal, in (X, <, = . ) and e an equilibrium state of
C. Then €’ is an equilibrium state of C iff e'e[e]nC.

Proof: Now e is an equilibrium state and hence eeC.
Suppose €’ is an equilibrium state of C. Then ¢'eC and hence
e< e or e’ e But because e is an equilibrium state
e'< ,e=e = _e andineither casee = _ ¢'. Thus e'e[e] and
hence e’e[e]nC. The converse is established in Theorem
A.L42.
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A simple and useful characterization of the global copies of any classical gauge vacuum is given.
When the gauge group is abelian we obtain through that characterization a necessary and
sufficient condition for the equivalence of the principal fiber bundles on which any two of such
copies are defined. We compute by using also that characterization the classical vacuum
structures of some nonabelian gauge field theories defined on different space—times.

PACS numbers: 11.10.Np, 02.40.Vh

1. INTRODUCTION

In the last several years, the study of the quantum vacu-
um structure of the Yang—Mills theory has pointed out im-
portant physical properties of such a theory: multiplicity of
quantum vacua with different realizations of the quantum
Yang-Mills theory for each one of them, resolution of the
U(1) problem, appearance of instantons, etc.'~ That vacuum
structure is built from the classical vacuum of the Yang-
Mills theory: the gauge fields whose field strengths are null
on the whole of the space-time.

When the space-time is the Minkowski space—time it is
clear that all of those gauge fields are trivial, because they are
defined on R*, which is a simply connected manifold, and
every flat connection (i.e., with null curvature) defined on a
simply connected manifold is trivial.* The same result holds
for the gauge vacuum of spatially compactified space—times
defined over R XS, But if one considers the gauge vacuum
on nonsimply connected space-times that result does not
hold: nontrivial flat gauge fields may exist. When the gauge
group is U(1) and the space-time manifold is R X.S ! this fact
gives rise to the Aharonov—Bohm effect of the electromag-
netic gauge field, which points out the physical difference
between the global gauge field copies (equivalence classes of
connections with equivalent curvatures) of the electromag-
netic vacuum.>°

In an early paper,” Kostant has shown that the group
Hom(m\ (M ),U(1)) acts freely over the set of equivalence
classes of the connections with gauge group U(1) on an arbi-
trary manifold M having the same curvature. Hence the glo-
bal copies of the U(1) classical vacuum on M are in one-to-
one correspondence with the elements of the group
Hom(7 (M ),U(1)). In particular, for the manifold R>X.S ! of
the Aharonov-Bohm effect the global copies of the electro-
magnetic vacuum are in one-to-one correspondence with the
elements of Hom(Z,U(1)) = U(1).

The aim of the present paper is to extend the U(1) analy-
sis of Kostant for any gauge group in order to know the
classical degeneracy of the general gauge vacuum. In Sec. 2
we find the extended characterization of the global copies of
any gauge vacuum and we give when the gauge group is

“Partial financial support from the Instituto de Estudios Nucleares.
"Laboratoire Associé au C.N.R.S. Postal address: Université P. et M. Cu-
rie, Paris VI, Tour 16-ler étage, 4, place Jussieu-75230 Paris cedex 05,

France.
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abelian a criterion through this characterization for the
equivalence of the principal fiber bundles in which such
copies are defined. General results of Sec. 2 are applied in
Sec. 3 to some space-time manifolds and physical gauge
groups. Section 4 contains the conclusions and some final
remarks about this classical degeneracy of the gauge
vacuum.

2. GLOBAL COPIES OF THE GAUGE VACUUM

Let M be a connected differentiable manifold and G a
Lie group. Let us consider a fixed point x, of M and the first
homotopy group (M ) of M with base point x,,. In the group
Hom(m,(M ),G ) we have the relation of equivalence such that
forany¢,£ ‘eHom(m,(M ),G )£ ~ £’ (£ iscongruent with & ) iff
thereisageGwith¢ ‘(1) = g~ '& (I )gforeverylem (M ). Letus
denote its quotient space by Chom(r (M ),G ) and the equiv-
alence class of £ by [£ ]. There is also a relation of equivalence
in the set of gauge fields on M with gauge group G: Two
connections I" and I"’ defined in two principal fiber bundles
P(M,G)and P'(M,G ), respectively, are equivalent iff there is
an M isomorphism (1,id; ) of Pin P’ mapping I"in I" ' (in such
a case the principal fiber bundles P (M,G ) and P'(M,G ) are
said to be also equivalent). We shall denote the equivalence
class of I"by [I"].

Each flat connection I' defined on any principal fiber
bundle P (M,G )hasassociated an element of Chom(m,(M),G)
in the following way. If we choose an element ueP with /7 p(u)

= X, €ach continuous piecewise differentiable closed curve
of M beginning and ending at x, defines an element of the
holonomy group of I'" at u. Since I' is flat this element is the
same for all the curves in the same homotopy class, and it is
obvious that the mapping £, :7,(M }—G so defined is a homo-
morphism of groups. If we choose another point vel7 7 '(xoh
since there is a geG with v = ug, we have that (1)

=g~ '¢,(1)gforevery lemr (M ). Hence the equivalence class
of £, is independent of the uelT ; '(x,) chosen. Moreover, it
is trivial to see that this class is the same for all the connec-
tions being equivalent to I” and in this way we have built a
mapping« of 7§, into Chom(m,(M ),G ), S, being the set of
equivalence classes of flat connections on M with gauge
group G (i.e., the global copies of the gauge vacuum).

Theorem 1: For any connected manifold M and any Lie
group G the mapping
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k:7"5—Chom(m,(M),G)
is bijective.
Proof: In order to see the one-to-one character of k let us

assumethat I"and I" ' are two arbitrary flat connections on M
with gauge group G such that

k() = (")) (1)
Let P(M,G), P'(M,G ) be the principal fiber bundles where I"
and I'’, respectively, are defined. Since (1) holds there exist
two points u,eP and u(eP’ with IT,.(ul) = H p(us) = x,and
§., =§,, and hence we can define a mapping ¢ of Pinto P’ in
the following way. Let us consider the holonomy bundie P,
of I' at u,, 1.e., the submanifold of P whose points can be
joined to u, by a horizontal curve with respect to I". For
every point ueP, we can define ¥(x) as the ending point of the
horizontal lifting with respect to I"’ beginning at u,, of the
projection on M of any horizontal curve of P, with respect to
I beginning at u, and ending at #, because that end point is
independent of the chosen horizontal curve of P, connecting
uyand u. Indeed, if ¥, and 7, are two horizontal curves of P,
with ¥,(0) = 7,(0) = u, and 7,(1) = ¥,(1) = u, the continu-
ous piecewise differentiable curve ¥, defined by

vit =y,(2t) if 0<z<),
=p2—2t) if i<,

is closed and horizontal in P, with respect to I". Now, since
§., = &, the continuous horizontal lifting at u; in P’ of the

projection on M of y; is also closed, which implies that ¥/ (1)

= 7;(1), ¥ and ¥} being the horizontal liftings at «;, in P’ of
the projections on M of y, and y,, respectively. Since M is a
connected manifold, it is arcwise connected. Therefore P,
intersects every fiber of P and we can extend the definition of
¥ to the whole of P in such a way that

Plug) = Pluig
for any ueP, and geG. It is trivial to see that (¢,id;)isa M
homomorphism from Pinto P’ whichmaps I'into I"'. In the
same way we define a M homomorphism (¢,id;) from P’
into P which maps I" ' in I". Now from both definitions it
follows that o)’ = id,., ¥/’otp = id, and hence that (¢,id) is
aMisomorphism from Pinto P ', whichimplies that "and I’
are equivalent, i.e., [I"] = [I"']Je 7% Thus & is one-to-one.

We shall now prove that « is surjective. Let IT , . #/ —M
be a universal covering of M and x a fixed point of IT _, (x,).
Then there is a differentiable action by the right of 7,(M ) as
discrete group on .# which gives to .#(M,IT , ,7\(M)) a
principal fiber bundle structure and such that for each
lemr (M), xIis the end point of the differentiable lifting in .#$,
beginning at x for every closed curve of the homotopy class
L® Let us now define for each éeHom(w,(M ),G ) the right
action of 7,(M ) on .# X G given by

(vl =(yL&(1)7'g) (2)
forevery( y,gle.# X Gandlem,(M).Sincetheaction of 7,(M)
on .# is properly discontinuous, the action defined by (2) is
also properly discontinuous, which implies that the quotient
space P = .# X G /m,(M ) is a manifold and that the natural
projection /1 from .# X G into P is differentiable. On the
other hand this action commutes with the canonical action

180 J. Math. Phys., Vol. 22, No. 1, January 1981

of Gon .# X G. Hence we can project the canonical action of
G on .# X G to an action of G on P, which corresponding
quotient manifold is isomorphic to M. It is trivial to see that
with this action P (M,G ) is a principal fiber bundle and that
(#1,id;) is a homorphism of principal fiber bundles from

M X Ginto P(M,G ). Let us now consider the trivial connec-
tion I'y in .# X G defined in each point ( y,g) of .# X G by the
subspace of the tangent space of .# X G at { y,g) which is
tangent to the submanifold .#, = {(z,g);ze.# }. Because

lgl:“létl)"g

for any /e (M) and geG, I, is invariant by the action of
(M ). Therefore II maps I'into a flat connection I"in P. On
the other hand, since .# is arcwise connected, for every
lem (M )thereis acurve ¥,:[0,1]—# with ,(0) = x and y,(1)
= x/. The projection through /7 , on M of such a curve
IT , oy, is a closed curve beginning and ending at
IT ,(x)=1IT , (xI) = x, which belongs to the homotopy class
I of (M ). From the construction of I'" it follows that the
horizontal lifting of I7 , oy, withrespectto I'atu = IT (x,e)is
the projection through /7 of the horizontal lifting 7, of 7,
with respect to I'y at u, = (x,e). Since 7,(t } = (y,(¢ ),e) for ev-
ery t<[0,1] we have that ITo¥,(1) = IT (7,(0))& ( /) and there-
fore that

S =¢&(1) (3)

Finally, because (3) holds for every ler,(M ) we have
proved that «([I"]) = [£ ], which points out the surjective
character of the map «. Q.ED.

The above theorem gives us a faithful characterization
of the classical gauge vacuum structure through the set
Chom(r(H ),G ) which obviously depends on the gauge
group and on the topological structure of the space-time.

Note that this simple characterization of the global
copies with null curvature is a consequence of the unicity of
the local copy with null curvature. When the curvature of a
non-abelian gauge field is not null it may have many local
copies”'? and therefore in this case the characterization of
the global ones is more complex.

Whenever 7,(M ) = Owehavethat Chom(m,(M ),G) =0
and in this case Theorem 1 shows us again that all flat gauge
fields on a connected and simply connected manifold M are
trivial, i.e., all the classical gauge vacuum structures on M
are trivial.

If G is abelian, for any connected manifold M

Chom(7,(M),G ) = Hom(m,(M ),G).

Therefore in this case the global copies of the gauge vacuum
are in one-to-one correspondence with the elements of the
abelian group Hom(r, (M ),G ), which agrees with the Kostant
result when G = U(1). We shall now see by using this corre-
spondence which of those global copies of the abelian gauge
vacuum are defined in the same equivalence class of princi-
pal fiber bundles. Let g be the abelian Lie algebra of G. The
exponential map

exp:g—G

is in this case a homomorphism of abelian groups, and hence
the mapping

EXP:Hom((M ),g)—Hom(m (M ),G)
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defined by

EXP¢ (1) = exp(& (1)
for any éeHom(w,(H ),g) and /e, (M } is also a homomor-
phism of abelian groups.

Theorem 2: Two flat connections I"and /"’ on a connect-
ed manifold M with abelian gauge group G are defined in
equivalent principal fiber bundles iff there exists a homo-
morphism yeHom(,(M ),g) such that

«([I""]) = «([I")EXP7. 4

Proof: Suppose that I"and I'* are defined in equivalent
principal fiber bundles. Then there is a principal fiber bundle
P (M,G)where the connection I"and a connection equivalent
to I"" which we shall also denote by I"’ are simultaneously
defined.

Ifw and @’ are the connections 1-formsin Pof Fand I,
respectively, we have that 7 = &' — @ is a g-valued tensorial
1-form of type adG of P. Since g is abelian there is a g-valued
1-form a of M such that r = IT %a, IT, being the projection
from Pon M.

{e, i=1,.,n}

be a basis of g, where n = dimG. The g-valued 1-form a splits
into # real 1-forms «; in such a way that

a= i ae;.

i=1

Since I"and I"’ are flat we have da = 0, which implies that
da, =0,i=1,..,n, ie., each real 1-form a; is closed. Ac-
cordingly the mapping associating

5= Ja)e

to each closed curve ¥ in M beginning and ending at x,,
which obviously is independent of the basis of g chosen, only
depends on the homotopy class of ¥, because

J- a; = J‘a,. i=1,..,n,
¥ ¥

for every closed curve ¢’ in M of the same homotopy class of
y. Let 7 be the homomorphism of (M ) into g defined by
that mapping. In order to prove that 7 satisfies the equality
(4) it is sufficient to see that for each horizontal lift #in P with
respect to I of any closed curve ¥ in M the curve ¥’ defined
by

n 4 .
rin=roree 3 (- [awia ]
i= 0

is an horizontal lift of ¥ in P with respect to I"’, 7, being the
tangent vector to ¥ at ¥(¢ ). Now by Leibniz’s formula

V=7 CXP[ .-gl (— fo‘ a;(7,) dt)e‘]

- ‘Ej:l ai(j’t )X%:)

for every t€[0,1], y* being the vector field of P defined by the
corresponding element e’ of g through the action of G on P
and 7, exp{2}_ |( — foa,(¥,) dt )e'} being the transformed
tangent vector of ¥, through the action of

exp{3"_( — fia,(¥,) dt)e'}eG on P. Thus, since w(7,) = 0
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and w(y’,,) = ¢, we have

@'y )=0
for every t€[0,1], which shows that ' is a horizontal lift of ¥
in P with respect to """

Conversely, suppose that equality (4) holds for some
nehom(r,(M ),g). In the basis {€,i = 1,...,n} of g the homo-
morphism 7 splits into 7 homomorphisms 7,, i = 1,...,n, of
(M) into R in such a way that

n= 2 n:e.
i=1
By Rham’s theorem'! there are in M n closed real 1-forms
a;, i = 1,...,n, such that for any ler (M)

17.—(1)=J;a,-,

y being any closed curve in M of the homotopy class /. Let a
be the closed g-valued 1-form of M defined by

a= ﬁ: aé,

i=1
which obviously is independent of the basis of g chosen. It is
easy to see that the g-valued 1-form

o=w+ 11}

defines a flat connection I” in the principal fiber bundle
P(M,G ) where I' is defined. Then we have

«([']) = «([I"]) EXPy = «([I""]),
which implies by Theorem 1 that I"’ and I” are equivalent.
Thus the principal fiber bundle where I"' is defined is equiv-
alent to P. Q.E.D.
The preceding theorem enables us to know that the glo-
bal copies of any abelian gauge vacuum on a connected

space—time manifold M which are defined in trivial principal
fiber bundles are given by the elements of

x~ ' EXP(Hom(m,(M ),g))C 7S, .

Another important consequence of Theorem 2 is that the
equivalence classes of principal fiber bundles on a connected
manifold M with abelian structure group G where flat con-
nections are defined are in one-to-one correspondence with
the elements of the group

Hom('rr,(M G )/HOI'II(’IT](M),Q),

whereHom(,(M ),g)anditsimagein Hom(n, (M ),G )through
the mapping EXP are identified. In particular, the existence
of space-time manifolds with

Hom(,(M),U(1))/Hom(r,(M),R) # {0}

was used by Boya and myself'? in order to point out the
existence of electromagnetic gauge fields without monopoles
defined in nontrivial fiber bundles.

Accordingly, the two preceding theorems give us a sim-
ple and complete description of the classical vacuum struc-
ture of any abelian gauge field theory. Nevertheless most of
the fundamental gauge field theories appearing in physics
are non-abelian and their vacuum structure is more com-
plex, because in general

Chom(m,(M ),G )#Hom(m,(M),G)
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and, theorem 2 does not hold for them. We shall analyze
some simple cases of such vacua in the next section.

3. SOME VACUUM STRUCTURES OF NONABELIAN
GAUGE FIELD THEORIES

For the sake of simplicity we shall only consider special
orthogonal gauge groups SO(V ) and special unitary gauge
groups SU(N) with N>2.

A T 1(M) =7
First, let us analyze the nonabelian gauge vacua of the
expid, 0 0 0

0 expid, - 0 0

0 0 expidy _, 0
N—1

0 0 0 exp( —i YA ,-)
i=1

with A,,...,Ay _ ,€[0,27) and 4,<--<4 ;. Accordingly,
73N, ~Chom(Z,SU(N)) =AU (1),
where
AYU(1) = {(expid,,....expid 4 )€U(1)™:
Riel02m A< Ay (1/2m) AN},
In a similar way we obtain for G = SO(NV)
7304 =Chom(Z,SO(N ) =4 V/2180(2),
where [V /2] is the highest integer z with z<N /2 and where
AWNIS0(2) = { (expA,0,....expA x 2 ,0)€SO2)!V 72;

_(0
7=\

On the other hand, since the classes of principal fiber
bundles on R*X §'! with gauge group G are in one-to-one
correspondence with homotopy classes of mappings of
§°= {1, — 1} into G,* when G is connected all principal fi-
ber bundles on R* X S ' with gauge group G are trivial. Thus
the global copies of 7 500 and 7 3 are defined in triv-
ial principal fiber bundles.

Note that the SU(2) and SO(3) gauge vacuum structures
on R S ! are similar to the electromagentic ones giving rise
to the Aharonov-Bohm effect. Indeed

72 = U= 78 =S0R2)= 7 Rils = U(1),
and all the copies of these vacuum structures are defined in

trivial principal fiber bundles on R*>X S ' with gauge group
SU(2), SO(3), and U(1), respectively.

—1
O)’ A;€[0,27), /1]<'"</1[N/2]}’

B.miM)=2,(p>1)

Let L ( p,1) be the quotient manifold (lens space) of the
action of Z, = {a,d%,...,a” = e} in the sphere S given by
(! X2 %3 xha

= (x' cos2mr/p — x* sin27r/p,x" sin2ar/p + x* cos2wr/p,
x3 cos2ar/p — x* sin2mr/p,x> sin2mr/p + x* cos2wr/p),
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space-time manifold of the Aharonov-Bohm effect R* X S '.
Since 7,(R*X S ') = Z every éeHom(r,(M ),G ) is completely
given by & (1)eG. When G = SU(N ) every 4eSU(V ) can be
diagonalized by means of a unitary transformation, i.e.,
there exists UeU(N ) such that U ~'4U is diagonal. There-
fore, U, = (detU) ~ YUeSU(N ) verifies that U [ 'AU, is
also diagonal, which implies that 4 is congruent with a diag-
onal element of SU(V ). In the same way, since the matrices of
the invertible linear transformations interchanging the vec-
tors of the natural basis of C¥ are unitary, 4 is always congru-
ent with a diagonal matrix of the form

eSU(N), (5)

for » = 1,2,...,p and for all (x',x>,x*x*)€S* CR*. The mani-
fold R X L ( p,1) supports some admissible space—time struc-
tures.'” How are the gauge vacuum structures defined on
those space-times? Since m,(L ( p,1)) = Z,,, m,(R X L ( p,1))
= Z,. Thus every éeHom(m,(R X L ( p,1)),G ) is completely
determined by £ (a). Now since every AeSU(N ) is congruent
to a diagonal matrix of the form (5), we have

39,1y = Chom(RX L (p,1),SUWN ) = A} Z,,
where

N 2 L X N
A! Zp = {(a'.,a’,_..,a’\)GZV;r1<r2<-.-<rN, (1/p) 2 r, € NI,
i 1

and that each global copy of the vacuum 737} , ,, is reduc-

ible to a global copy of the abelian vacuum 7~ }{‘)‘(’z( o1 Nev-
ertheless, though the copies of 7"} ., are defined in non-
equivalent principal fiber bundles because Hom(Z,,R")
= 0, two copies of 753517} ) may be defined in equivalent
principal fiber bundles because theorem 2 does not hold for
the SU(V) groups when N>2.

In the same way, we prove that

730 1) =~ Chom(rr,(M ),SO(N )) = AV ?IZ,,
and that each global copy of the vacuum 77307 ) \1s ]reduc-
ible to a global copy of the abelian vacuum 7 327 on-In

spite of this, two copies of 7 3%} ,,) may also be defined in

equivalent principal fiber bundles when N> 3.

Up to now all the space—time manifolds considered had
abelian first homotopy groups and hence the holonomy
groups of the global copies of the gauge vacua on them were
also abelian, which simplified the computation of the corre-
sponding gauge vacuum structures. We shall now analyze a
more complex case: the vacuum structures on a space-time
manifold whose first homotopy group is not abelian.

C.riiM)=Q
Let us consider the quaternion subgroup @ of SU(2)

Q= {1, —Lio,,io,,io,, —io,, — io,, — io,},
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where I is the identity of SU(2) and o,, 0,, and o, are the
standard Pauli matrices. The action of Q in SU(2) defined by
the right product in SU(2) is free and properly discontinuous.
Thus the corresponding quotient manifold S, is paracom-
pact and satisfies the exact homotopy sequence

oy (SU2)) o7, (So 7ol @ ) + mo(SUR))—>+-.
Then 7(M ) = 7,(Q ) = @ because 7(SU(2)) = m(SU(2)) = 0.
Q is the lowest non-abelian group which can be realized as
the first homotopy group of the quotient manifold of a free
action of a group over SU(2) =S ? (diffeomorphically). In-
deed, the lowest non-abelian finite groups are the dihedra
groups D, (order 6) and D, (order 8), and the quaternion
group @ (order 8). But there are no free actions of D; and D,
on S 3 because in D, and D, there are involutive elements
which do not lie in their corresponding group centers.'?

On the other hand, since SU(2) is a Lie group it admits a
right invariant orientation, which implies that S, is also
orientable. If we consider in S, a Riemannian metric g (there
always exists such a metric because S, is paracompact), we
may define in RS, a Lorentizian metric Z in such a way
that for every (t,x)eR XS, we have

gwv')=glyy) —ss
for any two vectors v = (s,y) and v’ = (s',y’) of
T (RXSo)=T,(R)X T, (So)=RXT,(Sy).
Since R X S, is orientable and R X S, is time orientable with
respect to g, (R X.S,,2) is an admissible space-time which
satisfies the causality condition. We shall now study the
gauge vacuum structures of such kinds of space—times.
There are only five classes of inequivalent irreducible
unitary representations of Q: the classes described by
(1) a two dimensional representation £, defined by the
inclusion of @ in SU(2);
(2) four unidimensional representations defined by
§ilioy) =§1(i"y) = —1, §lio,)=&(-1)=1,
&ilio,) = &lio,) = — 1, Glio)=8(—1)=1,
§3(iax) = §3(iaz) = - 19 §3(iay) = §3( - I) = 1’
Salio,) = Elio,) = E4lio,) =& —I)= 1.
Consequently, since for any /, j = 1,2,3,4 the represen-
tations £, ® £; and §; @ £; of Q are equivalent, there are only
eleven classes of nonequivalent two - dimensional unitary

representations of Q: the classes described by the
representations

o &;=608 K Lj=1234

Now, if two N-dimensional special unitary representa-
tions &, £ of Q are equivalent they are unitary equivalent.
Then there exists a matrix UcU(V} with

U4 U=¢£"4),
for any AeQ. Hence we have for U, = (detU) ~ "~ UeSU(N)
also

U640, =£"d),

for every AeQ, which implies that £ and £ ' are two congruent
homomorphisms of Q in SU{V). Accordingly.

78, =Chom(0,SUR) = [ [£],[€.], i=12,34],

i.e.,, thereare five global copies of the SU(2) gauge vacuum
on R X S,,. The copy corresponding to [£,] is the only copy of
7 wxs, having non-abelian holonomy groups. Note that
775% does not have a natural group structure.
Q
In the same way, for any special unitary gauge group
SU(N) we find that

N2

[ 1
7 x4, ~Chom(QSUN))= u AY 2Dy,
i=0

where
AIf.DZ = {(a,-l ,...,a,-k)ED ;(;i1<"'<iK 0@ dy, = e} } for K> 0,
A°D, = {1},

1

D, = {a,,a,a,,a, = e} being the second dihedral group.
Similarly, we obtain

ﬂ?ﬁTSQChom(Q’SO(N))z{ [§i,...i~]

= [&, @ @& Lii<<iyspniy =1,2,3,4
Jdetf, ; (a) = 1,aeQ}

i.e., there are Card AD, global copies of the SO(N)
gauge vacuum on R X S,,. It is obvious that in this case all of
these global copies have abelian holonomy groups.

Accordingly, the structure of nonabelian gauge vacua
is more complex than the structure of the abelian ones. [For
instance for the abelian groups U(1) and R we have

V}!J(;)SQ I~ Hom(Q,U( )= {§I’§2!§3!§4 } =D,
and
7R s, ~Hom(QR) =0,

respectively.] In spite of that, Theorem 1 provides us with a

powerful and useful tool for the study of both kinds of gauge
vacua.

TABLE 1. The vacuum structure %, = Chom(r,(M ),G ) for some space-time manifolds M and some elementary gauge groups G. Note that 7 3851 =SO(2),
78 =U(1), 7792, = Z,, and 37 .\, = Z,, are the only nontrivial and nonabelian vacuum structures in this table having a natural group structure.

Space-time Gauge Group G
Manifold M u(1) R SU(N) SO(N)
R* 0 0 0 0
s 0 0 0 0
RxS! u(1) R AYU(1) AN7M80(2)
RXL(p,1) z, 0 AVZ, ANZ,
IN/2)
RXS, D, 0 U Ay, 4},
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Most of the results of this section are summarized in
Table 1.

4. CONCLUSIONS

The main physical consequence of Theorem 1 is that in
general the classical gauge field vacuum is degenerate and
that the degree of this degeneracy is given by the cardinality
of the set

Chom(m,(M),G,)

M being the space-time manifold and G being the corre-
sponding gauge group.

In the electromagnetic case this degeneracy was known
from the discovery of the Aharonov-Bohm effect, which
shows us that such a degeneracy is broken by the presence of
charged material particles in the space-time manifold
R3x S ' In the same way one may expect that for all gauge
field theories vacuum degeneracy is broken by the presence
of material particles feeling the corresponding gauge
interactions.

In a recent paper'* Mayer and Wiswanathan discuss the
quantum structure of the gauge vacua for non-one-point
compactifications of the spacelike subspace R> of the Min-
kowski space-time. In particular, they consider the quan-
tum vacua arising from the trivial SU(2)(SO(3)) gauge field
copy on RP3. Since 7,(RP?) = Z,, Theorem 1 says that there
is another SU(2)(SO(3)) gauge vacuum copy on RP>. There-
fore, another quantum vacua sector may be derived from
this classical vacuum copy. This new sector must also be
studied for the complete understanding of the quantum
vacuum structure in that compactification.
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Finally, vacua sectors of this kind may also appear in
the construction of the quantum gauge vacua on space-time
whose manifolds are not simply connected when the corre-
sponding classical vacua are degenerate. But in general the
quantum structure of the gauge vacuum on such space—
times is not well known yet.
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A Hilbert space formulation is proposed for the three-nucleon scattering p‘roblem. .Scattering
integral equations are given derived from Alt—Grassberger-Sandhas eguatlons. Using the '
momentum representation, the kernel of the iterated integral equation is shown to be compact in
an adjusted Hilbert space. The extension to four nucleons is given.

PACS numbers: 25.10 + s, 03.80. + r, 02.30.Rz

I. INTRODUCTION

In his famous work Faddeev' established three-body
scattering integral equations and showed the iterated kernels
to be compact in a given Banach space. Compactness would
be a strong tool for powerful approximation techniques for
practical solutions if the space were a Hilbert space. Much
work has been done since on the investigation of few-body
scattering equations.?”'" It is a common feature of these
equations that their kernels are built up from transition am-
plitudes or Green’s functions corresponding to a lower parti-
cle number. By probability conservation, one is forced to
take into account all the subsystems particle breakup poles
and corresponding cuts. These singularities give rise to the
difficulty that the kernels are not compact on the ordinary L,
Hilbert space. For three particles in coordinate representa-
tion Ginibre and Moulin'? showed compactness of kernels in
a Hilbert space. For three particles nonsingular scattering
equations in momentum space have also been proposed.'* In
momentum representation, widely used in practical few-
body calculations, this work gives a Hilbert space approach.
It allows one to calculate the scattering amplitudes from in-
tegral equations in Hilbert space with compact kernels. It is
shown in detail for three particles, and for four particles the
basic equations are given. The main point is the application
of the substraction technique which splits a Cauchy type
singularity into a nonsingular part and a singular part which
is analytically solvable. This idea has been used by Noyes
and Kowalski,' in order to extract from a two-body scatter-
ing equation a nonsingular equation. Here it is used to con-
struct a scalar product from a function and the subtracted
function, thus giving an appropriate Hilbert space. This
method already has been shown to work in the two-body
case and a special low energy three-body case.'® It is briefly
reviewed in Sec. 2. For the three-body case, it is generalized
to more variables.

It is well known' that the original Faddeev kernel is not
compact, as it is not connected. The same is true for the
equations given here, so that iterations are needed which
will, firstly, make the kernels connected and secondly, will
make the singularities less severe. In Sec. 3 the notation and
the equations are given for the three-body case. The next

“NATO Fellow from Justus-Liebig-Universitit, Giessen, West Germany.

"Research sponsored by the Division of Basic Energy Sciences, U.S. De-
partment of Energy, under contract W-7405—eng-26 with the Union Car-
bide Corporation.
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section defines the basic Hilbert space. In Sec. 4 a condition
is formulated which is shown to be sufficient for compact-
ness of the kernels. In Sec. 5 we show that it applies to the
class of Holder continuous potentials defined by Faddeev' in
a certain approximation. In the final section, for the four-
body case, the basic set of equations is given in analogy to the
three-body case.

2. TWO-BODY CASE

Let us briefly review our method given for the two-body
case." In the case of a rotationally symmetric two-body po-
tential, the angular momentum decomposed scattering
equation (Lippmann-Schwinger equation) is of the type

f@)=g@¢)+ lim J dq M—f @,
ev+0Jo " go+ie—gq
Q.1
f=g+Kf.
Let us introduce for technical simplicity a momentum
cutoff a > 0, although rotational invariance and momentum
cutoff are not needed. We define

7= [pivoez 0n 9 = YO e 2.0,
2.2)
and on 57 a scalar product
WX =Wx)r, + @4, - 23)

It turns out that 7 is a Hilbert space. The following condi-
tions on & turn out to be sufficient for K to be compact on

7
k (q’!q)EKZ(O’a) x (0,0) >

6% (grq) = HLA =K@ ) ¢ £ 0.0)%(0a),
- q—dqo

b5 (gq) = KOO =Kldod) ¢ 7 0,0)%(0a),
’ 9 — 9o
k(oo K(@9) —k(q'90) — k(Go) + k(d090)
$oue @) @ — 90)q — 90
€.7,(0,a) X (0,a) . 24

The compactness is made transparent by the following
steps:
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Ii ‘ (g'.9)
Jim | dg q0+l€_ /)
f dq "q 905l 11g) + (g’
f(qo)

fas

, . “ 1
k{q'.q0)flgo) lim | dg

9 +i€e—q

S qu:zsf;,(q',q)f(q) - k(q',qo>fo dq 1g)
+ g aiflgo]In 2 —in]

- L ’ dg d* (q'\q)fq)
- f dqlk(q'.q) + ¢ %, (q'9)g — )18 ’(g)
+ j dqlk(d-q) + 6% (¢"9)g0 — 9)]

x(7la)+ 8 lglas— ) [ln L —in|. 23

3. THREE-NUCLEON CASE: NOTATION AND
EQUATIONS

Let us consider three particles of identical mass m.
Throughout this paper we use the convention fi = m = 1.
The index a denotes the particle, also the subsystem of two
particles in which particle a is not contained, and the chan-
nel index of three particles containing this subsystem. Let g
be the relative momentum between two particles and p the
relative momentum between the third particle and the center
of mass of the two-particle subsystem. Thus, a plane-wave
state in the channel a, e.g., is expressed as |p,q) - In the
following an operator O defined in the two-body space is
denoted without index or as O.” Let ¥ be the two-body in-
teraction, G Z(Z ) the two-body free Green’s function and
T'(Z) the two-body transition amplitude. Let V, be a two-
body potential read in the three-body space as

APV p@. =80 — UV @) . (3.1)
Let G,(Z ) be the free Green’s function in the three-body
space, T, (Z ) be the two-body transition amplitude read in
the three-body space obeying

T.(Z)=V,+V,GZ)T,(Z). 3.2)
Let Uy, (Z) be the three-body transition amplitude, which
fulfills the Alt-Grassberger—Sandhas equatlons,16 with

85 =1 — 8,
Use =8.Go ' + 3 85
Y

where a, 3, ¥ run over all particles. Defining

T,GoU, » (3.3)

Uy, = TsGoUp, » (3.4)
one obtains from Eq. (3.3)
Upe = Tpbpa + 3 85, TyGoUpa - (3.5
Y

In the following, the energy is constrained by £
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= Real (Z) > 0, which means we are dealing with the most
complicated case. The singular behavior of Eq. (3.5) arises
from poles of the kernel. ;(p’,q’|Go(Z )|p,q) 5 has a pole at
Z= 1p + ¢, while ;(p',q'| T5(Z )|p,q); has a pole at
Z = }p* + E,. Here the technically simplifying (but not cru-
cial) assumption is made that there is only one two-body
bound state at £, <0. We make a variable transformation

= (v/3/4)p but omit the tilde in the following. Now let us

split G, and T, into singular parts and nonsingular parts
defining

(04 (8,(Z)|p,q) ..
=8 —pblq —q)(—|Z]|
/Z —p*—E,),

—P2 — |E4))

(3.6)
P4 |So(Z)|p.a)

=560 —p)d —(—|Z|
and B,(Z) and By(Z) via
G, =S,B,, 3.7
T,=S,B, .

It is valid that [S,,B, ] = [S.,Go] = [SaSo]_

= [S.,B,] = [S5:By] = 0. Let us introduce Uy, via
Upo =S5 Up, - (3.8)
From Eg. (3.5) one obtains

Upa = ByByo + Y 85,B,GoS,U,, . (3.9
Y

PP —VZ-p—4),

For physical relevance, it is sufficient to investigate this
equation multiplied from the right by a state |¢ ),,, with the
definition |f)B = Uﬁa |¢ >a’ |g~)ﬂ = Bﬂéﬂa |¢ >a’ thus
giving

1F)s =185+ 3 85,B5GoS, | F),

Our aim is a Hilbert space 5# with g and f belonging to %
and a compact integral operator K mapping 7 into % with

f=8+Kf, 3.1
such that the solution fis closely related to the solution f of
(3.10). A step toward this goal is the iteration of Eq. (3.10).
The reason is that our kernel is similar to that of Faddeev’s
equation for which iteration was shown' to make the kernel
smoother. After three-fold iteration Eq. (3.10) reads

| )e =185, + Y 85.5,B5,GoS;,
B

(3.10)

8)s,
+ Y 85,5,85,5Bp, GoSp, Bp, GoSp.18) 5,
fox:

+ 2

B Iﬂ\ﬁd

5'5-13; 52‘3;6, éB;B.BB. GOSB, BB: Gosﬂ, BB, GOSB. lg-'>ﬁ‘

+ lg; 85,5,85.5,65,5.85.5, B, GoSp, Bs, GoSp, Bp,
8485,

X GoSp,Bs,GoSp, 1 f g, »
which is our basic three-body equation. The inhomogeneous
term is called |g),, and

(3.12)
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K p.p6.8 = B, GoTﬁ, GoTp, GOBB.BUSOSB‘SBs ’

(3.13)
Hg 5.5, = B, GoT5,GoTp, GoBy, B, -
Thus (3.12) reads
|f ) 8. = |g ) 8.
+ D 855956656855 Kpp.86.5. P, (3.14)
B.BB.B
and the kernel Kz g5, 5.5, is factored into
Ky 5,685, = Hp.,5.6.505,5p. » (3.15)

Hg 5., Will turn out to be the nonsingular part, while the
singularities are contained in S,S;, S, . That is, S, contains
the free pole, S, the deuteron pole in the channel B,, S, the
deuteron pole in the channel B;. Remember only channels
B,#Bs contribute in (3.14). As poles emerge in different
channels, let us define some channel and variable transfor-
mations. For each 5, #5,

(2),-(e2) (%) 616
q /s cd q /s
A = (°%) with real coefficients @, b, ¢, d ,
5,04 1P.@ s =45,<Pq14 P2,
=4, {p’.q'|ap + bg,cp + dq),, . (3.17

Instead of characterizing a Hilbert state by the momenta
P4, one could also use p;,p, =k, with 5 #y,

e )=G2) ()
= , 3.18
( kg, ) ab q /5 ( )
B = (}?) with real coefficients q, b,
B (p',q'lp’k>ﬁ,ﬁ, =g, (P',q'|B IPM)ﬁ,
=4 (P.q'|p.ap + ba)g, . (3.19)

Let us use the Hilbert states in the |p,q) 5, representa-
tion in order to describe the singularities of Sy, Sg,, S5, . The
pole of S, emerges for E — p* — ¢* = 0, the pole of S,
emerges for E — (ap + bq)’ — E, = 0, while that of S,
emerges for E —p* — E, =0.

One can define a hypersphere of singular points. Let
G =R’xR’and
Ge = {(0.9|(@,0<G, E—p* —q* =0},

Ge_g,5 = {(09|(P.9<G, E — E, — (ap + bg)* = 0}
={@K)|(pkKeG, E—E, —k*=0},  (3.20)
1

Eli‘f}o 5. (P4 |Ks. 5556 (E +iO)P)s,

Gg_ g = {(0.9|(0,9)<G, E—E, —p* =0}
= {(p.k)|(p.k)eG, E —E, — p* =0},

with p,k defined by (3.18). Note the following properties:
GenGg_g,5 = 9,

GEnGE—E,,l =0, (3.21)

which can be verified easily. Assume on the contrary
(P,9€G:NGx _ ¢, 5. That means

0=E—p*—¢*=E — E, — (ap + bg)®. Calculating the
coefficients of 4, (3.16), one finds 4 to be an orthogonal
matrix. Thus, p? + ¢*> = (ap + bq)* + (cp + d¢)*>. Combin-
ing this with the foregoing equation means

0> — (cp + dq)* = — E, >0, which is a contradiction.
Similarly, assuming (p,Q)€GNGg _ g, means
0=E—p*—¢=E—E, — p? and thus

0> — ¢* = — E, >0, which is also a contradiction. More-
over, one can define corresponding domains

UE = {(P,Q)|(P,‘I)€G;0<P2 + q2 <E + %‘Ed | } ’

Ug_g5= {(.®|(P.9EG,|E — E,; — (ap + bQ)Zi <%|Ed|}
= {(@K)|(®K)€G,|E — E, — k*| <}|E,|},

Ur_ g = {(09|(p.QeG,|E - E; — p*| <}|E,|}  (3.22)
= (K| @K)eG,|E — E, — k*| <}|E,|},
with
G CUg, Gg_ £,8CUE_g,8 Ge_ £, C Ug E,l
and
UpnUg_g,5 =9,
(3.23)

UpnUg_ g, =0,

where the boundary of each U has a finite distance to the
corresponding G. Defining

Ug_g,=Ug_g,sYUs_g,1»

Ug =G\Up_g,. (3.24)
One has a disjoint decomposition of G
G=UguU;_ Uy . (3.25)

Now we are able to split a matrix element of the kernel
Ks pp88.:

= EETO 5. A0\ Q' |Hp 5.5, (E + i€)SH(E + i€)Sy (E + i€)Sp (E + i€)|¢) p,

= lim f dpdq g (P \q'|Hp ppp.(E + i€)pa) s,
U

€— +0

(—|E|—p*— ¢ — |E| — |E4| — PN — |E| — |E,| — (ap + bq)?)

X 2 2 2 2
(E—p* — ¢)\E — E; — p))E — E, — (ap + ba))
* eETo 1% dpdq g (0.9 |Hp 55,0, (E + i€)|p,q) 5,
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« (—|E|—p*— N~ |E| - |E;| — PN — |E| — |E4| — (ap + bq)?)

(E + ie — p* — @)\E — E, — p*)[E — E, — (ap + bq)?) 5. (DY),

+ lhm dp dk s (p'.qQ'|Hpppp (E+i€)|p.k) g

(—1E| P+ k2 +pl(— |E| — |E,| —p) — |E| — |E;| — k7
(E—4p*+ k> +pk)E+ie—E, —p°)(E+ie—E; —k?

In the domain Uy, no pole contributes from S, S, , Sy ; in U only the pole from S, contributes, and in Uy _ 5, only the poles
from S, ,Sj; contribute; thus the /e can be omitted in the denominator terms which give no pole contribution.

s, (DK g, (3.26)

4. HILBERT SPACE

In this section a scalar product space is introduced appropriate to handle the above discussed singularities, guided by the
same idea as in the two-body case. It is shown that the space is complete; i.¢., a Hilbert space. Let us start with some definitions.
Let

LAG) = [ fdp dq |¢¥(p,q)| exists in the sense of Lebesgue) (4.1)

and similarly .%,(Uy), .Z,(Ug ), and .&,(Uyg). Let
H\Ug) = [¢l¢€fz(Uz),¢ﬁ(P,q) = (#(p.9) — ¥ (21 ¢ = £)NE — P* — ¢°) " '€L ,(U) }

p q
where ¢(p:q)|{p2+q1:5‘) :l/]( [(pz +q2)/E]1/2 ’[(p2+q2)/E)]1/2 )’

FAUE _ E)= [![’W’ej (Ueg_&,) % Ep »(p.k) = (¥(p,k) — ¢(p.k) I(pZ: E— Ed))(E —E, —p) I Ed(p)€f2(UE— £
% kK = oK) — ¥k kg g NE—Es — k) Hp_p KeL(Us_ 1),
¢ E— E, E— E,,(p!k) = (¢(p.k) — ¥(p.k) ||p~’ —E—E) — Y(pk)| k*=E—Ey T Yp.K)| (PP —k*=E— E,,))

X[E = Ey = PNE— By — K3} s 05 5 W% (Up )]

[

where Iy _ 5 (x)=1 if |E — E, —x*| <}|E,| and 0 One has to show that ¢ (p,q) = g(p,q) almost everywhere in
elsewhere, U . Now the following variable transformation will be
H\Ug) = Z(Ug), useful.
H(G) =X (Ug) + F(Us_g,) + X (Ug) . p =ppsing, q={gpcoss, (4.4)
From the ordinary scalar products in .#,, we construct with p and § unit vectors of p and g, respectively, which

new scalar products. We define

(¢y9)>y(u,,;) = ('ﬁ’e)/',(u,.;) + (¢ ﬁ,¢ g)/’,(U,;) ’ 2
0w, 1) #pa6) =19l [dpag | dE1MpaEIF
= ('/’ 6)/‘,([/, ,) + (¢g E, ’¢Z‘ E )vy',(u,_. £

+ (P % E, E)z RUFE

Cauchy sequence in the space .7 ,( §,4,£ ) defined as

exists in the sense of Lebesgue. } “4.5)

It can be seen this way:
(¢ E— E E— E(,’¢ E—ELE—E, ).f,( Up 1) 4.2)

7/2
@) = B0). ( f dpdq f BN @Dr - p)
@0) sy = @&.0) s, + #8) 5w, ) + @0 vy - —fm(P»Q)|(pz+qz . lz)‘/z

Theorem 1: 77(G ) is a Hilbert space - —
Proof: From the properties of the scalar product(.,.) -, = ( J dpdg j dé | f(p4,p= VE )
it is clear that (.,.), is a scalar product. It remains to estab- 0 . .
lish the completeness. — o (Bdp = VE, £ )lz)

(i) Let us begin with #°(Up). Let £, be a Cauchy se-

quence in 5#(Ug). From that it follows that f, and $7% are VE NG .
Cauchy sequences in .& ,(U;;). As .Z°,(Uyg) is complete, = (6E - f dp p° f dpdqf de | f,(pdp
limiting elements f,ge.¥,(U) exist, such that 0 °_ o
A 2
f..—f, $%—g in the L,(Uz) norm. (4.3) ~VE & —f.(p4p=VE ,§)|)
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_ (6E‘3 dpda | [, @00 105

_fm(P’Q)l(p'+q'=E)12) . 4.6)

Usingf,, (p’q)l(f +¢*=E) =fn (prq)
— ¢%:(p,Q)(E — p* — ¢°), an upper bound for the last ex-
pression is

(6E i R L IVACOR (M),z)m + (654

1/2

x [ dbial 300 $E@NE - 57 - qZ)P)

In Ug |E — p* — ¢°| <E + }|E,| holds, such that we obtain
the estimate

(6/E™) || fo = full g + (6/E°NE + §E, )
X|lp% — ¢ Fll v »
which is a Cauchy sequence. From the completeness of

%, $,4,€ ) we conclude the existence of a limiting element
h(p,4,€ ), such that

f;x(prq) l[p‘+q’: E)_:h (ﬁ7é’§) in fz(ﬁ,q‘,é‘) .
As G is a subset of measure 0 in U, one is free to set
f(D’Q)|(p=+q1=E) =f(pd,p= \/E £)=h(p4£), 4.7)
which does not modify fe.#,(U). Thus, one has
/2
[apaa [ ag1 bt sie S DA oo 0
) n
(4.8)

which implies

L dp dq If;:(p9Q)|(p’+q1: E) _f(p’q)|(p:+ ¢*=E) |2—n>0 . (49)

Then one concludes

dpdq| f(p.Q) —f(PQ) 2 4 ¢ = £

Uy

( —g(p.Q)E —p* — ‘12”2)[/2
<< L, dpdq| f(p.q) — /. (p’q”z)l/z

172
+ ( dp dq| f(P’Q)\( P +¢*=E) —fa (P v 2 — ) |2)
v,

P 1/2
+( . dp dq| (¢%(p.a) — glp.a) IE — p* —q2)|2) —0.

(4.10)

The first and the third term tend to zero because of (4.3) and
the second because of (4.9). That means

S8 — (P9 1 = 5) = &P.GIE — p* — gYae. in Uy .
As ge?Z,(Ug),

$%(.9) = (F(0,.9) — (P9, s — £)(E — P* — &)
=g(p,qla.e. in Uy and ¢Le.7,(Uy),

which establishes the existence of a limit element fe.% (Ug),

189 J. Math. Phys. Vol. 22, No. 1, January 1981

which means completeness of #(Ug). .
(i) Guided by the same idea (but technically a little dif-
ferent) goes the proof for #(Uy _ ). Assumef, isa Cauchy

sequence in # Uy _ g ). Thus, £, ¢f£ — B, ,¢{E _gpand
¢';;_ £,E - E, aT€ Cauchy sequences in .Z,(Ug _ ¢ ), having
limit elements

foor S8 p @b e BbE e
in the .Z,(Ug — E,) norm. 4.11)

It is claimed that £, (p,K), 2 _ £ _ g, is a Cauchy se-
guence in

Zi4pK=19 | dﬁjdk A

exists in the sense of Lebesgue} . (4.12)

It turns out as follows:

172
(fdﬁ J dk lf;(p’k)](p’ —E—Ep _fm(p’k)l(p: —E—-Ep) |2)

3 E + (3/2)|E,| )
_ dp p*dp
( E +31E,) — (E +4E, ) sz).m i
2 172
X fdk |fn(p’k)|(Pz=E_E¢) —f'"(p’k)l(P2=E—Ed)| )
- (N f dpd X | £, (p.k) — £, (p.K)
Ug— Egl

—[b% e, 00— 8% . 0K E-E, —pH)7,
4.13)

where N, is the integral preceding constant
(3/[ (E +3|E,|)’ — (E + }|E,|)’] ). Making use of
|E — E; — p*| <}|E,|, one obtains an upper bound

NS —fll v, oy +3Ed] VN
X “¢ 1?— E; — ¢{2— E,,“.yz(u,; £’

which is a Cauchy sequence. From the completeness of

2 ,( p.k), one infers the existence of a limit element s( 3,k)
such that £, (p.K) 2 - £ _ g, —s( 5 k) in L5(pk). As G, ,
is a subset of U, _ ;. , of measure 0, one can put

SK)y - £ 5, = s(p,k). Without modification
feZ\Ug _ g,,); that implies

[ [k 110Ky —SOR e si 0,

(4.14)
and thus

fU dpdk | £pK) i r_ gy — FOK) 5y 0.

(4.15)
Then the following estimate holds:

(L A dkf@K) —f @K -5y

1/2
~ 8QME — E, —p)I)
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([ w1610 ~£, 00"
+( f I XLV (Y S P,

172
—ﬁ:(pSk)l(p‘ —E-E) lz)

4 ( f dpdk|(4%_ g, (0K)

—gpkD)E—E, — pz)lz)l/z—n»o . (4.16)

The first term and the third one tend to zero because of
(4.11), the second term because of (4.15). This means

Sk —f(P’k)sz —e-£) =8PKNE—E, —pHae. .17
in Ug_g,, ,a886.L,U; g, ), this reads

¢fE — Eg (p!k)
= [ (f(p.k) "f(l’:k)up’ =E_E, V(E—E, —Pz)] I, E,‘(P)

=g(pkae. in Ug_g ;. (4.18)
From this it easily follows that
¢%_ &, (k) =g@Kae. in Ug_g, . 4.19)
Analogously, one shows
¢’ _ (@K =h(@kae in Uy g (4.20)
and
oL e.£ - £,(0,K) = i(p,K)a.e. in Ug_g, - “4.21)

Equations (4.19), 4.20), and (4.21) together mean complete-
ness of Uz _ ).

(iii) Obviously 7 Uy ) = .Z,(Uyg ) is complete. Thus (i),
(i), and (iii) imply completeness of #(G ).

5. COMPACT KERNEL
Let us define

£ AUs X Ug) = 9] f dyf dy'dpda |90 pall”
X Ug

exists in the sense of Lebesgue} .

ZL U, X U),U,UeUg,Ug_ ¢ ,Ug are analogously de-
fined. In the following, one needs not only functions in

L (U, X U)) but also all possible combinations of its sub-
tractions, which is a generalization of the definition of sub-
tractions givenin (4.1)in £ ,(U,). Let us give some notation.
¢ ¥ means subtractions of . A semiconlon separates sub-
straction on U, from that on U;. A colon separates between
the subtractions corresponding to the p and k variable in the
case of Uy _ 5 . Note that in the case of substractions on
Ug _g, thell;;_  functionisincluded. Here are some sam-
ple cases:

d’ezz(UE X Ug):

é ﬂz(P'aq',P,Q) = (¥(p',q’,p,q) — ’Mp"q"p!q)m‘ +47= E))
/E—p*—¢),

(5.1)

where
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Yo' a B ey o) = w(p',q’, P
P+gq [(p2+q2)/E]l/2’

q
[(p* + ¢*)VE ]‘/2) ’
¢ £:0,q,pa) = {¥(P',q.0.0) — Y04 P.Q)| 1 g2 — £
- ¢(P':Q',D,Q)|¢ p+q =E)
+¥(p'.q’,p.q)| P+ g =p+ ¢ =E) J
X(E—p?—q%) NE—-p"—q¢)
¢6$2(UE—E., XUg_g):
¢ f)E- E,,(p',k’,pJ()

= [(¢(p',k’,p,k) - 1/’(D"k',Prk)|(k1 —e_g5y)
(E—E; — k)T _. k),
¢%_ e £, 0K PR = (¢ K pK)
- l/l(p',k',p,k)hpr P_E—E) ¢(p',k',p,k)|(k 1_E_-E,
+ Yo' K pK)| ko) HE—Ey—p?) 7!
X(E—E;—k* "Hg_g(pMs K.

Assumption (5.2): Every space .Z,(U; X U,) is assumed
to contain the functions listed in Table 1.

Definition (5.3): Let the condition (5.2) be fulfilled for k.
Then one defines mappings K (U;,U;) on #U,), where
U, U, run over Uy, Uy _,,Uyg, via: for each ye i (Uy),
(s",t)el,;

(KU, Ug)s',t)
) k(s'.t',p.q)
= lim dpdq———"""=——1(p,q).
Jim ), 9P qE+l.€_p2_q2¢(pq)

Analogously, for each
YeX\Uyg _ g Ws'¥)eU (K (U, U _ g, )9S t)

d]) dkk (S',t',l),k)"ﬁ(l”k)

U 1y,

X(E+ie—E;, —p*) \E+ie—E, — k™',
and for each ye (UL ), (s',t)el,,

= lim
e—~+0

(K(U, Up)lst) = f dp da k (8,¢,,0100.) .

Theorem 2: The mapping K (U,,U;) is a linear compact
mapping from F(U,) into Z(U;). Thus K = 2, ;K (U,,U}} is
a linear compact mapping from #°(G ) into (G ).

Proof: Clearly K (U,,U;) and thus K is linear. The proof
of compactness is given in several steps:

(i) Firstly, we want to show that K (U,,E.) maps a
bounded 7| Uy) sequence to a .Z°,(U,) sequence, containing
a convergent subsequence in .%,(U;). Let ¢, be bound in
W ( UE )’
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TABLE I List of functions.

jz(UE X UE) "?Z(UE X UE- E,,) fz(UE X‘UR)
k k k
¢k “E—E, ¢%
¢ $e_k,
¢ Eix ¢%;,
;E— E E— E,
¢Z‘;,E—Ed
¢2‘;E—E,,,

Kk
L4 EE — EQE ~ E,

ZLAUg - £, X U)

fz(UE—E,, XUg_ E,,)

L AUg_ g, XUpg)

k k k
k Kk
¢,;E ¢,I§,E—Ed E—Eg
% k Ly
,kE—E.,; ¢,;E—E,,, f-Em;
¢EvEd,; ,kE~E‘,;, ¢E—E¢E——E,,;
k k
;(E—E,,;E ¢E——E,,,;,
¢E-E,,;E f:E—E,,,E—Ed

¢’IC£—E,,,E—~E,,;
¢’1<5—E,,,E~E,,;E

¢ ;
E— Eg,E— Ey
¢k
E — EpiE ~ E,
¢k
yE — E4E — E,,
¢k
E - EE—E,
k
¢E—E,,,E—E,-,
k
E — Eq3E ~ EQE— E,
k
¢E—E,;E—E4,E—E4
[
¢E—E,,,E—E.,;,E——E,

K
¢E—E,,,E—E,;E~E,,

k
¢E-Ed,E—E,,'E—E,,.E—~Ed

LU X Ug) LU XUg_g,) L (Ug XUyg)
k k k
k k
H wE — E4
k
iE—EyY

€—+0

k
¢ sE—ELE—E,

lirgo dpdq [k (s'.t',p,q)/(E + ie — p* — ¢*)1¢,(p,q)
€ Ug

k (S',t',p,q) —k (s',t',li,ll)](,,z +@=E) i€

+ dp dq

U, (E—p*— g

(E + ie — p* — ¢}

lim { L dp dq [(k (S',t',p,q) -k (slyt'vp’q)][p‘ + g =E) )/(E __p2 - qz)]¢n (p9q)

+ | dpdak(s.tp.a) oo ) (8. (0.0 — 4. (0.0) 4 o £ VIE — PP — &)

Ug

U,

+ f dpdq k(s',t',0.0) 4 o - z) [i€/(E + i€ — p* — @) (4, (.2) — ¥, (P.Q), o7 - 5)) /(E — p* — ¢

+ J; dpdq k(s’itllp’q)((p‘+q3=5)¢n(p’q)[(p’+q’=E)[1/(E+ ie —‘P2 - qz)]]

. dpdq ¢ (st p.@)¢, (0,0 + elirgo L dpdq ¢ ('t p,Q) i/ (E + ie — p* — )¢, (0,0)
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+ L dpdq (k (8',t',p,Q) — ¢ ("t ,p.Q)E — P> — ¢9))d & (0,0

+ Lim | dpdqk(s.t,p,q) — ¢ %6 p0E — p* — ¢ ie/(E + ie — p* — )¢ 70,0

e~ +0 Jy,

T/2
+ fdﬁ déJ dg sin’¢ cos? £k (8t 5.4, p = VEE W, (b, p = VEE)
(V]

E +3|E,
X lim dp p°/(E + ie — p?) . (5.4)
e—+0 Jo

From ¢, being bounded in # (U, ) follows ¢, and ¢ & are bounded sequences in .% ,(Uy ). Assumption (5.2) assures k and ¢ o
to be elements of .#° (U, X Ug) as E — p*> — ¢* is bounded on Uy also ¢ f(s',t',p,q)(E — p*> — ¢°) is an element of . (U, X U).
Thus, from a standard theorem it follows that the first and the third terms contain convergent subsequences in .7 ,(U,). The
second and the fourth terms tend to O with é— + O uniformly in » as & (s',t',p,q) X [ie/(E + i€ — p* — ¢*)}, & (5", ,p.q)
X [ie/(E + i€ — p* — ¢*)] and ¢ X.(s",t',p.q)(E — p* — ¢*)[ie/(E+ ie — p* — ¢?)] tend to O with e—>0in . ,(U, X Uy) by an
argument given explicitly in Ref. 15. In the fifth term the p integration and later e-limitation can be performed explicitly,
giving a complex number ¢,. Thus, the fifth term reads

Co6 E + }|Ey| . on /2 ., , eaa _— L J—
WJ; dpp deQJ; dE sin® £ cos’€ k(s,t'\5.4, p = \E £W.pd:p=E £)
_ c06 ) g kol g 22
- (E + (1/2)‘Ed |)6 J;JE dp dq (k (S !t ,P,(I) ¢ ;E(s 1t ,PyQ)(E p q ))
X (¥, (p.0) — & Z(P.QE — p* — ¢) (5.5)

which also contains a convergent subsequence in .% (U, ).
(ii) Next we want to show that k (U,,U; _ ;) maps a bounded sequence ¢, from #(Ug _ 5 ) into a sequence in LU,
which contains a convergent subsequence. Splitting into disjoint components

Ug_g,=Ug_g, \Ug_g, s)Us_g, s \Ug_ g )MUg_g1NUp_E, 5) (5.6)
{see Fig. 1) and also decomposing the 1 function on Uy _ g,
”U,_- b Iy _ g1 —Hg_g (k) + g £, K — g _ g (p) + Iy g Mg _ g (K), (5.7)

one arrives at

lim dpdk k(s ,t',p.K)0, (p.KNE + ie —E, —p°) " HE +ie—E; —k?)~!

e+ 0 U, £y

= lim [ f dpdk Ty 5,01 — Iz g KK (S X 0,00, (BK)E + ie — B, — p?) " (E +ie — B, — k)"
Ui g4

e—~+0

+ dpdk ;g (KNl — ;g (D)k(s,t,p.K)Y, (BKIE + ic — E, —p*) "E +ie—E, —k*7'
Uk &y

+ f dpdk I (0, 5 (KK (S PN, @KNE + ic — E; —p*) " ME +ie —E, —k?)~ '} : (5-8)
Ug . &,

Note that in the first term the “dangerous points” at E — E, = k 2 are excluded, while in the second term those points at
E — E, = p* areexcluded. Now let us look upon the first term and proceed asin (1). Using the abbreviations I7 (x) = Iz _ ¢ (X)
and D (x,€) = 1/(E + ie — E; — x?), one obtains

lim_ dp dk H (p){1 — 1T (K)D (k.€)[k (s',t,p,k)/(E + ic — E; — p*) 4., (p.K)
= lim dp dk IT (p)(1 — IT (K)D (k,e}{[(k ('t .p,K) — Kk (8,8, DK} 2 = 5 £y V(E — Eq — P*) ] (DK)

+ [tk (s',t,0,K) — k(8" D.K)y = £ = 5 WIE — Eq — p*) ] [i€/(E + i€ — E; — p*) ], (pK)

A (S PR s gy [Wnk) — 0K (= g VE — Eq — )]

+ k(s't,p.k}| (p*=E— Ey [ie/(E +ie — E, —Pz)] [W’n (k) — ¥, (p.K) | (p*=E— Ey) VE—-E; — Pz)]
+ k(K| = £ g Un (0K o= 55y [VE + i€ — E; —p)]}
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= lim

e— +0 Us g,

+ ¢ :‘E_ E, (Sl,t',l),k) [16/(E + i€ — Ed —pz)]¢n (p’k)

+ (kS tpK) — % 5 (8 UDKE—E, —p)W 5 s,

dp d k IT (p)(1 — IT (k))D (k,e){ e £, 850K, (p.K)

(p.k)

4 (kS tpK) — % 5 (s ,U.pKIE— E, —p*)|ie/(E +ie — E, —p)) 1 &5, (p,k)]

+ lim | dpdk(1 —IT(K)D (ke (s, p.K) = £ ) ¥Vn DK} (- £ £

e—>+0

E + (3/72)|E4|
Xf dp p*/\E + ie — E, —p%).

E+ (172)|E4|

[T (p}{1 — I7 (k))D (k,€)| is bounded in Ug. Arguing as in (i),
one gets the first and third term in the curly bracket contrib-
ute to a sequence with a convergent subsequence in .7 ,(U,),
while the second and fourth term contributions tend to O in
Z{U;). Inthe last term the § dp integration gives a complex
number Cy(e) and the lim,_, , o Cyle€) exists. Thus the last
term can be written

i 3Ce)
1m
e~+0 (B + (3/2)|E4|) — (E + (1/2)|E, |

X | dpdkp)(1— T K)D (ke

Ue

X (k (s')t,’p’k) - ¢ ;kE— E, (s’,t',P,k)(E - Ed _pZ))

X (&, (k) — 6 5_ g, (RKIE — E, —p?)),
which also gives a convergent subsequence in .¥ ,(U;). Com-
pletely analogously

lim dpdk IT (k)(1 — 11 (p))

e +0 Ju, Eq

% k (st ,p.k)¢, (p.k)
(E+ie—E, —pNE+ie—E, —k?)

and

lim dp dk 1T (p)IT (k)
e—+0 Jy, Ey
v k(s',t,p.K)¢, (p.K)
E+ie—E,—pWE+ie—E,— k)
contain convergent subsequences in .% ,(U,).
(3) Finally, consider K (U,,Uy). From 5 (Uy)
= .%,(Uyg) and the property 5.2 of the kernels it follows that
a bounded sequence is mapped on a sequence with a conver-
gent subsequence.

Up to now it has been shown that K (U,,U;) is a linear
compact mapping form #°(U;) on .Z°,(U,). In order to show
that it is a compact mapping from #°(U;) on F7(U)), it is
necessary that all the subtractions on . ,(U,) defined in 4.1
also have convergent subsequences. But that is fulfilled as all
occurring subtractions of the kernel corresponding to the
variables of U, have by definition 5.3 and Assumption 5.2 all
the properties of being square integrable; the proof runs the
same as in (i), (ii), and (iii), but instead of using the kernel k,
now using the kernel & subtracted corresponding to the var-
iables of U,. That completes the proof that a bounded se-
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(5.9)

|

quence on #(U;) is mapped by K (U, U;) on #(U;) con-
taining a convergent subsequence which means
compactness.

6. APPLICATION ON TWO-BODY POTENTIALS

As we want to make use of Faddeev’s famous work in
Banach space,’ we use the class of potentials introduced
therein.

The two-body potential (3.1) has the properties

dV]e) =v(d —q). (6.1)
On the function v several conditions are imposed which are

assumed to hold throughout this section:
(1) Boundedness and sufficiently fast falling off:

l(@]<C 1+ |q)) ' % (6.2)
(2) Smoothness:
[v(@) — v(@+ h)|<C (1 + |q]) ="~ O|h]*;
|h|<1, po>0; (6.3)
(3) Real valuedness:
W —0) = W@ . (6.4)

As we need square integrability, we impose the constraint
6,>1. We need some further definitions:

N(paf)= %5aﬂ(1+IPaI)“_9(1+|PB|)»1_8 (6.5)

wherea, B run over all channels, and p,,, p; are expressed by
p,q via the transformation (3.18).

X&,(qQ) is defined as a solution of

VG(E)x £, —XE, - (6.6)
Faddeev' shows that y . (q) has the properties
lve,@I<C(1+ g} ="'~ %,

(6.7)
Xe(a+h) —xe (@I<C(1+ [a) =~ %h[*5  |h|<1,

An integral kernel Q (p',q’,p,q,z) is said to be of the type ¢ if
it may be expressed in the form

Q(p'.q4’.p.q,2) = F(p4q’,p,.9,2) + G (p'.4',p,2)

X[ xsl@) /e —p*— E3)]

+ [xe,(@)V(z—p*—E%]G (PP ,a2)
(6.8)
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+ [xel@Vz—p*—E})] -
xH w2 xel0 /e —p—E3)].
Anintegral kernel Q (p’,q’,p,q,2) of type ¢is said to belong to

the class @ (6, u) if F(p’,q’,p,q,2) satisfies the following
estimates:

|F(p',4',p,0,2)| <CN (p',q',0)(1 +p°) ',

|F(p'+h.,q' +1',p+hq+Lz+4z) — F(p',q',p.gz2)| (6.9)
<CN(p',q,0)1+p7)"

X(IW[# + V] + [h|# + )] # + |4z]#),

and ifthekernels G (p',q',p,z), G (p',p,9,z)and H (p’,p,z) satisfy
the estimates from (6.8) and (6.9) on setting, respectively,

q' = 0, q = 0, and set simultaneously q' = 0 and q = 0, while

Nis given by (6.5). Then Faddeev proves the following result:
Faddeev’s theorem. The integral kernels

5,04 T3 (Z)Go(Z )T, (Z)GoZ )T (Z)GoZ)T,(Z) |p,0)s,

belong for B, #B; , | to the class d (5, £i) with certain indices
8,4, 8> , uniformly over any finite region of the complex Z-
plane, denoted by 7, to indicate that it is slit along the real
axis from the point E, to + oo. Let us investigate the matrix
element of Hy 55 5, (3.13),

a0 Q| Hpppp(Z )Ip.q) g,
= 5, (0. 4'|B5,(Z)GoZ )T, (Z)Go|Z )T}, (Z)GolZ )
X By, (Z)Bo(Z )|p.a) 5,
Z-p?—E,
=1z -p?—|Ed|
X g, 04| T, (Z)GoZ) T, (Z)GoZ) T, (Z)
X GoZ) T (Z) P,
y Z-p—E) |
(—1Z|—p*— |EN—|Z| =Pp*— )

(6.10)

Using Faddeev’s theorem, this reads

5,0 Hp 50,200 5,
(Z—p” —E,) .
= (_|Z|_p,2_|Ed|)Q(p,q,p,q,Z)
X (Z—Pz—Ed)
(—1Z]—p = BN = 12| =P =)
— (Z_plz_Ed)
(= 1Z| =P~ |E)
X (Z—-p*—E,)
(—1Z|—p*— |EJ)N— |Z| =P — 47

F(p'.q',p.0.Z)

) XE,,(Q)
(—1Z|—p*— |EJ)N—|Z| - p* —q°)
Xe,(q) ) 1
—1Z| —p? — |E,| —Z|-p~7
+ Xe,(q)
—1Z| -p? — |E,|

+G(p.a.pZ

G(p'.p.9.Z

H(p',p.Z)
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»

X Xe, (@
(—1Z| - = |E(—1Z| =P —¢")

Our aim is k (s',t',p,q) = lim, , | o (s",t'|Hg 5 5 5 (E + i€)
|p,q) 4, respectively, k (s',t',p,k)

=lim,_, , o (8" ,t'|Hp gz (E + i€)|p,K) s, defined by (5.3)
and (3.26) to fulfill condition (5.2) which would yield, with
the help of Theorem 2, the desired result. Let us switch for
the moment from the class of local two-body potentials de-
fined by (6.1)-{6.4) to the wide class of separable two-body
potentials. It was shown by Kroger and Fenske'® that below
the three-body breakup threshold even the noniterated ker-
nel of the scattering equations is compact. It is shown in the
Appendix that for a separable potential
lim, , , o(8'",t'|Hp ;55 (E + i€)|p,q) 5, respectively,
lim,_, , o(S",t'|Hp s 54 (E + i€)|p,K) g, fulfills the condi-
tions (5.2) and yields the desired result. Returning now to the
local potential given by (6.1)—(6.4), one reads from (6.11),
(6.9), (6.5), and (6.7) that
lim, ., o{p".q'|Hsppp, E + i€)|p,q) 5, is bounded, continu-
ous and square integrable in p’,q’,p,qeG X G. That is close to,
but not quite, sufficient to guarantee the requirements (5.2)
because the index g < 1. Thus, we make an approximation,

(6.11)

im Hp g5 (E+ i€} >Hy s, in Ly(G XG) (6.12)
€e—~+0

and require also that (P"‘l'lﬁﬁ.ﬁ 5.5, P,@) g, be once con-
tinuously differentiable with respect to p',q’,p,qeG X G.
Then I?Bﬁ 5,5, fulfills the condition (5.2). We remark that
this approximation is not continuous going over to #7(G ).
But it definitely makes sense, as it is closely related to the
separable approximation of the two-body potential, which
gives the desired result as mentioned above and turned out to
be quite successful in many practical calculations. Thus
Theorem 2 can be applied and yields:

Theorem 3: For the class of separable two-body poten-
tials defined in the Appendix, the kernel Kz 5 5 5 .
= Hpy 45 5.5055,5p, given by (3.13), (3.15), and (3.16) and for
the class of Hélder-type two-body potentials given by (6.1)—
(6.4), the kernel K 5 555, = Hs 555,505, given by
(3.13), (3.15), (3.16), and (6.12) is a compact kernel for the
scattering equations (3.12) in the physical limit Z = E + /e,
€— + 0in the Hilbert space 7##°(G ) given by (4.1) and (4.2).

7. FOUR-NUCLEON CASE

In this section the treatment for the three-nucleon case
is extended to four bodies. Let us recall two important fea-
tures concerning the structure of the three-body operator
equation and the sphere of singular points. The splitting of
T,, G, into a “harmless” and a “‘singular” part allows an
operator equation with a kernel of the structure “harmless”
operator times a *““singular” operator and the solution being a
“harmless” operator. The other property is that the sphere
of singular points given by (3.20) due to the free propagator
and that of the deuteron propagator do not intersect. In the
following, we want to show that analogues of these proper-
ties also hold in the four-nucleon case. To derive operator
equations, we start from the four-body Alt-Grassberger—
Sandhas equations.'® They read

H. Kroeger 194



U =8%8;,G5'Tg'Gg' + 387U, GT,GUT,
nY

7.1
Up =83.G5 ' + ¥ 85, T,GoU7, .
Y
We define
Uz, = T,GUp, ,
712
Ug =T4G, Y Ug,GoT,G U
un
which fulfills
Upa =8paTg + Y TsGobp, Usa »
Y
(7.3)

Ug =67Ug + ¥ Ug. 857G, U, .
T M

The operator U 2. contains the deuteron pole, the triton pole
in the o = (5,kjl ) channels, and the double deuteron pole in
the o = (ij,k!) channels. For explicit details on the structure
of equations we refer to Ref. 17.

In order to split the kernel into “harmless” and *“singu-
lar” parts, we introduce Sj, containing the deuteron pole in
those channels o where the two-body subsystem is con-
tained, via
o (k"p,’q' lSﬁ (Z ) lkyp:q>a

= &(uk — k)5(p’ — p)5(a’ — q)
—|Z| — (2/3)k? — (3/4)p* — |E,|

7.4
Z—(2/3)k*—(3/4p* - E, 74

§'°, containing the triton pole in the o = (/,jk! ) channel via
AK.p.qSZ)kp,q),

—|Z|—@/3)k?*— |E,
= 6K — W3(p’ — piola’ — g — o — N Bl

Z—(2/3k*—E,

b

(7.5)

and S °, containing the double deuteron polein the o = (ij,k/)
channel via

-K.T0,9'|S°Z) k4w,

_Z_kZ_Ed
S T ] e ]

Z k> —E,

. (7.6)

We assume for technical simplicity that the four-body sys-
tem has only the triton and deuteron as subsystem bound
states.

Now we define

Ty =S,T,,
Upe =880z, , (7.7)
Ug =S8°UZ .
From (7.3} we imply
ﬁgﬁ = ﬁgagap + Z ggrﬁguGﬂsus‘rﬁZ; . (7.8)
T
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The operator U, does not contain either the deuteron pole
or the triton pole or the double deuteron pole. The poles are
contained in G, S, and S". Equation (7.8) is the four-body
analogue to Eq. (3.9). It has a kernel of the desired structure
“harmless” times ‘“‘singular” operator. But the kernel
7] 7 GoS,,S "is not compact. That requires further iterations.
Let us finally demonstrate the four-body analogue
property of nonintersection of spheres of singular points. In
the channels of the type (i,jk/ ) one has the following singular
points:
() E — #k * — 3p* — ¢* = 0 due to the free pole in G,,
(i) E — 3k * — 3p* — E, = O due to the deuteron pole in
Sg,
(iii) E — 3k > — E, = 0 due to the triton pole in S .

Itis valid E, < E; <O. If one assumes on the contrary that (i)
intersects (ii), then

E—%kz—%pz—q2=E—§k2—%p2—Ed,

thus0> — ¢> = — E, > 0 gives a contradiction. If (ii) were
to intersect (iii), then

E—3%*—3p*—E,=E—%?—E,,

and 0 < (3/4)p> = E, — E,; <O would give a contradiction. If
(iii) were to intersect (i), then
E—3%?*—E =E—%>—p*—-¢,
and0< — E, = — 3p* — ¢* <Owould be a contradiction. In
the channels of the type (ij,k!) one has the singular points:
(i) E — 1k * — §* — ¢* = 0 due to the free pole in G,,
(ii) £ — }k * — §® — E, = 0 due to the deuteron pole in
SB ’
(iii) £ — 3k * — E,, = Odueto thedoubledeuteron pole
inS",
The energies are £, < E; <0. The spheres (i, ii, iii) do not
intersect each other, as one verifies similarly. Thus, in the
four-nucleon system two important features of the three-
body case also hold: the “harmless” times ““singular” struc-
ture of the kernel of equations and the separation property of
the singular spheres. The four-nucleon case is open to pro-
ceeding in detail with the same technique applied as in the
three-body case.
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APPENDIX

In this section we want to show that for the widely used
class of separable two-body potentials
lim,, o Hg g 44 (E + i€) fulfills condition (5.2), such that
Theorem 3 holds without approximation (6.12). A separable
two-body interaction is defined as

V=24 xl, (A1)

where we restrict ourselves for simplicity to the rank-one
case. Additionally, a fall-off condition and a smoothness
condition is required,

Y2 (R%), y (@) analytic for qeR> . (A2)
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The two-body transition operator T reads

T@Z) =t @)l 1Z)= A (A3)

A= IG@)y)

which leads to

T,(Z)= fdp PX)at(Z — P Doyl (A4)

B.2)= [ db1p)ub P totl
Z—-p*—E“
—1Z1-F - E7]
Hoss(2) = [ dpdidndn"In)5,b1Z — )

X5, APX |Go(Z)|D' ¥ ) p,t (Z — p")

Xg, (P',X IGO(Z)ID",X)BJ ¥4 _'17”2)

X, (B" X |GoZ D" X} 5,6 (Z — p")5, (" X |Bo(Z) -
(A6)

b(Z—p)= HZ —p?) (A3)

With the following definition for 7

I(p'.p2) = f dp"dp” 4, (P'x 1G(Z)p" X) 5.t (Z —p"?)

X, D" Y |GAZ)|P"x) 5,t (Z — p™)

£B'R")H(Z —p"E (0" ") (Z — "6 (",D)

X 5, (0" X|Go(Z)|p.X )5, »
one has

B, <P"‘I'IHB.B,;9,B‘ Zz )IP,Q>B.

=b(Z-p)x@)I(@.p2)

(A7)

—1Z|-p—¢ 8

The function lim, , ,, #(E + i€ — p*) has the properties:
(i) It tends asymptotically to a constant as p tends to
infinity;
(ii) It is analytical in p except at E — p* — E¢ =0, the
deuteron pole, and at E — p*> = 0, where it behaves like
b, + by (Z —p*)'.

The same hoids for lim,__ , , b (E + ie — p?), except having
the deuteron pole. It remains to investigate
lim__ , o/ (p',p,E + i€). Defining the function £ (p’,p} via

s{P5x |GolZ ) |p.X)

X (ap’ + bp) x(cp’ +dp) _ §p'sp)
Z-4p?+p+pp) Z—7+p 4D

(A9)

where the constants a, b, ¢, d result from channel recoupling.
I reads

(A10)

I(pl,p,Z) — J‘dpn dpm

Because of ye.Z,(R%), one has £€.7,(R* X R?) and thus for
Im(Z)#0 Ie.Z ,(R* X R?). This would hold also in the limit
Z = E + ie, e—~ + 0, if there were no singularities. First of
all, one notes that the deuteron pole of t (Z — p?) cannot coin-
cide with any singularities arising from the denominator,
similar to property (3.21). Performing the integration in the
neighborhood of the deuteron pole gives a contribution,
which is square integrable and analytic in p’,p also in the
limit e— +0. In order to investigate the analytic structure
of the remaining part, one can also look at

IO(p')p,Z) = f dp" dpm (N(plyp”sz )N(P",P'”,Z)
D

XN@"pZ)) ',
NO@.BZ)=Z—4p*+p*+p"P)-
The integration domain D can be chosen large enough to
include the singularities of the integrand, but must be small-
er than R?X R?, in order that J, exist. The integration of p”
can be performed following Lewis,'® which yields

I@pZ) = f o’ (N@.p"Z)N (" p.Z)) "

8mi . +p—ilp —pl
Ip' —pl  p +p+ilp—pl

(Al1)

(A12)
w=03p"=2Z0 p=03p"-2Z)N"".

The result is that lim,__, _, I(p’,p.E + i€) exists for all
p’,peR> X R? and is a continuous and square integrable func-
tion. Excluding once the behavior in the neighborhood of the
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(Z _ %u’ﬂ +p112 + pr.pn))(z . %(p"2 +p012 + pu.pm))(z _ %{ me +p2 + pm'p)) .

|
critical points p’> — E = 0 and p? — E =0,

lim__ ., I,(p’,p.E + i€) is even a smooth function in the
sense of being locally subtractable and square integrable.
Thesameholdsforlim__ ., I(p',p,E + i€)because§ (p',p)is
an analytic function. lim,__, ., I,(p’,p,E + i€) and thus
lim__ ., I (p’,p,E + i€) behave in the neighborhood of
p?*—E=0andp® — E =0like

lim I(p",p.E +i€)| o joi
e— +0

=C,+ lim [CyE +ie — p®)'"* + Cy(E + ie — p?)'”*
€— +0

+ CA(E + ie — p*)E + ie — p*))'*] . (A13)
That can be seen from (A 12). Integrating the term

1/N (p”,p,Z ) inthe neighborhood of p” = — lp, whereit be-
comes singular, yields

J‘ dp” "2 1 2 ”
ver=w  Z—4p" +p +p"P)
1
= dq ——8M8 =C +C(Z_ 2)1/2
J‘U(q;()) qZ_pz_%qz 1 2 p
(A14)
If U is a ball. Because of the symmetry of / under p’,p ex-

change (A 13) is evident. From the properties of b (Z — p?)
and I (p',p,Z ) found so far one can conclude

k(p'.q'.p9= lin+10 s P Q' |Hp 55,5, (E + i€)|P.) 5,

= lim (b(E+ie—p?)y@)I®.D.E + i€)

e— +0
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b(E +ie — pz)x(q)
—|E| -
which means that k is contained in the table (5.2). Next, we
want to show that for such a k also ¢ §, ; is contained in table
(5.2)

(A15)

)ez (G XG),

f dp'dq'dp da|¢ & (p.q'.p.0)°
U, X U.

= jdp'dQ'deQI lirfo (p, (04| Hppp5,(E + i€)|0Q) 5,

— 5,04 |Hpp55,(E +i€)DDg, | p2 1 g7 =k
— 5,04 Hpp 55, (E +i€)PDp| s -
+ 5.0 4 | Hp 5,50, [E +i€)P@g, | = o E) I

P +¢=E
/E—p” —q*NE—p" — @D - (Al6)
Because lim, _, ., b (E + ie — p*) and
lim, . o I(p',p,E + i€) are smooth functions except at the
points E — p'?> = 0 and E — p* = 0, we insert for
Bm_, ;5 (p".9'|Hp,p.5.5.(E + i€)|p,q) 5, the asymptotic ex-
pression for b and J (A13) in the neighborhood of

E—p?=0and E—p*=0
lim P (P9 |Hp s (E + i€)|p.a) 5,

= lim (b, +boE +ie —p?)'") x (@)

€e—~+0
X[C|+CZ(E+16 12)1/2+C3(E+l€__p2)1/2
+ Cy(E + ie — p”)(E + ie — p?))'"*]

(b + bolE + i€ — pz)‘”)x(a)
—|E|-p*—¢

(A17)

= lim y(q)[d, + dAE + ie — p?)'"?
e— 40

2)1/2

2)E + ie —

+dy(E+ie—p
+d,((E+ie—p
X @ .
~|E|-p*—¢°
Because y (q') y (@)/( — |E | — p* — ¢°) is an analytic func-
tion in the integration domain, it is sufficient to substitute in
Eq. (A17)

N

JETO g, P Q| Hp 5 55 (E + i€)|p,q) g,

— lim [d, +dyE + ie — p'*)'? + d(E + ie — p})"?

e +0
+ dJ((E + ie — p*)(E + ie — p*)'’] . (A18)
Abbreviating
W'= lim (E+ ie —p'3)'?
€~ +0
Lj_/’= e&m (E+l€ p'2)1/2lp +q =F
(A19)

W = lim (E + ie __p2)l/2’

€—> 40
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W= lim (E+ie—p)"*|,,p_kc»

- e— +0

and inserting (A 18) in (A16), one has

f dp'dq'dpdald, + d, W' +d,W + d,W'W
U,xu,

—ld\+d, W' +d;W+dW'W)

—di+d, W' +dW+dW'W)

+d +d. W +d;W+dWW|/

(E—p™* —q°)E ~p* — )

= f dp'dq'dp dq |d,|?
U,x U,
W - W-W)

2

(E—p?—q¢*NE—-p*—q)
W—-W |2\?
=!|d dp d ‘ _— ) . A20
(, 4|'[Uz paq E—p—¢ (A20)
Equation (A 19) gives
. . (E-p)? E>p’
W= l E N V) — [
P (E+ie—p) i((E —p*)"% E<p’
(A2])
2 172 172
W= lim (E+i6'— 2pE2) = 2E NV
e +0 P+ (r"+99)
Thus, one has to estimate the following integral
W 2
d d ~ ——'—'— = (47)?
pda | — —7 (4m)
E17? (E + {|E — p2)'"7 5
x[ J dp p* j dqq
[} (4]
X } (lE _p2|)1/2 — (E)I/ZqZ/(pZ + q2)l/2
E-p—-¢q
(A22)
P —E

E+ |E D' E + {|E | — p1)'/?
+ f dpp2f dq q*
0

(E)I/Z

E+ “EdDI/Z E+ IE,| —Pz)‘/z
+ f dpp* f dq ¢
( 0

E)l/2
X 2
(P’ +¢°NE —p* — )
The first term, with the substitution E — p? = 57, reads

(E—p*— ¢

(E)'7? [+ VIEL)?

[ax [ dgq(AEmL et - (EVy y
0 o s—q
gE—s) sq

E—s+q (s+q7

In the integration domain all factors are bounded and the
integral exists. The second term, with the substitution
p* — E =§°, reads

[/ E]?
f dss(s2+E)‘/2f
Q

(4]

[(1/2DE | — 5} 72

dqgq

2
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FIG. 1. Schematic plot of U, _, (///)and Ug_ ¢ 5 (\\\);
Up_ &, = Ug_ 5, WUz _ g, 5, the lines of singular points are p; =E — E,
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2 [/DIEA])7?
X( —— <M f ds
( o

_ s2 _ q2)2
[(A/DIE, — ]2 202
X J dq 2 g 232
o & +99)

and exists also. The third term, with the same substitution,
reads

[(1/2)|E,]'?
f ds s(s* + E)'*?
0
E q

[(UDEN - 57172
X dg—— ————
J; qs2+E(s2+q2)2

and exists because ¢*/(s> + ¢°)*< 1. Thus, from the existence
of the expression given by (A22), we conclude the existence

of the expression given by (A16) and thus ¢ & ; is contained
in Assumption (5.2). Finally, let us consider if for the func-
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tion k defined by (A15)¢ % _r r_ r.r_ ke g, iscontained
in (5.2). Using (A15) and (3.18), one has

.6, {0 K'|Hg g0 (Z )Pk s,
=g, (K'\ep’ + fK'|Hp 5,5, (Z)|psap + b k),
=b(Z — k™) x(ep + k) I(kp,Z)

b(Z — p)x(ap + bk)
—|E|—p*—(ap + bk)*’

(A23)

with some channel recoupling coefficients e,f.

% b5 £ E,E- £, Tquires subtractions at the points
E—E,=p*"E—E,=k*E—E,=p E—E, =k>
But in a neighborhood of those points lim,_, , ; b (E + i-

€ — k?) (K',p,E + i€)b (E + ie — p?)is asmooth, i.e., locally
Subtractable and square integrable, function. Because

X (ep’ +fK)ylap + bk)/(— |[E| — p* — (ap + bk)*)isan
analytic functiononeconcludesthat¢ s, r r.r_x,r_k,
is contained in (5.2). Combining all the arguments given
above, one finds also all terms of mixed subtractions to be
contained in (5.2) which was the claim of this Appendix.
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One-speed transport anisotropic scattering coefficients are calculated by an inverse transport
model which requires only emerging angular distributions from a homogeneous slab uniformly
irradiated by a monodirectionally incident beam. The solution of the direct problem used to test
the inverse calculations is obtained with the F,, method of Siewert. New numerical schemes are
developed which are applicable for the F,, solution of other one-speed problems. The inverse
transport method shows promise for characterizing media by only measurements of reflected and

transmitted laser light from a slab.

PACS numbers: 42.10.Qj, 42.60.He

I. INTRODUCTION

Recently a method has been proposed for obtaining the
one-speed transport anisotropic scattering coefficients from
reflection and transmission measurements for a homogen-
eous slab target uniformly illuminated by an azimuthally
dependent incident beam." If such an inverse transport
method can be shown to provide relatively accurate predic-
tions for the angular expansion coefficients of the scattering
kernel, then the method should have application for identifi-
cation of materials using noninvasive measurements,

It is the purpose of this investigation to test the conjec-
ture that the anisotropic scattering coefficients can be deter-
mined accurately from appropriately selected angular mo-
ments of the emerging distributions. To accomplish this test,
the reflected and transmitted angular distributions are as-
sumed to be the solutions of the direct transport problem for
a slab illuminated by a monodirectionally incident beam.
This direct problem is solved using a slight generalization of
the slab geometry azimuthally independent solution of
Siewert” which was obtained with the F method.> This
generalization also has been carried out concurrently with
our analysis by Devaux and Siewert .°

The equations required to calculate the scattering coef-
ficients using the inverse problem solution are summarized
in Sec. II, and the F, solution of the direct transport prob-
lem is developed in Sec. I1I. Additional equations for imple-
menting the F,, method are presented in Sec. IV, while Sec.
V contains a description of the different numerical schemes
used to solve the F,, equations. Numerical tests of the direct
problem solution are in Sec. VI. Finally, results of test calcu-
lations in Sec. VII substantiate agreement of the scattering
coefficients obtained by the inverse solution with the as-
sumed scattering coefficients. Conclusions and possible im-
plications for use of the method with experimental data are
presented in Sec. VIIL

Ii. INVERSE PROBLEM SOLUTION

The equation of transfer for monochromatic radiation
in plane geometry is
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#ﬂﬁéﬂ_"ﬁ_) +1{r, 1 d)
T
1 du'fz"dcb'p(cosa)ur )
4rJ_ 0 e '

0<r<r,, (1)

where anisotropic scattering of finite order X is assumed,
distances are in mean free paths,

plcos 8)= i . P, (cos 8), (2)

and where 0 < @, < 1. Here the P, are Legendre polynomials
and & is the angle between the direction defined by ' and ¢’
and that defined by y and ¢. It will be assume that

10,1, ¢) =61 — p,)b¢), O<u<l, (3)
I(ro, —p, ¢)=0, O<pu<l. (4)

The equations for calculating w,, ¥ = 0 to KX, require
the use of moments of the radiation angular intensity
I(r,u, ), defined as'

in(r)=Q2m~ ‘J:ﬂ d¢ cosme

xf_ A pPT I ), (5

and evaluated on the surfaces 7 = 0 and 7 = 7. Here the
P { ) are the associated Legendre functions. Use of Egs. (3)
and (4) reduces the equations for #7; (0) and i}} () to integrals
over the angular intensities emerging from the slab surfaces.
Also required is a second set of moments, involving products
of the angular intensity, which are defined as'

p=4f qun(em[ a1, - )cosms )

X ((217)_ 'J;zvdqﬁ I(0, u, ¢ Jcosme ) (6)

The w, values may be evaluated by either of two
schemes. The first approach, which may be called the “angu-
lar intensity method,” uses moments of 7 (7, u, ¢ ) in the
equations’
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Se = @ s + o s+ o +  w0x S
Sy = w, S + v+ Ox Sk,
Sy = Ok Sox
{7
where the s values are defined in terms of the integrals in Eq. (5) as
sg. = (= 1~ [k — m/(k + m {500 — [igi(r.) 1P} (8)

The second scheme, which provides an independent means of determining the w, , may be termed the “angular heat flux
method” since it uses moments of 11 (r, i1, ¢ ), and is based on the equations’

S? = (@/h) s?o +  (w/hy) s(l)l +
S = (@,/hy) sh +
st =

In Eq. (9) the 5 values are defined as
st =(— 1 =2k + 1)[(k — m)/(k + m)!]
XL = [(r) ),
and the A, values are
h, =2k+1—w,.

(10)

(11)

ill. DIRECT PROBLEM SOLUTION

The direct transport problem defined by Egs. (1)
through (4) has been solved, for the azimuthally symmetric
case, by Siewert who used his F), method.” The extension to
the azimuthally dependent case, as done here, follows
straight forwardly.

In order to separate the azimuthally dependent prob-
lem into a set of (K + 1) azimuthally independent problems,
we expand I (1, u, ¢ ) in a finite Fourier expansion™’

[ 8)= 3 2= 8,0l u)l — ) cosmg

m=20

+1,(mp ) (12)
where I,,(7, 4, ¢ ) is part of the uncollided intensity,
1t a 6) =84 —pJe~ {89 — 2~
K
X Y (2= 8,0)cosmé ) (13)
m=0

The F,, method is based upon a set of equations derived
by expanding / ™(r, u) in its singular eigenfunction expan-
sion® and using the full-range orthogonality relations to
eliminate the expansion coeflicients in terms of the intensi-
ties at the boundaries. The resulting equations for the un-
known outgoing surface angular distributions,  ™(0, — u)
and I ™(7,, ), 0<m<K, are expressed for the positive eigen-
values veo + , as

J; ud "(v, w0, — p) dm(p)
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+ (wx/hK) s(\)K’
+ (wK/hK) siK!
(wK/hK) Sfx-
o)
I
tem f 16 ™ — v, il ()l 1)
=L T'\v), (14a)
fo b "o, 1) 7, 12) i 1)
b f ™ — v, ) (0, — ) )
= L7, (14b)
where
1
L) = f 16— v, )0, ) dim{ s) + e~ "
xf i v, i (7r — p2) dim{ 1), (154)
0
1
L) = j g (— v )l (ry, — ) din{ps) + ¢~
x J b (v, 1) (0, ) dm( ). (15b)

For convenience in Eq. (15) and in the following, the super-
script m with I ™(r, 1) and other functions is suppressed if no
confusion is possible; in such cases all relevant quantities in
any of the equations must be understood as referring to the
particular azimuthal component under consideration.
The positive spectrum o + consists of the continuum

(O, 1) and of the set of discrete positive eigenvalues {v;,j =1
to J } which are zeros of ®

Ael=1-k[ e-w ummip. (16

Itis known that®* J<X — m + 1, although for m exceeding 2,
J typically has been found to equal zero.”

The eigenfunctions ¢ (v, 1) in Eqgs. (14) and (15) are de-
fined by the equation

¢ (v, 1) = WwPglv, u)/(v — p) + A (W1 —*) ~ "8y — p),
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O<vcl,
=lvglv,u)/lv, —u), v=v;, j=1toJ, (17
where & stands for principal value, and

A =1-p2 | - e dmip). (19
Here g(v, ) is defined as
glv, 1) = ki C8e P 1) (19)

and )
pi(p) = (d"/du™\P(p) = (1 — p?) =™ P ),
¢, = w(k — m)l/(k 4 m)
dm(p) = (1 - )" du. (20)

The g, (v} in Eq. (19) are polynomials of order (k — m),
alternatively even and odd, defined by the recursion relation

(k+1—mge, (v)—hvgv) + (k+mlg_,(V)=0,

k>m,  (21)
with the starting conditions g,, _,{v) = 0 and"®
m-—1
gnM=p.) = [] 2k+1)=(2m 1)1 (22)
k=0

The g, (v) polynomials reduce to the p, (v} polynomials in the
limit that o, =0, k>m.

Tosolve Eq. (14) with boundary conditions {3} and {4) by
the F,, method, I (0, — u) and I(r,, u) are expanded as>''

N
I0, —u)= Z a,pu”, O<u<l, {23a)
n=0
5 e "M —p,)
Ir,,u)= Y b.pu"+ ——, O<pu<l.
n;o 2l — pl)™?
(23b)

The second term in Eq. (23b) completely eliminates the sin-
gular nature of I (7,,, u) and is necessary for good conver-
gence with increasing N, especially when 7, is small.

Use of Egs. (3), (4), and (23)in Egs. (14) and (15) gives the
set of equations

5 los

> [6,B,0) +¢ a,4,] =

B,(v)+e "b,A,v)] =

(2/V)L\(v), veo +,(24a)

(2/V)Lyv), veo + ,(24b)

where
L) = (p,/2m)¢{ — v, )1 — p2y™?

X [1 —expr,(~ /v —1/u,)], (25a)
Lyv) =e” ", /2m) (v, 1, )1 — u2)™>
><[1 —CXPTO(I/V~ l/ﬂa)]’ ‘V#lu'o’
= 1, /AT s N1 — 2V v=p,,
(25b)

and where the coefficients B, (v) and 4, (v) are defined as

B, == f " (v, ) dim{ g1, (26a)

201 J. Math. Phys., Vol. 22, No. 1, January 1981

2 (.
A0 =2 w8 (= v dmip)
0
= —B,(—v). {26b)
The expansion coefficients a,, and b, are calculated by
specializing the F, equations (24} to (N + 1) v valuesino+.
The moments needed for the inverse problem solution are

calculated using the intensities in Eq. {23). Use of Egs. (3), (4),
(12), and (20} leads to the results

i (0) = (2m) Wl P 1)
N
+(_1)k~m+lz anAH—n,k’ (273)
n=0
inlr,) = m) WP p,)e”
N
+ 2 bnAl+n,k! (27b)
n=0
2 m/2 21 n
S =1 —p) z @, (28)
w n=0
where .
A= [wpduaniu), n>0, 1>m. (29)

IV. ADDITIONAL EQUATIONS FOR DIRECT PROBLEM
SOLUTION

The B, (v) and A, (v} may be evaluated, in terms of the
numbers 4, ,, using the recursion relations

z Ckgk(v)An+1kr (308)

"+1(V)—VB

A )= =AM+ S (= 1", g, (WA, , 4. (30b)

In turn, the 4 ’s themselves satisfy

(+1—md,,  —Q+14,, ,+U+m4d,, , =0,
(31)

with the first few values given by

An.m -1 =0

4, =02min— 1/(2m +n+ 1)1,

Ao =0C2m+ O)nl/2m +n + 2)1, (32)
for I>m and n>0. It also may be shown that

Brminiy =0, j=12, (33)

It should be mentioned that a two-term recursion relation
for 4, also exists.®

The starting conditions for the recursion relations (30)
are related by the identity

2 1
By~ Ad) = 2 [ s i
-1
=2h,/2m + 1), (34)
so only 4,(v) need be calculated using Eq. (26b). The result is

Aqv) = Z 8T (v), (35)

k=m
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where

TAV):(——I)““’"L"%’M, k>m.  (36)

The T, (v) satisfy the recursion relation
k+1—m)T,  (v)
— 2k + 1T (v) + (k + m)T, _, (v}

=(= 1 """ 2k + 1)4,,, {37)
with 7,, _, (v} = 0. The other starting condition is
T,.(v)=44,, —(2m— 1)WR "y}, (38)
where R ™(v) is defined as
R™v)= 1 M, (39)
o v+ u

and obeys the recursion relation
R™v)=(1 —=VR™ (v} + 2m = 2)!

X [v/2m — 1 — 1/2m)!], (40)
with the starting condition
R %) =1n(1 + 1/¥). (41)

For v 2 2, the recursion relations (30) do not work well
because differences of large, nearly identical numbers must
be calculated. In such cases, Siewert!' has suggested the use
of series expansions derived from Eq. (26),

) K
Bv=3Y 3 iy g, (42a)
I=0k=m
w K
A4,v)= z Z (=D " edy sk
I=0k=m
Xv U+ g (v). (42b)

Also for v 2 2 the calculation of g, (v) from recursion relation
{21) may give trouble, in which case a continued fraction
expansion works better.'?> Such an expansion can be derived
by rewriting Eq. (21) as

81 V)
8«(v)
- hev {1 _ k+m) [ 8 (V) ]”1}
k+1—m) hev 18k (V)
- Ay (43)
{k + 1 — m)(CF),

where the terminating continued fraction (CF), implicitly
defined in Eq. (43) is obtained from the recursion relation

_ [k +m)k —m) -1

¢CF)k=[1 el (44)

and the starting condition (CF),, = 1.

We turn now to the numerical evaluation of A (z) which
is required when calculating the eigenvalues v;. Equation
(16) may be expressed as

A=1+z 3 822, (45)
k=m
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1 dm
aule) = - Pi(p) dmip)
201 p-—:z

Use of Eq. {21) in Eq. (46) gives the recursion relation

(k+1—mlq, , \(2) — (2k + 1)z, (2) + (k + m)q,_ ,(2)
= (2m)5,,.., (47)

where g,, _ ,{z) = 0. To calculate the starting condition

4., (z), another recursion relation is used,

gmlz) = (2m — 1)1 ~ )7~ {(2)

(46)

— z(2m — 2, (48)
where
Bz = ;ln( z ; : ) (49)

Equations (45) through (49) remain valid for the calcu-
lation of A (v) provided the principal value integral is taken in
Eq. (46) and the sign of the argument of the logarithm in Eq.
(49) is reversed. Also, for zR 2, Eq. (47) may be replaced by
the rapidly converging power series

gld=— 3 Ay_p_um (50)
l=k-—m

A better form than Eq. (45) for evaluation of A (z) and
A (v) can be derived by multiplying the equivalent of Eq. (21)
for p, () by 4. (z) and Eq. (47) by p, (z) and subtracting. After
multiplying the result by (k — m)!/(k + m)! and summing
over k, the Christoffel-Darboux formula®!?

AQ)=[UK+1—mV/(K+ m)][gxlzlgx . (2)

— 8x +1(2)g(2)] (51)
is obtained.

To calculate the zeros of A (), i.e., the values of v;,
Siewert'* has developed a formally exact method which re-
quires that complicated integrals be performed. Such a
scheme has been used to provide a very accurate first guess
for each v;, which was then utilized with a Newton-Raph-
son iteration method to obtain even more accurate values.®
For highly anisotropic scattering, for which (K + 1) separate
calculations must be performed {one for each m), direct use
of Eq. (51) with a Newton—Raphson iteration is more expedi-
ent. A criterion for limiting the z value in the iterative search
of the discrete eigenvalues follows from ®

L hk < 7’2n
Alz) = — —_
i kI=Im2k+1 = "

where 7,,, is calculated in terms of g(u, u) of Eq. (19) using
the definition

;2> 1, (52)

1

5 ‘#2"8( > p) dmf ). (53)

A procedure similar to that used to derive Eq. {51) leads to
the single integral
_ K—m+1)t f L
N2n K+ml o 14 [gx({plpk 1 (1)
~ 8k 1 (plpk ()} dm{ p). (54)

Certainly the simplest method for calculating the eigen-

172n =
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values is to use the positive roots v#(0, 1) of the polynomial
& miv)=0, Llarge. (55)

These roots converge to the v, values as L— oo '%; in practice,
surprisingly high-accurate estimations are obtained from
small L values (L ~ 10).

V. NUMERICAL SCHEMES FOR DIRECT PROBLEM
SOLUTION

Two fundamentally different approaches were used to
solve the F,, equations (24): the collocation or nodal method
and the projection or modal method. The collocation meth-
od is the approach used by Siewert and co-workers and re-
quires that the equations be evaluated at (N + 1) collocation
points. The scheme used by Siewert™*is to select all the exact
values v; and to space the remaining values v,, / = (/ + 1) to
(N + 1), equally distant in [0, 1]. The collocation points are
selected by dividing [0, 1] into equally spaced intervals. In
our calculations a first set of collocation points (set C1) is
defined by the endpoints of every interval, including 0 and
1,2 a second set C2 follows by using all endpoints except 0
and 1, and a third set C3 is obtained by using the midpoints
of the intervals. Still a different scheme would be to use the
values of v;, j = 1 to J, and select the remaining values v, as
the positive roots of the polynomial

Pz(N—J+1)+m(V)=O- (56)
Thus the remaining values would be selected as nodes from a
Gauss—Legendre quadrature set.

In the preceding collocation schemes, the points in
[0, 1] do not depend upon the properties of the medium. One
way of introducing such a dependence is to select all nodes as
the positive roots of the polynomial

&uv + 1+ m(¥)=0. (57)
The nodes from Eq. (57) will be called collocation set C4.

For the projection technique, equations (24) are project-
ed onto a set of linearly independent functions X 7'(v), i =0
to N, by multiplying Eqs. (24} by each of the functions and

integrating over the entire positive spectrum o + . This re-
sults in

N
z [aan.i + bnAn.i] = Ll, i (588)
n=0
N
z [ann,i + anAn,i] = Lz,n (58b)
n=0
where
B,=[ Biay
o+
J 1
= 3 B, + f B.wX,)dv,  (5%)
i=1
A, = f e A, (WX, (v) dv, (59b)
o+
and where
L, = 2f v 'L (WX, dv, r=1,2. (60)
o+

We have used two projection schemes. The first, P1, is
defined by the set of functions

X7 =87 mvh (61a)
and the second, P2, by
Xvj=6v—v), i=1taJ
=v7-' i=J41to N {(61b)

The last scheme gives a hybrid method consisting of a collo-
cation for the v; values and a projection for 0 <v < 1.

Instead of analytically evaluating the integrals over
0<v<1in Egs. (59) and (60), we have opted to carry them
out using a numerical quadrature technique. In our evalua-
tion we divide the interval 0 < v < 1 into a equal subintervals,
and use a S-point Gauss—-Legendre formula in each
subinterval.

TABLE 1. Accuracy test for F; calculations for isotropic scattering with w, = 0.99% and 7, = 2 and z, = 0.5.

T, Method  io(0) i1o(0) iool7,) irol7,)

2 Cl 2.7243 — 1 —2.7470 -2 49104 -2 2.7141 -2
C2 2.7276 - 1 —2.7469 — 2 49279 -2 2.7140 — 2
C3 27271 -1 —2.7469 -2 49213 -2 27140 -2
C4 2.7276 — 1 —2.7469 -2 49242 -2 27140 - 2
P1 2.7262 — 1 —2.7469 — 2 49167 -2 2.7140 -2
P2 2.7262 — 1 —2.7469 — 2 49167 -2 2.7140 — 2
Exact 2.7262 - 1 — 2.7469 — 2 4.9165 -2 2.7140 -2

20 Cl 3.0967 — 1 —6.0029 — 3 6.0028 — 3 3.4691 — 3
c2 3.1004 —- 1 —6.0023 -3 6.0082 -3 3.4688 — 3
C3 3.0997 -1 —6.0025 -3 6.0074 - 3 34689 -3
C4 3.1004 —- 1 —6.0024 -3 6.0084 — 3 3.4688 — 3
P1 3.0988 — 1 —6.0025 —3 6.0059 — 3 3.4689 — 3
P2 3.0988 — 1 —6.0025 -3 6.0059 — 3 3.4689 — 3
Exact 3.0987 — 1 —6.0025 -3 6.0057 — 3 3.4689 — 3
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6.5562 -3

2.8206 -2
— 1.5050 — 1

2.2329

1.6476 + 1

79712 -2
12213 -1 —2.1641 -2

4forr, =2andu, =0.5.
=15
—~7.1394 — 1 — 1.5737

2.8967 — 2

8.0002

0

aﬂ
1.2088 — 1
1.0573 -1
3.1066 + 1
—~21973+2 — 64143 +1 —1.1610+2 —20172 + 1

6.5552 — 3

24234 -2
—1.4979 ~ 1

2.1126

7.9705 -2

1.1018 — 1 —4.5715-2
—2.8360—1 — 77173 —1 —2.6558 —3 —3.1866

4.8852
—~1.7841 + 1

N=10

2.8963 —2
1.2646

1.2086 — 1
6.2261 — 2

6.5388 — 3

1.6087 — 2

5.6262 —2 — 1.7150
9.4754

2.5471 —1 —5.3475 -2
24588 —2 ~2.3734 — 1 —1.2524 -3 —-3.4047 +1 —2.5433

a e
7.9649 —2

2.4403 —2 — 68727 -2

5
b
2.8919 -2
84812 -2 —9.1287 -2

a
1.2075 -1

—2.1267 -2

—4.0347 — 1
7.4038 ~1 — 9.5808 — 2

- 5.8757 ~ 1

TABLE II. Selected coefficients @, and b, for the F, method calculated using the C1 method with the binomial scattering model of w, = 0.95 and @

1.2740 + 2
1.7448 4-3
6.6521 + 3
7.5140 + 3
21281+ 3
6.8098 + 1

7.3245 4+ 3
2.3846 42

2.5597 + 4
—4.1024 +3 —1.6433+3 — 19540+ 3 —5.6304 +2

2.2940 + 4
—34377+4 — 13816 +-4 —1.6642 +4 —4.8675+3

6.4833 + 3
—57198 +4 —-22845+4 —2.8194 +4 —82626+3

5.9555 4-2
1.7633 +1 —2.7865 +4 — 1.0788 +4 — 1.4021 +4 —3.9641 4 3

1.8556 +1 — 43992 +3 —1.5558 +3 —2.2671+3 —5.5927 42
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VI.CALCULATIONS FOR DIRECT PROBLEM SOLUTION

The F,, calculations performed by Devaux and
Siewert® were reproduced with the calculational methods
developed in Secs. III-V. Thus, the emphasis of the direct
problem calculations discussed here will be on comparing
the accuracy and rate of convergence with increasing & of
the numerical schemes presented in the last section.

Three scattering models were used for the numerical
tests. The binomial model with predominantly forward { + )
or backward ( — ) scattering is defined by*"*

plcosd ) = wgla + 1)2 %1 4 cosd )*, a>0, (62)

where the coefficients w, (@ 1 ) of Eq. (2) may be evaluated
with the (apparently new) recursion relation

B 2k+1)(a+l—k)
anfa )= & (3 ) (o e t)

k>1, (63)
once w, is specified. If a is a positive integer, K = a.

A second scattering model, due to Henyey and Green-
stein, !® is

plcoss) = (1 — gA(1 + & — 2gcoss) %,

for which the expansion coefficients w, (g) are

o, (g) = (2k + 1)g"0, (65)

The third model represents the scattering of visible light
in fog,'” approximated with the coefficients'®

wo =1, ws = 1.0716,
w, =2.1053, w,=0.4803,
w, =2.7424,  @,=0.3615, (66)

wy=2.1929, @y =0.1587,
ws = 1.5578,  w, = 0.0075.

To avoid modifying our computer program for cases when
the largest v,— o as wy— 1, we have replaced the value of
in Eq. (66) by 0.999 in our calculations.

To test the accuracy of the F,, calculations, the mo-
ments ,, (0)and i,, (7,) for / = Oand 1, givenin Eq. (27), were
examined. (These moments are proportional to the angle-
integrated intensity and heat flux in the mth Fourier compo-
nent, respectively.) We first performed F; calculations from
N = 2 to 15 for isotropic scattering with @, = 0.999 and 0.2
for y, = 0.5 and slab thicknesses of 7, = 2 and 20. All six
methods proposed in Sec. V converged for N<15, but the
projection methods converged faster. The F; results for
wo = 0.999 in Table I illustrate that thereis only a very small
difference in accuracy between the six schemes.

For anisotropic scattering the convergence is more rap-
id for Fourier components with larger m; the convergence is
not appreciably affected by the value of p1,,, 0.5<x,<0.9. It
also was generally observed that the #,,, converged more
rapidly than i,,,, a fact that has implications for the inverse
problem calculations in Sec. VII.
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TABLE I11. Selected coefficients e, calculated for an assumed K by angular intensity (AT} and angular heat flux (AHF) methods for the binomial scattering
model with oy = 0.95 and a = 19.

K Method Wy Wy @ @y, @5 W
Al 8205 -1
0 AHF 7.925 —1
Al 9422 -1 7.092 -1
3 AHF 9.029 -1 7777 -1
Al 9923 — 1 2.316 4155 -2
7 AHF 9.370 - 1 2.447 4.219-2
Al 9715 -1 3.347 5.104 — 1 2.020 -3
11 AHF 9.515 -1 3.384 5.159 — 1 2.021 -3
Al 9.599 — 1 3.631 7974 — 1 1.792 -2 1.117 -5
15 AHF 9.550 - 1 3.632 7976 — 1 1.792 -2 1.117 -5
Al 9.595 -1 3.638 8.086 — 1 1.950 — 2 3514-5 5.376 — 10
19 AHF 9.551 -1 3.639 8.086 — 1 1.950 -2 3514 -5 5.376 — 10
Exact 9.500 — 1 3.639 8.086 — 1 1.950 — 2 3514 -5 5.376 - 10

TABLE IV. Selected coefficients o, calculated by angular intensity (AI) and angular heat flux (AHF) methods using F,, results with C4 for Henyey-

Greenstein model with @, = 0.99, g = 0.9, and K = 10 for 7, = 2 and g, =0.5.

N Method g @5 W @0
Al 8531 -1 —4.909 4.393 7.241

4 AHF 9.901 —1 5.004 6.861 7.249
Al 1.035 3.249 6.007 7.246

8 AHF 9.899 -1 5.078 6.844 7.249
Al 1.015 4.289 6.476 7.248

12 AHF 9.900 — 1 5.077 6.844 7.249
Exact 9.900 — 1 5.052 6.840 7.249

TABLE V. Selected coefficients w, calculated for an assumed K by the angular heat flux method for binomial scattering model with e, = 0.95, @ = 4.1, and

K =15
K wg @, @, @y W, s g
3 9.484 — 1 1.881 1.295 3.807 — 1
4 9.500 — 1 1.915 1.392 5.030—1 7.639 —2
5 9.500 — 1 1.916 1.394 5.066 — 1 7915 -2 1243 -3
6 9.500 — 1 1.915 1.394 5.057 -1 7.839 -2 8.001 — 4 —1.611 -4
7 9.500 — 1 1.916 1.394 5.061 — 1 7.880 —2 1.062 — 3 —3.246 -5
8 9.500 — 1 1.916 1.394 5.058 — 1 7.850 -2 8.539 — 4 — 1495 -4
Exact 9.500 — 1 1.916 1.394 5.060 — 1 7.863 —2 9.515 -4 —9.118 -5
TABLE VI. Coefficients @, calculated for D-digit accuracy by angular heat flux method using F, results of Table II.
N D [2 @, w, W, W,
5 1 8.3284 — 1 2.0467 1.0530 4.1545 -1 4.5817 -2
2 9.4965 — 1 1.8757 1.3264 45189 — 1 6.9900 — 2
3 9.5048 — 1 1.9014 1.3605 47506 — 1 6.7563 — 2
4 9.4982 — 1 1.8995 1.3567 4.7499 — 1 6.7873 —2
15 9.5000 — 1 1.8996 1.3570 4.7513 -1 6.7878 — 2
10 1 1.6973 7.1351 —2.4011 —3.8097 — 1 3.6796 — 2
2 8.9261 — 1 2.3052 1.7939 4.8876 — 1 7.0452 — 2
3 9.2205 — 1 1.9929 1.3770 4.8009 — 1 6.8307 — 2
4 9.3477 — 1 1.9024 1.3487 47503 — 1 6.7864 — 2
15 9.5003 — 1 1.9000 1.3571 4.7500 — 1 6.7857 — 2
15 1 1.0286 3.0368 5.0768 7.7390 9.3345 — 1
2 5.5381 — 1 8.0394 — 1 — 1.9459 — 1.7712 1.1308 — 1
3 1.2255 4.9620 — 76316 -1 3.6121 — 1 6.9353 —2
4 1.0236 2.7431 1.0036 4.5880 — 1 6.8727 — 2
15 9.5003 — 1 1.9000 1.3571 4.7500 — 1 6.7857 — 2
Exact 9.5000 — 1 1.9000 1.3571 47500 — 1 6.7857 —2
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TABLE VILI. Selected moments iy, (0), #;,,(0), iy, (7,), and i,,, (,) obtained by rounding to D digits the F results of Table II.
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fom (7,) i1 (7,) iom(0) i1,(0) lom (T,) i(T,) iom{0) i1 (0) fom(7,) Eim{To)

i1 (0)

D m i,,0)

6.1686 — 2

—7.6356 +1 —6.9485 + 1
8.5295 —2

—3.2538
—7.8731-1

— 2.8559
1.5465
7.2981 —1

5.3764 -2
1.1854 -2
3.6424 -2

1.0677 8.6439 — 2

—7.6719 —1 2.6187 -2

—5.4429 —2 6.4819 -2

—7.6816 —1 3.1337 -2
—5.1252 — 2 6.4705 — 2

—7.6817 — 1 3.1328 -2
—5.1294 —2 6.4704 — 2

—7.6817 —1 3.1328 — 2

1.4981
1.5848

3.6372 -2
1.5336 — 2

—5.1197 —2 64715 -2

—7.6855 —1 3.1295 -2
—5.1332 -2 64637 -2

—7.6817—1 3.1318 -2
—5.1295 — 2 6.4639 —2

—7.6817—1 3.1317-2
—5.1295—-2 64638 -2

—7.6817—1 3.1317-2

2 0 232321
1.5830

2 3

38047 —1 —43611 -1 —4.1718 -1

—7.6929 — 1

2.2895 —1
1.5839

3.6337 -2

4 0 232301

4 3

1.7076 — 2

3.3631 —2

1.5824
24159 —1 —4.3236—-2

1.5839

1.5348 —2

1.5339 — 2

1.5839

3.2350—-2

3.6338 -2 6.0312 -2

2.3259 -1
1.5839

3.6338 —2

6 0 232361

6 3

3.1320—2  1.5331-2

—7.6816 — 1

1.5340 -2
3.6337 -2

1.5339 -2

1.5839

3.6337 -2

6.4709 — 2

2.3256 — 1 —5.1293 -2

1.5839

2.3254 — 1
1.5839

3.6338 — 2

15 0 232361

15 3

31339 -2 1.5340-2

—7.6817 — 1

1.5339 -2

1.5339 -2

1.5839

Two important observations follow from our numerical
tests:

(i) The finite accuracy available for digital calculations
sets an upper limit for N, denoted as N, , beyond which the
F system of equations becomes ill conditioned. This limit
depends upon the scattering model and the numerical
scheme used for the calculation. Generally, for calculations
with 15-digit precision, N,,,, S 10 for projection techniques
P1 and P2, whereas for collocation methods C1 through C3,
N,... ® 15. The Fy solutions with collocation method C4
tended to be the best for N2 15.

For the fog of Eq. {66) and for strongly anisotropic scat-
tering with @, close to unity, such as the Henyey—-Greenstein
model with g large or the binomial model with « large, the
€4 model works better than any other. All methods other
than C4 require the exact values of v;, which are difficult to
calculate for a weakly absorbing medium because the func-
tions A {z) and A '{z)} become very small for z large. On the
other hand, the estimated v; values used in C4 calculations
are easily obtained because g'(v;) is enormous.

(i1} The coefficients a,, and b, oscillate with the value of
n, and the magnitude of these oscillations increases mono-
tonically with increasing values of N, as illustrated in Table
I for a binomial scattering model. This is due to the fact that
the F,, calculation gives polynomial approximations of de-
gree N for the intensities, and that the coefficients of finite
polynomial approximations of strongly nonuniform func-
tions have oscillations that increase with the order N of the
approximation. This phenomenon has implications for the
inverse problem calculations.

VII. CALCULATIONS FOR INVERSE PROBLEM
SOLUTION

Inverse problem calculations were performed using F,
results for the direct problem. The case of isotropic scatter-
ing was considered first. With @, = 0.999 and 0.2, and with
7, =2 and 20 and g, = 0.5, results for w, accurate to three
decimal places were obtained using F, calculations based on
collocation methods C1 through C4 and F, calculations us-
ing projection methods P1 and P2.

For the anisotropic scattering of fog, the angular heat
flux method reproduced all w, values to four-digit accuracy,
while the angular intensity method gave the same results
except for w,, which was 1.0012 instead of 0.9990. These
inverse computations were done using £ calculations with
collocation method C4 for a slab with 7, = 2 and 4, = 0.5.

One of the requirements of the inverse problem is that
the K value has to be estimated; this assumed K value will be
denoted by K. It is obvious from Eqgs. (7) and (9) that K must
equal or exceed K, or the higher-order coefficients cannot be
calculated. Table III shows different sets of @, obtained for
different X for the binomial model with w, = 0.95 and
a = 19. These calculations were based upon F; results using
C4 for a slab with 7, = 2 and 2, = 0.5. A comparison of the
calculated @, ’s with the exact ones used in the Fy calcula-
tions shows that the lower-k coefficients are considerably in
error for K < K. The errors in the w,’s were smaller for the
binomial scattering law with w, = 0.2.
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For K = 19, the angular heat flux algorithm provided
slightly better w, values for the inverse problem calculations
than the angular intensity algorithm. This difference is pos-
sibly because the i;, values converge faster with ¥ than the
iy, values. The “upper triangular” structure of Egs. (7) and
(9) aggravates this difference for small k values because of
error propagation.

Inverse computations based upon an Fy direct calcula-
tion for the case in Table III give nearly identical results to
those obtained from the F; calculation. This suggests that
the inverse problem results could be relatively insensitive to
the N of the direct problem calculations provided, of course,
that & is not too small.

To test this hypothesis, the Henyey—Greenstein scatter-
ing model with w, = 0.99, g = 0.9, and X = 10 was consid-
ered. Such a scattering model represents a severe test of the
F,, method because the scattering coefficients w, monotoni-
cally increase for k<9. Table I'V shows results for the inverse
problem based upon F,, calculations using the C4 technique
for N =4, 8, and 12. In this case, accurate results were ob-
tained for the small N values; also, the angular heat flux
method was markedly superior to the angular intensity
method.

When the assumed K exceeds the value K used in the Fy,
calculations, all w,, k > K, obtained from the inverse calcu-
lations are identically zero. If experimental data were used to
perform the inverse problem calculations, no sharp cutoff
would exist. Such a case has been simulated by using the
binomial scattering model for @ = 4.1 and w, = 0.95 in an
F,, calculation with K = 15 for 7, =2 and u, = 0.5. The
corresponding @, values are distributed in two groups: one
group for 0< k<4 is nearly the same for the scattering model
with @ = K = 4 and much larger than the second group, for
5<k< 15, which acts as a “perturbation.” The results in Ta-
ble V show that accurate vatues for w, , k<4, are obtained for
K = 4 and do not change appreciably for K > 4, while the
values of w, , k> 4, stabilize only when K~15.

Perhaps the most important test of the inverse method
is to examine the o, values predicted when the precision of
the angular intensities is limited. To assess this, inverse prob-
lem calculations were done by rounding to D digits the
I™(r,u),i.e.,thea, and b, values of the F,, calculations. The
Fs, F\,, and F; calculations of Table II for the binomial
model with @, = 0.95 and a = 4 were used in this test. The
results for D<4 in Table VI show than an inverse calculation
based on the Fy data is better than the corresponding one
based on the F data.

The rounding off of the coefficients @, and b, leadsto a
loss of precision because of the oscillation of these coeffi-
cients shown in Table II. Since the magnitude of the oscilla-
tions increases with N, the loss of precision is greater with
larger N. This explains the poorer results of the inverse cal-
culations in Table VI based on F,, and F data. Also the
relatively good results obtained for small ¥ are due to the
fact that the inverse calculations depend only upon the mo-
ments of the intensity, and not on the detailed shape of the
angular intensity. As shown in Table VII, these moments are
calculated with enough precision for small N.
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Vill. CONCLUSIONS

The direct slab albedo problem with azimuthal depen-
dence has been solved with the F,, method and been found to
converge for N~10-15. The F, system of equations be-
comes ill conditioned for N too large because of the finite
precision available in the digital calculations. The conver-
gence depends upon the degree of anisotropy of the scatter-
ing and the value of @, and, to a lesser extent, upon the slab
thickness and the angle of incident radiation (provided x,

0.9 so that there is sufficient azimuthal dependence).

The recursion relations and series expansions in Sec. IV
were found to be helpful (and sometimes necessary) to obtain
good numerical accuracy with the Fy method. Of the six
numerical schemes proposed in Sec. V, the four collocation
methods gave good results, although the collocation ap-
proach C4 was best for strongly anisotropic scattering. The
projection techniques P1 and P2 were less satisfactory for
many cases of anisotropic scattering.

The inverse problem for a homogeneous slab has been
numerically evaluated with the results from the direct prob-
lem calculations. Generally the angular heat flux method
provided slightly better accuracy, but the differences were
small. Consequently, the method of determining the w, coef-
ficients should depend upon whether the intensity or heat
flux is easier to measure experimentally.

When using experimental data, a series of calculations
should be performed with increasing assumed values K of
the anisotropy of the scattering. If the actual w, coefficients
diminish rather gradually with increasing k beyond some
value k,,, then the first (k,, 4+ 1) coefficients will converge
with increasing K for K> k,,, as seen in Table I11. If the w,
values exhibit a rather sharp drop in magnitude for k> &,,,,
the larger coefficients are accurately obtained with inverse
calculations even for K = k.., as shown in Table V.

The precision test in Sec. VII is moderately encourag-
ing for the use of the inverse problem algorithms. It was
observed that for small N, two-digit accuracy in the angular
intensities at the slab surfaces gave two-digit precision in the
w, values, and that four-digit accuracy gave three-digit pre-
cision, as shown in Table V1. Because of the upper triangular
form of the inverse method equations, the calculated w, val-
ues are generally worse for small &.
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In this paper we study the scattering of a plane electromagnetic wave off a spherical plasma pellet.
The plasma density is taken to be overdense and very steep. This causes the cut off radius, r,, to be
within a fraction of a wavelength from the spherical boundary. The problem is studied in the
asymptotic limit (@w/c)— « with Q<1 — r, = O (c/aw). Here a is the radius of the sphere, @ is
the frequency of the incident radiation, and c¢ is the velocity of light in free space. We develop an
asymptotic technique which reduces Maxwell’s equations to three ordinary differential equations
within the plasma. Our method is a blend of geometrical optics and boundary layer techniques.
Straightforward geometrical optics is used to describe the scattered field.

PACS numbers: 52.40.Db, 52.25.Ps

I. INTRODUCTION

The conversion of electromagnetic energy into kinetic
energy is a major factor in the laser fusion concept.' As a first
step to understanding this process, one linearizes the perti-
nent equations, neglects ionic motion, and assumes a cold
plasma. The ensuing equations give rise to a linear scattering
problem. This problem has been extensively studied when
the plasma is planar.?> Recently, the case of a spherical plas-
ma target has received considerable attention.!** The inter-
est in this geometrical configuration arises from the fact that
the plasma pellet, used in the fusion process, is initially
spherical in shape.

The scattering of a plane electromagnetic wave off a
perfectly conducting sphere coated with an inhomogeneous
dielectric was studied by Alexopoulos.’ The metal sphere
was used to model the cut—off surface. In this paper the au-
thor performs a modal analysis using a specific index of re-
fraction (r/a)” (where r is the radial variable and a is the
radius of the sphere). He computes the asymptotic approxi-
mation to the backscattered field in the limit aw/c— o (here
o is the frequency of the incident plane wave and c is the
speed of light in free space). His analysis is made amenable
by his particular choice of refractive index which, for m > 0,
is a reasonable model for a plasma medium.

Thomson, Max, and Erkkila* have studied certain as-
pects of the scattering problem for an overdense cold spheri-
cal pellet. They allowed the index of refraction to vanish on
the surface » = r, < 1 (both the variable r and r; are now
scaled with respect to @). Thus, their model is more realistic
than the one studied by Alexopoulos. It also gives rise to
interesting cutoff and resonant phenomenon. However, they
assumed that 1 — ry>»c/aw. This restriction allowed them to
asymptotically approximate the radial eigenfunctions (as
wa/c— ) which occur in the full wave expansion of the
Debye potentials. From these approximate potentials they
deduce the scattered field, the field within the plasma, and
the energy absorbed by the pellet. Their results become inva-
lid when 1 — 7y = O (c/aw).

In this paper we assume that the profile is steep enough
to give 1 — 7, = O (¢/aw). Moreover, we fix @ and seek an
asymptotic approximation of the electric field as aw/c— 0.
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In this work we modify a technique reported elsewhere®
which exploits the smallness of 1 — 7, and the largeness of
aw/c. This method reduces the vector partial differential
equation, describing the electric field within the plasma, into
three uncoupled ordinary differential equations. It is basical-
ly a blend of geometrical optics’ and boundary layer tech-
niques.® Outside the plasma pellet the scattered wave is ap-
proximated by using straight geometrical optics.

We shall now give a brief outline of this paper and a
summary of the main results. The statement of the scattering
problem and the hypotheses regarding the plasma are given
in Sec. 2. The asymptotic technique is presented in Sec. 3.
The case of a lossless plasma is studied in Sec. 4. There it is
analytically shown that the amplitude of the vector cross
section equals one-half. This far field result is identical to the
cross section of a metal sphere which is irradiated by a scalar
plane wave. Section 5 is concerned with the effect of damp-
ing on the electric field. Of the three ordinary differential
equations which describe the electric field within the plasma,
only one can be solved in terms of tabulated functions. The
other two equations must be solved numerically. However,
the determination of the vector cross section’s amplitude re-
quires the numerical solution of only one. This information
is used to define a “scattered” energy density, p, which is
computed numerically. The function p is found to possess a
minimum at an angle which depends upon certain physical
parameters. In the case of slab geometry, Freidberg, Mitch-
elt, Morse, and Rudinski® report that the absorption coeffi-
cient has a minimum for a certain angle of incidence. This is
the resonant absorption phenomenon. Their angle and ours
is found to differ by only two degrees. Finally, p is used to
obtain a crude approximation of the energy absorbed by the
plasma.

2. FORMULATION

A high frequency plane electromagnetic wave impinges
upon a spherically confined “cold” plasma of radius a and
scatters from it. The time harmonic electric field
E exp( — iwt ) satisfies'®

VXV XE = k?1E, (2.1
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where k = k ‘a and the index of refraction n is given by
n=(1-—i8n,+ib, 6>0. 2.2)

In (2.2) the parameter & is the damping coefficient and », is
given by

ny = 1 —4mwe’N (ar)/me?, 2.3

where w is the frequency of the incident plane wave, e is the
radial variable, and N (ar) is the charge density. Implicit in
(2.3) are the assumptions that o is large enough to neglect
ionic motion and the density is dependent only upon r.

We now assume that the plasma is overdense, is con-
fined to the region 0<r<1, and is very steep. These assump-
tions lead us to make the following hypotheses about n,(7):

HD) n(M =1, r>1,
H2) ny(ry) =0,0<1 —ry =0(1/k),
(H3) n(ro) = mk, m = 0 (1),

and

(H4) n{(ro) = o(k ).

These conditions are met when an infrared laser initially
irradiates an overdense plasma target.’

To complete the mathematical statement of this prob-
lem, we must impose further conditions. First, we demand
that E and its first partial derivatives are continuous every-
where. Secondly, the scattered field must satisfy the radi-
ation condition. Finally, we choose the 2 axis to be parallel to
the incident wave vector k' and the y axis to be parallel to the
incident electric field.

We shall now suppose that k% 1 which corresponds to
the physical situation mentioned above. Thus we seek an
asymptotic approximation of E as k— co. At first this seems
to be a natural setting for the method of geometrical optics.
However, the cutoff radius is a fraction of a wavelength away
from the boundary of the plasma (H2). Thus, geometrical
optics cannot be used directly to determine an asymptotic
approximation of u within the plasma.

3. THE ASYMPTOTIC METHOD

The largeness of & and the smallness of 1 — r, will now
be exploited to change (2.1) into a system of ordinary differ-
ential equations. The field within the plasma is assumed to be
of the form

E(r, 6, 4; k)
= e™® [singu(F, 6 )#

+ singv(7,0)0 + cospw(F, 6)d + O(1/k)]  (3.1)
as k— o where the boundary layer variable 7 is defined by®
3.2)
The variables r, 6, and ¢ are the sgherical coordinates of a
point in the plasma and 7, 6, and ¢ are unit vectors.

The index of refraction within the plasma is expressed
in terms of 7 as

ﬁ(r) =b(@ = —-ibyF+ 15+ o(1) 3.3)
as k—» 0. This follows from (H2)-(H4), (2.2), and from ex-

panding #, in a Taylor series about r = 7.
Upon inserting (3.1)-(3.3) into (2.1) it is found that u, v,

F=km(r — ry).
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and w satisfy

sinfv’ = iy(b — sin’6 )u, (€X'
v’ + 7’y = — iysinfu’, (3.5)
Lyw=w" + y*(b — sin’6 )w = 0, (3.6)

where ¥ = 1/m and the prime denotes differentiation with
respect to 7. Equations (3.4) and (3.5) are easily decoupled to
give

’ [ ’ 2
Lu=u"+ bT“ + [yz(b —sin%0) — (%) ]u —o,
3.7
b 'sin’6’
Lio=v'— ———— + (b — sin?w=0.
¢ b (b —sin’8) 7 »
(3.8)
Outside the plasma target (> 1) the electric field
is assumed to be of the form
E = e*% + ¥ Ax,3,2) + 0(1/k)] 3.9

as k— o . The first term is the incident plane wave and the

second is the scattered field. Upon inserting (3.9) into (2.1)
and equating the coefficients of like powers of k to zero, it is
found that ¢ and A to zero, satisfy

V¢-V¢ = 1 (eiconal equation), (3.10)
2VA-Vy + AV?) = O (vector transport equation).  (3.11)

Thus, the scattered electric field will be approximated by the
method of geometrical optics.”

Now to compute E, boundary conditions must be speci-
fied for (3.6)—(3.8) and initial data must be given for (3.10)-
(3.11). For afixed r < ry it follows from (3.2) that F—~ — o as
k— o0 . Thus, the limits of %, v, and w must be specified as
F— — . By applying the WKB method''to (3.6)—(3.8) it is
found that each equation has one solution which grows ex-
ponentially and another which decays exponentially in this
limit. The modest assumption that the field remains bound-
ed in the plasma implies

lim (4, v, w) = (0, 0, 0).

Foc

From (3.1), (3.9), and the assumptions that E and its
first partial derivatives are continuous at r = 1, it follows
that

(3.12)

1,(0) = ¢(sind cose, sinf sing, cosf) = cosf, (3.13)
singu(l, 6) = sing sinf + A4,(1, 6, ¢), (3.14)
singu(l, 8) = sing cosf + A44(1, 6, ¢), (3.15)
cosguw(l, 6) =cosd +A,(1,6,¢), (3.16)

singu'(1, 8) = iysinf cosf sing + iyy,4,.(1,6,¢),
(3.17)

singv'(1, 6) = iycos’0 sing + iyy,A,(1,6,4), (3.18)

cosgw'(1, 8) = iycosb cos¢ + iy, 4,(1,0,¢), (3.19)
where 4,, A,, and A, are the components of A in spherical
coordinates. Inderiving (3.17)-(3.19)atermoforder O (1/k )
was neglected and 7 was set equal to one at the plasma
boundary. The later approximation follows from (2.2), (H1),
and (3.2). It introduces an error of order O (1/k ); we have

consistently neglected terms of this order.
From (3.10) and (3.13), it follows that
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v.(1,6,4)= %% (1,6,8) =|cos@ |. (3.20)

When this result is inserted into (3.17)—(3.19), we find from
(3.14)~(3.19) that

u'(l, 8) u(1, ) sind
v'(1, 8) |—iyjcosB || v(1, ) |=ivA|cosb |,
w'(1, 8) (1,0) 1

where 4 = cosf — |cosf |. Thus, to find the electric field
within the plasma we must solve (3.6)—(3.8) subject to the
boundary conditions (3.12) and (3.21).

Once u, v, and w are computed it follows from (3.14)
(3.16) that

A,(1,0,¢)=sing [u(1,0) —sinf ],

A,(1, 6, ¢) = sing [v(1, ) — cos8 ].

Ay(1,6,8)=cosd [w(l,6)—1].
This information and (3.13) are the initial data needed to
solve (3.10)—(3.11). The eiconal and vector transport equa-
tion are easily solved by making the following observation:
The initial phase given in (3.13) is the same phase that would
occur if a scalar plane wave impinged upon a “metal” sphere
(the total scalar wave vanishes there) of unit radius. Thus the
reflected rays and phase of the present problem are identical
to those of the irradiated metal sphere. Since each Cartesian
component of A satisfies the transport equation and the ray
pattern determines the expansion ratio® we find that

A= — AOAs(x, Vs Z)) (323)
where 4, is the amplitude for the “metal” sphere problem
and A, is the value of A on » = 1 given by (3.22). The rays, ¢,
and 4, are computed in Appendix A for completeness.

The far field result is given by

ikR

E~é* + S(8, ¢)5R—

(3.22)

(3.29)
as R— o where S(6, ¢ ) is defined by

S(6, 4) = 0.5 exp[ — 2iksin %] A, ( S+ g p )
(3.25)

The variables R, O, and ¢ are the spherical coordinates of the
far field point. This result becomes inaccurate as © ap-
proaches zero; the observation point then lies in the shadow
region which is devoid of scattered rays.

4. THE LOSSLESS PLASMA

In this section we shall study the differential equations
(3.6)—(3.8) and boundary conditions (3.12) and (3.21) when
6 = 0. If these equations could be solved exactly, then (3.1)
would give the electric field within the plasma. Moreover,
Egs. (3.22), (3.24), and (3.25) would determine E in the far
field. Unfortunately, only (3.6) can be solved exactly to give

0, |6 |<7/2
T
w=1 —2iycosf ’
T A=), 7/2<6<3/2,
0
where & = ¢ (F — sin?8), £, = ¥* cos?6,
A;(— &) is the Airy function,

@.1)
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and
Z,= 7’2/3‘4 (— &) —iycosf@ 4,(— &) “42)
From (3.22) and (4.1) it follows that
- COS¢, Ie |<7T/27
— 4.
A¢(l, 6,6) [(Zo/zg)cowj’ /2 <0< 3nm/2. “.3)

Now to the best of our knowledge neither ¥ nor v can be
expressed in terms of tabulated functions. They must be
computed numerically from (3.7)-(3.8). However certain
qualitative information can be gleaned from the differential
equations and boundary conditions.

Let u(F, 0 ) satisfy (3.7) with (3.12) and (3.21). Then
u*(F, 0) satisfies

lim u*=0, 4.4)

Fr—

du* . o
-d—_(l, 0) + iy|cosb |u*(1, 8) = — iy4sinb.
7

Lu*=0,

Integrating the difference

Flu*L,u —u L u*]=0 4.5)
by parts from — o to 1 gives
Au*u' —uu*)|L  =0. 4.6)

Since u approaches zero exponentially as 7 — oo, it follows
from (3.21), (4.4), and (4.6) that

[cosf | |u|* + Asinf (u + u*) =0. 4.7)
When |0 |<7/2, 4 = 0 and (3.21) with (4.7) give u(1,6)
=u'(l,0)=0.
This result implies #(7, ) = O for @in this range. When & lies
in the interval [#/2, 37/2), 4 = 2 cos@ and (4.7) gives

lu(1, 8) — sind |* = sin?0. 4.8)

A similar argument works for v and gives v(F, 6) =0
when |0 |[<7/2 and

|v(1, @) — cosf |* = cos’d 4.9
when 6 lies in [77/2, 37/2]. It is apparent from (3.22), (4.8),
and (4.9) that
|4.(1, 8, ¢)|* = sin’p sin®8, |4,(1, 8, )| = sin’¢ cos’8,

(4.10)
14,(1, 6, 8> = cos’s. @.11)
These results hold for all # and ¢ and imply that |A,| = 1.
From (3.25) we deduce

IS, ¢)| =0.5.

Thus the magnitude of the vector cross section is the same as
the amplitude of the scalar cross section for the “metal”
sphere problem. (This agrees with the result of Alexopoulos®
when the thickness of the dielectric coating approaches
zero.)

Any additional information about 4,, 44, and 4, ne-
cessitates a numerical integration of the differential equa-
tions (3.6)—(3.8). We do not pursue this here.

4.12)

5 THE EFFECT OF DAMPING: ENERGY ABSORPTION

We begin this section by computing the amplitude of
the vector cross section, S. This quantity will be used later to
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i
6=0l

FIG. 1. The scattered energy density, p(@), for § = 0.1 with y = 1 and 2.

approximate the energy absorbed by the plasma. From
(3.22) and (3.25) it follows that

IS8, ¢)|* = Lsin’p [lu(1, © /2 + 7/2) — cos(6 /2)|?

+ (1, 872 + 7/2) + s5in(6 /2)|7]

+ Jcos’s |w(1, B /2 + 7/2) —1|2. .1
By using (3.4) and (3.21) this result simplifies to

IS(B, ¢)|* = 1sin’$ sec*(O /2)

X |u(1,0 /2 + m/2) — cos(B /2)|?

+ 1cos?d |u(l, ©/2 + 7/2) =12 (5.2)
when 6 #17. When O equals 7, Eq. (3.4) gives # = 0 while
(3.6), (3.8), (3.12), and (3.21) yield v = — w. Thus (5.1)
becomes

IS(, ¢)1? = Llw(1, 7) —1|? (5.3)
in the backscattered direction.

The scattered energy density, p(6 ), is defined to be the
integral of |S|?, with respect to ¢, from 0 to 27. It is given by

p(6) = (m/4)sec’(O /2)|u(1,0 /2 + 7/2) — cos(B /2)|?

+ (@/D|w(l, O /2 + 7/2) —1|? (5.4)
when @ #7 and
p(m) = (a/D)|w(1, 7) —12 (5.5)

when 6 = 7.

To determine the functional dependence of p on © ne-
cessitates the computation of # and w. The later function can
be obtained directly from (3.6), (3.12), and (3.21). It is given
by

0,

WO = 20 4 (- ), b, GO
where
& =[v/(1 —i8NP[(1 — i§)F + i6 — sin’O)]),
& = [y/(1 —i8)P cos’O,
and
Z(0) = 1X(1 — i8) A [ — &) — iycosOA(— £)).
;.7
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Thus, the second term in (5.4) is given by

w(1’1+ 2)_1 Z(w/2-67/2) 2.

2 2 Z(r/2+6/2)

(5.8)

Unfortunately, the function #(7, © ) cannot be deter-
mined in terms of tabulated functions. Equations (3.7),
(3.12), and (3.21) must be solved numerically to deduce
u(1,0 /2 + 7/2). The problem is simplified somewhat by
substituting

u(, 0)=q( 6)/b(r ) (5.9)
into these equations. It is evident that ¢ must satisfy
g’ —(b'/b)g + (y’b —sin’0)g =0,

(5.10)
lim ¢=0, (5.11)

¢'(1,0) + {1 —ib + iy|cos@ |)g(1,0) = iy4sinB.(5.12)

Equation (5.10) with b = (1 — i6)7, has been the object of
considerable interest {see Ref. 6 for a modest bibliography).

We have numerically solved (5.10) using the finite dif-
ference method.'? To perform the calculations, a step size of
0.1 was used and the boundary condition {5.11) was replaced
byg( — 10, 8) = 0. To test the sensitivity of the results to this
approximate boundary condition, we replaced — 10 by

— 15, kept the step size fixed, and reran the program. The
numerical values were found to change insignificantly.

We obtain from this calculation and (5.9) the value of
u(1, 8). The functional dependence of p on O is obtained by
introducing this information and (5.8) into (5.4). This depen-
denceisshowninFig. 1 for§ = 0.1 (y = 1, 2)and in Fig. 2 for
5 =0.05(y = 1, 2). The line p = /2 is plotted in both fig-
ures; this is the value of p when damping is neglected [see Eq.
(4.12)].

It is interesting to note that p possesses aminimum atan
angle which depends upon y and 8. This angle corresponds
to a small portion of the sphere where a maximum amount of
energy is absorbed. In the case of a plasma slab, Freidberg et
al.® report that their absorption coefficient possesses a maxi-
mum at a particular angle of incidence. This coefficient is
defined to be proportional to

2 T
T4

4

it

B e ¢ ¢
20 €0 100

K
6=05

FIG. 2. The scattered energy density, p(0), for § = 0.05 with ¥y = 1 and 2.

I a——
140 80

Gregory A. Kriegsmann 212



TABLE I. The absorbed energy for 6 =0.1,0.2and y = 1, 2.

[
” 05 0.1

1 .96 1.13
2 1.08 1.36

A(©) =lim [sin @ |E(0,5)]],
5—0

where O is the angle of incidence and E (0, § ) is the compo-
nent of the electric field along the slab’s normal, evaluated at
the cutoff. It is remarkable that our angle of minimum p
differs from their angle of maximum absorption by only two
degrees when ¥ = 1,8 = 0.05. This error is due to numerical
inaccuracies and the fact that § #0. Unfortunately, here is
where the direct comparison of 4 (€) and p(6) ends. Our
problem is inherently three dimensional whereas theirs is
two. The function 4 (6 ) represents the absorption coefficient
only in the latter case. However, we did compute 4 (O ) using
u];_ o inplace of E (0, 8 ). Upon inserting the proper propor-
tionality constant we found that our numerical results
agreed with theirs to within 5% when ¥ = | and § = 0.05.

The function p(€ ) will now be used to obtain a crude
approximation of the energy absorbed by the plasma pellet.
In Appendix B we have derived the result

T=— f" sin@ p(6) d6 — (1/k)Im f 2"Aoy(w/z, $)dg.
(5.13)

where T'is the energy absorbed and 4, is the y component of
A,. The second term in this equation comes from a station-
ary phase analysis'' of an integral involving the scattered
field. The main contribution to this integral comes from a
small neighborhood about @ = 0. Unfortunately, this corre-
sponds to the shadow region where our results are inaccu-
rate. Thus, we do not have a handle on 4, (7/2, ¢ ) when
6#0.

If no damping were present, then T would be zero.
Equation (4.12), the definition of p, and (5.13) would then
give

%Imf Aoy (7/2, 6)dé = — . (5.14)

(+]
A crude approximation to T is obtained by inserting this
result into (5.13). It gives

T~m— f sin@ p(6) d6. (5.15)

(]
The results of this approximation are given in Table I. These
results make good qualitative sense. For a fixed 7, T'is seen to
increase as § becomes larger.

To explain the dependence of T'on 7, recall that ¥ equals
1/m where m is defined in (H3). As m increases, the density
gradient becomes steeper and reflects more of the incident
radiation. Thus as m increases (¥ decreases), less energy is
absorbed by the plasma for a fixed 8. This feature is also born
out in Table I.
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APPENDIX A

Consider a scalar plane wave impinging upon a metal
sphere and scattering from it. The geometrical optics ap-
proximation to the scattered wave is given by

u(x.yzk) = [4,(xp.2) + O (1/k)Je*¥=>? (A1)
where the amplitude satisfies
2VA, VY + A4,V =0, {A2)

and the phase ¢ satisfies (3.10). Since the total field vanishes
on the unit sphere,

A (sin® cosg, sinO sing, cos@) = —1
and
#(sin@ cosg, sinO sing, cosO ) = cosO.

The argument of A, (and ¥) is the intersection point of an
incident ray with the sphere. From (3.10) and the initial data
it follows that the scattered rays satisfy the law of reflection.
Thus they are given
X = sinO cos¢ — o cosg sin26,
Y =sin@ sing — o sing sin206,
Z = cos@ — 0 c0s26,

where o is the arclength. These rays form a two-parameter
family of straight lines.
Equations (3.10) and (A2) are readily solved to give

(A3)

¥ =0+ cosB, (A4)
__(J084)\”
4, = (1(0,6,¢)) ’ (A3)

where J (g, O, ¢) is the Jacobian of the ray map (o, O, ¢)
—(x,y,2) given by (A 13). It is easily found to be

J = Q0 — cosO )(sin@ — o sin20). (A6)

Now in the far field o> 1. From (A3)~(A5) we deduce that
0~R +c0sO, J~2R%in20, ¢Y~R +2cos6O,(A7)
A>~1/2R, P~¢, O=6 -7,

where R, @, and O are the spherical coordinates of the far
field point. When (A7) is inserted into (A1) we obtain

kR
—2ik sin(8/2) €

u~le , 8 R—c. (A8)

Now each Cartesian component of the scattered field
vector A satisfies (A2). Let A, be the x component of A and
let Ay, be the value of 4, on r = 1. The A4, is given by

— uA,, for r> 1. This proves (3.23).

APPENDIX B
It follows from Maxwell’s equations, ' the incident
wave form, and the hypotheses on n(r) that

2m
—R 2Ref f (EXH*)-R sin@ dO dp = kb
(4] 0

X,I_Lpf(l — n)E|* dv,

where E is the total electric field, H* is the conjugate of the
total magnetic field, R is a unit vector in the direction of the
far field point, and ¥, is the region occupied by the pellet.

(B
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The right-hand side of (B1) is the energy absorbed by the
plasma which will be denoted by T.

From the far field result (3.24) and the relation

VXE=ikH (B2)
it follows that
H* = — ™% 4+ (R XAy)e™® /R as R—co. (B3)

When (3.24) and (B3) are inserted into the left-hand side of

(B1) we find that
T= —f p(O)sind d6 + %
0

Re j 7 f " K(0.4)e** d6 dg, (®B4)

where
Y =1-—cos@ —1/R sin(O /2),
K =5inOI(1 + cosO)4,,(7/2 + 0 /2),4)
— sin@ sing4,, (7/2 + 6 /2,¢)].

The functions 4,, and 4, are the y and z components of A,
respectively. Since R— o, the method of stationary'! phase
can be applied to the second integral in (B4). The energy
absorbed in then approximated by
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T= — f” p(6)sin6 dO — 7l€ Imery /2, 6) dé.
(B5)

This is just a statement of the optical theorem.'?
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It is shown that in the gravitational collapse of a charged fluid sphere only one of the two
Reissner—Nordstrom curvature singularities is present, under the assumption that the charge
density evaluated at the surface of the sphere and the total charge on the sphere do not have
opposite sign. Arguments are presented to show that this assumption is physically reasonable.
Ignoring possible naked singularities formed within the collapsing matter, this implies that the
only Cauchy horizon in the interior of a charged black hole is the future inner event horizon
(r=r_,t= + o), which is known to be both classically and quantum mechanically unstable.

PACS numbers: 95.30.Sf

|. INTRODUCTION

Determining the validity of the cosmic censorship hy-
pothesis is widely regarded as one of the most important
problems in classical general relativity today. The cosmic
censorship hypothesis' basically says that any naked singu-
larity which is created by the evolution of “regular” initial
conditions will always be hidden behind an absolute event
horizon. Such a naked singularity is visible (or ““naked”) only
to observers who fall through the absolute event horizon into
the black hole containing the singularity. The local (or
“strong”) version of the cosmic censorship hypothesis? sim-
ply states that naked singularities are never produced. A sin-
gularity is considered naked only if there exists some observ-
er for whom the singularity lies initially to his future, and,
some subsequent proper time later, the singularity lies to his
past. This definition is local in that it makes no reference to a
special set of observers at asymptotic infinity. Note also that
the big bang is not naked according to this definition.

If the local cosmic censorship hypothesis is true, then
the geometry of a black hole interior may be completely de-
termined by solving the Cauchy problem for the space-time.
Ignoring perturbations occuring at late times, this amounts
to determining the time-dependent metric and matter fields
in the gravitational collapse which forms the black hole.

Conversely, by studying classical gravitational col-
lapse, we can to some extent study the validity of the local
cosmic censorship hypothesis. Several different approaches
can be taken. First, one might study the formation of curva-
ture singularities within the collapsing matter and determine
whether they are locally naked. This is likely to be a very
difficult problem, as the nature of the singularities is likely to
depend on the specific details of the collapse, and may not be
amenable to a general analysis. In Sec. II. I review the pro-
gress made on this problem to date. Second, one might study
the possible trajectories the surface of the collapsing body
can follow, in order to determine which regions of the interi-
or are likely to be vacuum. In particular, if the geometry is
spherically symmetric, we can determine which portions of
the Reissner—Nordstrém interior are relevant to realistic

“Work supported in part by the National Science Foundation contracts
PHY78-09658 and PHY79-16482.
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gravitational collapse. In Sec. III of this paper, I prove that
in the collapse of a charged spherical star the left hand »r =0
curvature singularity in Fig. 1 will never be exposed {unless
nature contains an additional attractive force which diverges
faster than r~3). Thus, ignoring possible naked singularities
formed, within the matter, only the right hand Reissner—
Nordstrom singularity is naked, and only the future inner
horizon (labeled 4 *) is a Cauchy horizon.

It is now well established that the future inner event
horizon (£) is both classically>**>¢ and quantum mechani-
cally”®® unstable. Thus, it appears that the only possible

0 singularity

r

FIG. 1. Penrose diagram of the Reissner—Nordstrom space-time with

Q% < M. The region denoted I represents our exterior universe. Note the
existence of multiple asymptotically flat exteriors, such as regions I, III,
and IV. The Penrose diagram repeats endlessly off the top and bottom of the
page. The dashed curve indicates a typical timelike geodesic.
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collapse to bounce to
left hand future

exterior region

left hand singularity

bounce to
right hand future
exterior region

collapse to
right hand singularity

FIG. 2. Possible topologies for charged spherical collapse. The shaded re-
gion represents the collapsing matter, and is bounded on the left by r =0
{origin of coordinates). The heavy lines labeled r = 0 are the Reissner—
Nordstrom curvature singularities.

naked singularities formed in spherical collapse are singular-
ities formed within the collapsing matter. The instability of
/%, combined with the result obtained in this paper, guaran-
tees that the timelike, locally naked character of the singu-
larities in the analytically extended Reissner~Nordstrom
metric will not be important in any physically realistic
situation.

Il. REVIEW OF SPHERICAL COLLAPSE RESULTS

The general gravitational collapse problem is incredibly
difficult. There is no reason to assume any a priori symmetry
for the collapsing body. Thus the metric and matter fields
may depend on all four space-time coordinates. Even with
today’s computer power the problem appears intractable. If
we assume axisymmetry (a physically reasonable assump-
tion—stars seem likely to be almost axisymmetric, even
when highly time-dependent—e.g., a supernova) the situa-
tion does not improve much. Axisymmetric collapse calcula-
tions should be within the range of today’s numerical tech-
niques, but have not yet been completed. Only when we
specialize to spherical symmetry does the gravitational col-
lapse problem become relatively easy. To a large extent this
is because spherical collapse is not complicated by the pres-
ence of gravitational radiation.
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The first detailed study of the gravitational collapse of a
spherically symmetric perfect fluid was the work of May and
White.'® They found that the singularities formed were al-
ways within an event horizon (supporting the cosmic censor-
ship hypothesis, which had not yet been formally proposed).
The singularity was formed at » = 0, and is necessarily spa-
celikesinceitis formed inside r = 2M ( i) (M defined in terms
of the proper mass u, of all spherical shells interior to that
value of ), where g,, <0, making r = const a spacelike
surface.

The collapse of charged spherical dust (pressure = 0)
has been thoroughly studied. The collapse of charged spheri-
cal shells of dust has been treated by De La Cruz and Isra-
el,' by Kuchat,'? By Chase,'® and by Boulware.'* The an-
laysis of De La Cruz and Israel is the most general (they
match two Reissner~Nordstrém geometries on the shell:
most other authors only consider the case of matching Min-
kowski space to Reissner—Nordstrém on the shell). Unfortu-
nately, as Boulware points out, De La Cruz and Israel usual-
ly worked with the square of the equations of motion for the
shell. Because of this, they fail to distinguish between posi-
tive and negative proper mass shells. Boulware points out
that the negative proper mass shell can collapse to a naked
singularity, violating cosmic censorship (and the weak ener-
gy condition). The collapse of charged balls of dust has been
considered by Novikov'® and Bardeen.'®

The hydrodynamic equations for spherically symmet-
ric charged fluid collapse were set up by Bekenstein,'” but he
did not go on to numerically integrate them.

More recently, Mashhoon and Partovi'® have studied a
class of exact solutions of Einstein’s equations which repre-
sent the collapse of a charged perfect fluid ball of matter.
They discovered several interesting generic features of the
singularities formed in collapse. First, if a singularity is
formed, it is either a spacelike or null hypersurface, never
timelike. Second, any singularity which forms does so be-
tween the inner and outer event horizons (r_ < 7utarity
< r_). These conclusions could lead one to believe that no
locally naked singularities are produced within the matter in
spherical charged fluid collapse, but the case cannot yet be
regarded as closed. The singularity in the Mashhoon-Par-
tovi solutions is a pressure singularity (p = + ). Exactly
how the singularity ( p = oo} approaches the surface of the
collapsing ball (defined to be p = 0) is unclear. In the un-
charged case it was clear that the surface of the collapsing
matter must run into the Schwarzschild singularity at » = 0.
Here, however, the space-time exterior to the collapsing
matter must be a portion of the Reissner—Nordstrom space-
time (by the electrovacuum generalization of BirkhofP’s
theorem), and thus the surface of the collapsing matter need
not run into a singularity of the exterior geometry.

In the face of this uncertainty and lack of knowledge
concerning the nature of the singularities formed with the
matter during charged spherical collapse, it behooves us to
determine which portions of the analytically extended
Reissner-Nordstrom interior are relevant to physically real-
istic collapse.
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Ill. ON THE TOPOLOGY OF CHARGED FLUID
SPHERICAL COLLAPSE

In this section I study the possible paths the surface of a
spherically symmetric charged star might follow during its
gravitational collapse. Within one physically reasonable as-
sumption, I prove that the possible trajectories fall into two
categories, neither of which ever exposes the left-hand cur-
vature singularity in the Reissner-Nordstrom-Penrose dia-
gram (Fig. 1). Thus, ignoring possible locally naked singular-
ities formed within the collapsing matter, only the inner
horizon labeled 4 in Fig. 1 is a Cauchy horizon. The other
segment of the inner horizon, 4, is an event horizon, but
not a Cauchy horizon in this case.

We consider the gravitational collapse of a spherically
symmetric star with nonzero net electromagnetic charge.
Since the space-time exterior to the star is spherically sym-
metric and its stress-energy tensor is that of a pure electro-
magnetic field, it must be a portion of the Reissner—Nord-
strom solution, by the generalization of Birkhoff’s theorem.

There are four conceivable Penrose diagrams of the col-
lapse, illustrated in Fig. 2. Figure 2 (a) illustrates collapse
into the left-hand Reissner—Nordstrém singularity. The in-
ner event horizon £~ is no longer a Cauchy horizon. The
dashed null line (marked %) and the other inner event hori-
zon (4 *) are now the Cauchy horizons. Possibility (b) is for
the star to bounce into the left-hand future exterior region.
Figure 2 (c) represents collapse into the right-hand Reissner-
Nordstrém singularity, and (d) represents a bounce into the
right-hand future exterior region. Note that the paths (b) and
(d) are open-ended: the star, re-expanded into an exterior
region, could expand to infinity, recollapse to form another
black hole, etc. In possibilities (b), (c), and (d), the Cauchy
horizon is the inner event horizon £ ™.

I will now prove that no realistic star can collapse into
the left-hand singularity, along path (a). The different paths
which the surface of the collapsing star may follow can be
characterized by the number and type of their turning points.
A turning point is defined to be any point along the trajectory
of the surface where a component at the four-velocity of the
surface is zero (¥® = dx“/dr = 0), while at the same point
the corresponding coordinate acceleration is nonzero
(d *x °/dr*+0). The second criterion excludes points of in-
flection from our definition, and thus insures that x* (the
coordinates of the world-tube defining the surface of the star)
reaches a maximum or minimum value at the turning point.
Path (a) contains 7o turning points. The radial component of
the four-velocity, dr/dr, is negative all the way down to
r = 0. Path (c) is distinguished from path (a) by its one turn-
ing point. In order for the surface to reach the right-hand
singularity, there must be a point where dt /dr = 0 on the
path (c). This is because near the right-hand singularity (for
all r < r_) any future directed particle will have dt /dr < 0. In
contrast, any future directed particle near the left-hand sin-
gularity (for all r <7_) must have df /dr > 0. Because the
Reissner-Nordstrom manifold is time-orientable, the ¢-turn-
ing point on path (c) must lie between », and r_, where the
coordinate is spacelike.

Since the space-time is spherically symmetric, the only
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nonzero component of the four-velocity of the fluid are

u' = dt /dr and «” = dr/dr. If a typical fluid element within
the star has charge g and proper mass m, then the equations
of motion for that element are

a* =Du'/Dr =ut u’ = (g/mF* u" + f*/m, (1)

where F*  is the Maxwell electromagnetic field tensor, and
[ # represents all additional forces generated within the fluid
{e.g., a pressure gradient).

Care must be taken in evaluating Eq. (1) at the surface of
the star, as the surface is a surface of discontinuity where the
interior coordinate system joins onto the static external
Reissner-Nordstrom coordinates. Since f # represents
forces generated within the matter, its components must be
evaluated in the interior coordinate system. If we contract
Eq. (1) with the normal vector to the surface of the star, n*,
we obtain

w' un, =q/mF* un, +f'n,/m. 2)
The left-hand side of Eq. (2) is simply K, a component of

the extrinsic curvature tensor, as may be seen by using the
elementary identity

0=unu), =u'u'n,, +un ', 3)
along with the definition of the extrinsic curvature tensor
(specialized to the K, component)

K, =—uun,,. 4)
Since I will assume that there is no delta functional shell of
matter at the surface, K, will be continuous across the sur-
face, and the left-hand side of Eq. (3) may be evaluated in
either coordinate system.

The electromagnetic term in Eq. (3), F* u"n,,, represents
the electric field perpendicular to the surface. Since I assume
there is no delta-functional surface charge layer, the field is
continuous and this term may also be evaluated in either
coordinate system.

As noted previously, the vector /' # must be evaluated in
the interior coordinate system. The radial coordinate, 7, is
specified geometrically, and must agree at the surface, so
r,, = ro, and dr,,/dr = dr,, /dr. Inside the star there is no
exceptionally preferred time coordinate (in the sense that the
exterior Killing time coordinate is preferred), however, the
interior time coordinate may be chosen such that at the sur-
face (dt,dr) = 0 and the interior and exterior coordinates
match, ¢, = ¢,,,. We can now evaluate f “n,, by noting that

A dt 7 dr
# =0= — Z—f! —_—— r, 5
S, 7! T aa’ )
which implies
rfdr)-!
M _ r
7 A (dr) a (6)

where 4 = — 2Mr + Q2.

If we now put the Reissner~Nordstrom values for the
connection and Maxwell tensor into Eq. (3) (as was justified
above), we can reduce it to an ordinary differential equation
for the radius of the surface as a function of proper time:

d*r M 2 A dt r

M Q0 gddi [

ar r r’+mr“d'r m’

{7
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Note that the most obvious force f #, namely the pressure
gradient in a perfect fluid star (f, = — p,,), will always be
positive at the surface of the star. The star’s surface is, for a
perfect fluid, defined to be the radius at which p = 0. Since
any reasonable fluid has p > O (inside the star), n“p , <0 at
the surface. This implies that / “n,, will always be positive.
Since (/4 )(dt /dr)~! will always be positive, f " will always
be positive in Eq. (7). The important point is that any stan-
dard pressure-gradient sort of force contained in f " will nec-
essarily be positive as r—0.

We next note that the charge density evaluated at the
surface of the collapsing star would, in any physically rea-
sonable collapse, have the same sign as the net charge on the
star (@ ). Since the matter is in motion, u"#0, and also quite
likely acting as a conductor to some extent, it seems likely
that the electrostatic repulsion of the excess charge on the
star should drive the excess charge to the surface. Even if the
charge Q were concentrated at the core of the star, surface
particles would not have an opposite charge (¢'; such that
q' Q <0), as the ¢’ charge would be electrostatically attracted
toward the center during collapse, leaving the surface parti-
cles with charge ¢ such that gQ>0.

Of course the validity of these simple arguments hinges
crucially on the assumption of spherical symmetry. It is
spherical symmetry that makes the magnetohydrodynamics
trivial. There can be no magnetic fields or rotational currents
within this assumption. The only electromagnetic field pre-
sent is the simple Q (r)/r* Coulomb field. On this basis, we
will now assume that ¢Q>0.

Let us then suppose that the stellar surface is approach-
ing the left-hand singularity, apparently following path (a).
As r—0, Eq. (7) becomes

2 2 3 r

dr Q' 40 dt [ 9

dr? ' r mr* dr  m
Recall that near the left-hand singularity, dt /d is necessar-
ily positive. Since we assumed ¢@3>>0, the first two terms are
necessarily positive.

If we consider the motion of a charged test particle
(f" = 0), we see that the coordinate acceleration diverges at
least as fast as #—> as —0. This immediately implies that no
charged test particle (with g@>0) can even reach the left-
hand singularity, as it is infinitely repulsive as r—0.

Now, if f " is nonzero, it is obvious that it must, in order
to collapse the star into the left-hand singularity [path (a]], be
negative (attractive) and diverge as r—0 faster than Q /7.
There is no known macroscopic force in nature with this
behavior, so we would conclude that no physically reason-

+
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able collapse will have a Penrose diagram like Fig. 2(a). As1
noted earlier, the most obvious force f ', a pressure gradient,
is repulsive [positive sign in Eq. (8)] rather than attractive.

Collapse to the right-hand singularity [along path (c)] is
possible, because dt /dr is negative near the singularity, and
the second term in Eq. (8) can overcome the other two to
make d ’r/dr* <0 all the way down to 7 = 0.

The result may now be summarized:

Given a collapsing charged spherical body of matter
whose exterior is described by the Reissner—Nordstrom met-
ric. If:

(1) the product of the charge on a surface particle, ¢, and
the total charge, Q, is non-negative (gQ>>0); and

(2) there is no additional (i.e., not electromagnetic or
gravitational) attractive force within the matter which di-
verges at least as fast as 7~ as 7—0; then collapse to the left-
hand Reissner-Nordstrém singularity [Fig. 2(a)] is
impossible.

Thus, if no locally naked singularities are produced
within collapsing charged spherical matter, then the only
Cauchy horizon in the black hole interior is the future inner
event horizon, 4™, which is both classically and quantum
mechanically unstable.
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Erratum: Solutions of the nonlinear 3-wave equations in three spatial
dimensions [J. Math. Phys. 20, 1653 (1979)]
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PACS numbers: 02.30.Jr,99.10. + g

p. 1654: should read

4 4
Y. = Zﬂmxy instead of 2”"“ Ki(pxieXa) = (1 = L )F (X 1pn) + cooee
p. 1661: The first line of the last integral equation

Erratum: A concept of spin 1/2 approximation in the quantum theory of lattice
Bose systems [J. Math. Phys. 21, 2670 (1980)]

Piotr Garbaczewski
Institute of Theoretical Physics, University of Wroclaw, Cybulskiego 36, 50-205 Wroclaw, Poland

PACS numbers: 05.50. + q, 99.10. + g

The Editorial Board apologizes for the inadvertent transposition, through no fault of the author,
of the contents of pp. 2673 and 2674.
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