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A simple relation is found between the isoscalar factor (ISF) of the unitary group and those of the 
permutation group, i.e. the SU(mn)CSU(m) X SU(n)ISF is equal to the S(fl + h)CS(fIlXS(h) 
ISF. Since the values of S (fl + 12) CS (fl) xS (f2)ISF are independent ofm and n, one arrives at an 
important conclusion that the values ofSU(mn)CSU(m)XSU(n) ISF are also independent ofm 
and n. Therefore they can be calculated for all m and n by a single stroke instead of one m and one 
n at a time. An eigenfunction metho for evaluating the SU(mn) C SU(m) X SU(n)ISF is given which 
can be easily translated into a computer program. 

PACS numbers: 02.20.Qs 

1. INTRODUCTION 

With the development of the particle physics and 
hyper-nuclear physics, one has to extend the Wigner super­
multiplet theory ofSU(4)::> SU(2) X SU(2) to the more gener­
al case of SU(mnpSU(m) XSU(n) and face the problem of 
evaluating the SU(mn) ::>SU(m) X SU(n) isoscalar factor 
(ISF) with m and/or n larger than two. Up to now, only some 
results of the SU(6)::> SU(3) X SU(2) ISF can be found in Refs. 
1-3. It is currently believed that there are at least five and 
probably six flavor quarks, therefore, one needs SUI 10) ::> 
SU(5)X SU(2) or SU(12PSU(6)X SU(2) ISF. However, in 
the methodsl-3 traditionally used for calculating the 
SU(mnpSU(m) X SU(n) ISF, the laborinvolved in such cal­
culation increases drastically as m or n increases. From our 
earlier work4 it is known that the SU(n) ::> SU(n - 1) ISF are 
independent ofn. Any SU(n) ::>SU(n - 1) ISFbelongs either 
to the derivable type [i.e. it is equal to SU(n - 1)::> SU(n - 2) 
ISF] or the underivable type (i.e. it must be calculated direct­
ly). Therefore the calculation of any SU(n)::> SU(n - 1) ISF is 
reduced to the calculation of a few underivable ones. In this 
paper, we want to generalize this result. We identify th~ 
SU(mnpSU(m) X SU(n)ISF with S (fl + 12PS(fIlxS(fz) 
ISF [S (fl) etc. stand for the permutation groups], therefore 
the values of the SU(mnpSU(m)xSU(n) ISF are indepen­
dent of m and n. 

In a series of papers, 5-6 we proposed a new approach to 
the group representation theory. Three kinds of complete 
sets of commuting operators, denoted as CSCO-I, II and III, 
were introduced. The basic problems encountered in the 
group representation theory such as the finding of (I) charac­
ters, (II) irreducible bases, the Clebsch-Gordan coefficients 
and (III) irreducible matrix elements, etc., are all simplified 
to the solving of eigenequations of the CSCO-I, II, and III, 
respectively. Therefore, we call it the Eigenfunction Meth­
od. The CSCO-I, denotedasC, ofagroup Gis a set of opera­
tors which commutes with any element of G, and is a com­
plete set of commuting operators in the class space of the 
group G. For finite groups, CSCO-I consists of a few class 
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operators of the group. The CSCO-I for commonly used fin­
ite groups are listed in Ref. 6. For the permutation group S( I) 
the CSCO-I is C(2) (f) for/<5 and/= 7 or (C(2) (f), C(3)(f)), 
fori = 6 and 8.if<1< 14, where C(i)(f) is the i-cycle class 
operator ofS(/). 

Suppose G::> G (s) is a canonical subgroup chain of G and 
C (s) is a set of operators which consist of the CSCO-I of all 
the subgroups contained in the subgroup chain G (s). Then 
the set (C,C (s)) is called the CSCO-II of the group G. It was 
proved that a necessary and sufficient condition for t/lt;:,) to 
belong to the basis in the G::> G (s) classification is that t/lt;:,) is 
the eigenfunction of the CSCO-II of G, i.e. 

( C) ./Jv) _ (v) .1,1 v) (la) 
CIs) 'I'm - m 'I'm' 

It was proved6 that (f - 1) operators 

(C CIs)) = (CI2) (f), C(2)(f - 1), ... , C(2) (2)), (lb) 

constitute the CSCO-II of the permutation group S (I), 
whose simultaneous eigenfunctions give the Yamanouchi 
bases. 

Since the Eigenfunction Method proves to be very suc-
cessful for calculating the Clebsch-Gordan coefficients and 
the outer-product reduction coefficients of the permutation 
group,7 this method is now used to calculate the 
S(f + 12PS(fIlxS(f2) ISF, namely the SU(mnpSU(m) 
XSU(n) ISF. The merit of this method is that it is indepen­
dent of m and n and can be easily implemented on a comput­
er. Expressions ofSU(mnpSU(m)XSU(n) ISF in terms of 
the Clebsch-Gordan coefficients of the permutation group 
and the transformation coefficients from the standard (i.e. 
Yamanouchi) basis to the nonstandard basis of the permuta­
tion group are also given. 

2. S(f)::>S(f - 1)XS(1) ISF 

Suppose the coordinate q of a particle is divided into 
two parts, X and $, and q = (X, $). For example, X may re­
present the orbital coordinates and $ may represent the spin­
isospin coordinates, or X represents the isospin coordinate 
and $ represents the spin coordinate. Thus for a system with 
I particles we hae three realizations of the permutation group 
S (f) i.e. S x(f), S 5(/) and S q(f) which permute the indices of 
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TABLE 1. Notation for the irreducible bases of S '(I), S>(I) and SO(I), I = f,f - 1. 

S'(/) S'(/-I) SI:U) 

/
[(71) I [171 ) 
m, = [dIm; / 

[ttl) I [ttl ) 
mz = [tt'lm; 

Xi'S, 5i'S and qi 's respectively. Let us first introduce nota­
tions. The labeling of the irreducible bases of the three 
groups and their subgroups is listed in Table I, where m l , 

m~, m2, etc. may be understood as the indices specifying the 
given Yamanouchi symbols with the convention in decreas­
ing page order.s Let y[a;'I, y[I";1 and y[v;1 be the Young tab-

m 1 m2 m 1 

leaux after dropping the last box (containing the number/) 
on the Young tableaux Y !:,I, y!::21 and y);1 respectively. Ac­
cording to the branching lawS of the permuation group one 
has 

[u]m l = [0'] [0"] m;, 

[Jl]m 2 = [Jl][Jl'] m~, 

[v]m = [v][v']m'. 

For example, 

1 

[42]) = 11 3 5 6 ) = 1 [42] ). 
9 2 4 [32]5 

(2) 

Due to Racah's factorization lemma9
, the Clebsch­

Gordan coefficients of the permutation group S(/) can be 
written 

(3) 

where the first factor in the right-hand side is the 
S(/PS(/ - I)XS(I) ISF (or shortened asS(/PS (I - 1) 
ISF), the second one is the Clebsch-Gordan coefficient of the 
group S (/ - 1), and f3, f3' are the multiplicity labels. From 
Eq. (3), theS(/pS(1 - 1) ISF can be expressed in terms of 
the Clebsch-Gordan coefficients 

e [vi P.[v'l P' = ~ e [vIP.m e [v'l p'.m' 
au', J.LJ.J: ~ um 1 • f.l m2 a'mi. J-l' mi· (4) 

mimi 

In the case when the multiplicity label f3 ' is redundant, one 
gets a simpler expression for S (/) ~S (f - 1) ISF: 

e [vl,P.[v: 1 = e [vIP.m e [v'l m' 
au. Jl /-l am .. t-l m 2 a'mi. J-l' mi· (5) 

The S (f) ~S (f - 1) ISF satisfy the unitarity condition 

(6a) 

(6b) 

We now proceed to derive the eigenequations to be satisfied 
by the S(/PS(I - 1) ISF. From Eq. (3) one has 

I 
[v] f3) = I [v] f3) = ~ e[vIP.[';'IP' 

m [v']m' a,;.p, au'.pp 

[ I 
[0']) I [Jl] )] [v'l P' 

X [0"] [Jl'] m' ' 

(7) 

[I f;,]]) I f:,]]) [~I P'= I (UJl')f3 ') 

2 J. Math. Phys., Vol. 22, No.1, January 1981 

SI:U-I) sqt!) sou - I) 

/[VI)=/ [V]) 
m [v'lm' 

= ~ e [v'IP'.m I [0'] } I [Jl] } ~, u'mi,p'm, [0"] m' [11.'] m" (8) 
m.m: I r- 2 

According to the definition, Eq. (7) is already the Yamanou­
chi basis [v']m' of the permutation group S(f - 1). The re­
quirement for Eq. (7)to bea Yamanouchi basis [v]m ofS(/) 
is thus equivalent to the requirement that it must satisfy the 
eigenequations 

e (I) I [v] ) - Aivil [v] ) (9) 
121 [v']m' - f [v']m' 

from (lb), where the eigenvalue A il is related to the partition 
[v] = [V I V2 ... ] through6 

A jl = !I + ~ LV/(v/ - 2/). (10) 
2 / 

Using the relation 
f-I 

el21 (f) = el21 (f - 1) + L (if), (11) 
i=1 

Eq. (9) can be rewritten 

f~l(if)1 [v]f3) = (Alvl_Alv'l )1 [v]f3) (12) 
i~1 [v']m' f f-I [v'1m' . 

Thus to getS (fP S (f - 1) ISF one only needs todiagonalize 
the operator l:{;:: (if) in the basis I (u'Jl') f3') of Eq. (8), i.e., 

f-I -L L «(iT'jl')f3'I(if)l(u'Jl')f3') 
u'p'P' i= I 

- (A jl - A i2 I )/Jp'P' D(f'a' Dii,p' ) 

X e [vIP.[,:'IP' = 0 (13) 
au',pp . 

With the help of Eq. (8), the matrix element in the above 
equation can be expressed in terms of the Clebsch-Gordan 
coefficients and the irreducible matrix elements of the per­
mutation group S (f), 

(iT' jl')JJ'I(if)l(u'Jl')f3') 
= ~ e~v:!,i3~,~~ e[;'If3':m', 

L ii'm .. p m2 a m •• J.l m 2 

mimimimi 
(14) 

If for a given eigenvalue A ii, Eq. (13) has (uJlv) independent 
eigensolutions, it means (irreducible representation) irrep [v] 
occurs (UJlv) times in the representation [0'1 X [Jl] of the 
permutation group. We can choose the eigensolutions in 
such a way that theS (/) ~S (f - 1) ISF satisfy the orthogon­
ality condition on indexf3 [see Eq. (6b)]. If the Clebsch­
Gordan coefficients ofbothS (f) andS (f - 1) are known, one 
cangetS(/PS(1 - 1) ISFby means ofEq. (4) or (5). Ifon1y 
the Clebsch-Gordan coefficients of S (I - 1) are known, one 
can getS (fP S (f - 1) ISFby solving the eigenequation (13). 
For large!, it is preferable to use Eq. (13), since compared 
with the eigenequation satisfied by the Clebsch-Gordan co­
efficients of S (f), it is a lower order eigenequation. 
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3. S( f):>S( f1)XS( fa) ISF 

Let S (fl) and S (f2) be the permutation groups for parti­
cles 1,2"'/1 and}; + I,}; + 2 .. ..t; + Iz, respectively, with 
f = fl + f2' Use the following notation to designate the irreps 
of the nine groups SX(fd ... Sq(f) 

(

U' , 

u" ;" 

u J.t 

(15) 

For example, lit"] and [uJ are the irreps of SS(Iz) and S X(f) 
respectively. The irreducible bases classified according to 
the irreps of the group chain S (f):J S (};) X S (Iz) in the X' S 
and q space are denoted by 

I [u] ) I [J.t] ) 
8 fu']m; [u"] m;" ¢; [J.t']mi [J.t"]m; , 

8 = 1,2, ... {u'u" uj, ¢; = 1,2, ... {J.t'J.t" J.t J, 

I [v] ) 
7[v']m'[v"]m" , 

7= 1,2 ... I v'v"vj, (16) 

where 8,¢; and 7 are multiplicity labels, and the multiplicities 
I u'u" ul, {J.t'J.t" J.t J and {v'v" vI are determined by the 
Littlewood rule.8 For example 10 Io'/;,,;L,'-/m;,) belongs to the 
irrep [u] of S X( f) and at the same time it is the Yamanouchi 
basis [u'] m; and [u"] m i' ofthe group S X(fl) and S X(Iz) 
respectively. 

The former two in Eq. (16) can be linearly combined 
into the third one through the following two steps: 

(1). Use the Clebsch-Gordan coefficient of SIn and 
S (f2) to combine them into irreducible basis [v'] m' and 
f v" ]m" of sq(};) and sq(lz) respectively, 

I (u' u")O (p'J.t" )¢;{3 '{3 " ) 

[ I 
[u ] ) I [J.t] )] [v'] P' [ v" ] f3" 

= (1 [u'][u"] ¢; [J.t'](J.t"] m' mil 

~ clv'/fI',:,,', Cl:-/~·,:,,- .. 
~ a'ml~p.m2 umj.flm2 

I 
m;m;m't~] ) I [J.t] ) 

X 8 [u']mi [u"]mi' ¢; [J.t']m; [J.t"]m;· (I7a) 
(2). UseS(fP(};)XS(f2) ISFtocombineEq. (17a)into 

a basis belonging to the irrep [v] of S q(f) 

I 
[v] {3 ) - L C lv'/ P,.,.lv'/ P'lv-/ P-

7[v']m'[v"]m" - o'u-OP' lu/Oo'u-, 1,../1,6,..',..-
,..',..-1,6 p-

[ I [u] ) I [J.t] )] [v']p' [v"l:-. (17b) 
X 8 [u'][u"] ¢; [J.t'HJ.t"] m' m 

The S (fPS(fd XS(f2) ISF C f~lO!;!~;~f;~Q P- satisfy 
the unitarity condition: 

~ CWIP.T(v'IP'lv-IP- ClvIP,"'Iv'IP'[v-IP- -{j {j {j-
~ lu)Oo'u-, 1,..11,6,..',..- lu/Oo'u-,[I"/,pI"'I"- - VV 1'.,. PP' 

13'0'1"'0 
P-U-I"-<,6 

(lSa) 

~ C (v/ (},.,.(v'IP'LY-) P- C (vI p,T(v'/P'(v-/ P- - {j (lSb) 
~ (uIOO',,-, (,../<,6p,'p,- (ulOo'u", (1"/<,6""1"- - KK' 
v-rP 
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Corresponding to E. (9) has 

C(f)/7[V'1~~[]v"lm") =A (V)/'T[V']~;]v"]m")' (19) 

It should be emphasized that there is a significant difference 
between Eq. (9) and (19). C(f) here is the CSCO-I of sq(f) 
rather than the 2-cycle class operator C(2) (f) of sq(f). 

The S (fP S (fl) X S (f2) ISF satisfy the eigenequation 

L ((ii'u")e( ji'ji")~jj'ij" IC (f) I 
0'(7-0P' 

,..',..-,pp. 
(u' u")8 (J.t'J.t ")¢;{3'{3 ")-A. (vi {jKK) 

X C (vI P,.,.(v'/ P'(v-/ P" - 0 (20) lu/Oo'O'-, (1"/1,6,..',.." - , 

where the symbol {jKK is the same as that in Eq. (ISc). The 
S x(f):>S XI};) xS X(Iz) and S S (f) :JS S (fl)XS S (Iz) basis in 
Eq. (17a) can be transformed into the Yamanouchi basis of 
S X(f) and S S (f), respectively, by means of the transforma­
tion coefficients of the permutation group. 10 

For example 

I 
[u] ) ([U] I 8 [u'] [U"])/ CUI) 

8 [u']m'[u"]mi' = ~ m [u], mimi' m' 
(21) 

From Eq.( 17a) and (21), one gets the expression for the ma­
trix element of any permutation P in the q-space between 
states (I7a): 

(iT u")e (ji'ji")~jj'jj" IP I(u' u")8 (p'J.t ")¢{3'{3 ") 

= ~ D (.?/ (P) D (1'1 (P) C ~l!~:'~', C L:"lP.'~~~ .. 
~ mimi m 2m 2 iTml.J.L mz CT m •• 1l m 2 

X([~] I [u],B[a~]~~"]) ([~] I [J.t],f[m~~][m~'~) 
ml mimi m2 2 2 

(
[U] I 8 f?"'Ho;:l) 

X ml [u], ml m l 

X ([J.t] I [J.t],¢; [~'] [J.t"~,), (22) 
m2 m2 m2 

where the sum is over m; mim;'m;m; mim;'mi'm l m lm2 

and m2' 

With the help of Eq. (22), one can calculate the matrix 
elements ofthe CSCO-I of the permutation groups sq(f). 
Therefore from the Clebsch-Gordan coefficients of S (};) 
and S (f2) and the transformation coefficients of Eq. (21) 
which can also be evaluated by the Eigenfunction Method, 
one obtains the matrix elements occurring in Eq, (20). Solv­
ing the eigenequation (20), one gets the S (f):JS (fd xS (Iz) 
ISF. Again, if the eigenvalue A (vi is degenerate [the degener­
acy equals to N = I v' v" v I X (uJ.tv)], through a proper choice 
ofthe Nlinearly independent eigensolutions belonging to the 
same A (v), one can make the S (f):JS (fd xS (Iz) ISF to be 
orthogonal on indices{3 and 7 [see Eq. (ISa)]. 

A computer program has already been set up 7 for cal­
culating the Clebsch-Gordan coefficients of the permuta­
tion group by the Eigenfunction Method. It is straightfor­
ward to transplant this program to the case of eigenequation 
(20) for theS(fPS(fI)xS(f2) ISF. 
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4. SU(mn)::J (m) X SU(n) ISF 

In analogy to Eq. (15), we introduce the following sym-
bols to denote the irreps ofSU(m), SU(n) and SU(mn) 

(
U' fi' V') (SU(m), SU(n), SU(mn)) 
u" fi" v" SU(m), SU(n), SU(mn) (23a) 

u fi V SU(m), SU(n), SU(mn) 
Let 

I [v'] ) 
P'[u'] W; [fi'] W~ , 

I [v] ) 
P [u] WI [fi] Wz ' 

I [v"] ) 
P " [u"] W;' [fi"] Wi" 

(23b) 

be the SU(mn) :JSU(m) X SU(n) irreducible bases in the q­
space for particles (I,2 ... ,n, (fl + I, .. ,J) and (I,2 ... ,J) re­
spectively, and W; (W ~) etc. are the component indices of 
the irreps ofSU(m )(SU(n)). The SU(mn):J SU(m) X SU(n) ISF 
are defined as the coefficients in the following expansion: 

1 [v]'T ) 1- ~ c lvlr.13l a l&ll"l4> 
a [u] W [11.] W - ~ Iv'l13 'a'I"',lv" 113 "a"l" " 
P I r- 2 {3'a'I"'& 

13 "a"I""4> 

[ 
1 

[ V'] ) 1 [ v" ] )] [U] & [fi ]4> 
X P'[U'][fi'] P"[U"][fi"] WI W2' 

(24) 

where T = I,2, ... r v'v"v} is the multiplicity label, and the 
square bracket indicates that the bases are to be combined 
into the irreducible basis Cud WI and [u2] W2 ofSU(m) and 
SU(n) in terms of the Clebsch-Gordan coefficients ofSU(m) 
and SU(n), respectively, i.e. 

[
I 

[v'] )1 [v"] )][U]&[fi]4> 
P'[U'][fi'] P"[U"][fi"] WI W2 

= L 

\ 

w;w;w;i:i'] \\ [v"] \ 

X P'[u']W; [fi']W;l P"[u"] W;'[fi"] w;1 ' 

(25) 

The inverse expansion ofEq. (24) is 

r I [ v'] ) 1 [ v" ] )] [u] & [fi ] 4> 

l P' [ u' ][fi' ] P " [ u" ][fi" ] W\ W2 

~ C Ivlr'13lal& 11"14> I [v] ) (26) 
= ~ Iv'l 13'a'I"',[v" I 13"1"" P[U]W\[fi]W

2 
• 

Attaching the Young tableaux y;::I(w?) and y;:::I(w~) 
with (aJ?) = (I,2, .. fdand(w~) + (fl + 1, .. ,J)tothetwoirre­
ducible bases in the right-hand side of Eq. (24), it reads 

1 

[v] ) 
r[ v']m'[ v"]m" ,p [u] WI [fi] W2 

= ~ C [vir' 13lal& [1"14> 
~ [v'l {3'a'I"',[v"ll3"u"I"" 

13'0-'1"'& 
13 "a"J1-"4> 

[\ 
[v'] ) 

X m'w?,P'[u'][fi'] 

\ 

[v"] )] [u]&[fi]4> (27a) 
X m" w~, P " [u" ](fi" ] WI W2 ' 
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The left-hand side of Eq. (27a) is still the SU(mnp 
SU(m)X SU(n) basis. It belongs to the irrep [v] ofSU(mn), 
therefore it must also belong to the irrep [v} of the permuta­
tion group S q(f) 11 • In other words it is also as q(fP S q(fI! 
XS q(f2) basis. 

The Clebsch-Gordan coefficients of the permutation 
group are known II as the coupling coefficients which couple 
the irreducible basis ofSU(m) and SU(n) into those of 
SU(mn). For example 

I 
[v'] \ 

m',,8'[u'] W; [fi'] w;1 

= ~ C lv'I{3',m' I [u'] \ I [fi'] \ (28) 
~ a'm~,J.l'm2 m' W' I m' W' ,-
m;m~ 1 I 2 2 

On the other hand the Clebsch-Gordan coefficients of the 
unitary group are the coupling coefficients which couple the 
irreducible basis of S (fl) and S (f2) into those of S (f). For 
example 

I 
[u] ) 

o [u']m; [u"]m;,W. 

-" [al&,W, I [u'] )11 ruff] \ 
- ~ Clo-'IW;,la"IWi' m' W' m" w"I' w;w;' I I I I 

(29) 

With the help of Eqs. (25) (28) and (29), the last factor in Eq. 
(27a) can be put into the form 

[ I 
[ v' ] \ I [ v" ] \] [u] e [jl ] 4> 

m'aJ?, P'[u'][jl'] 1 m"w~, P" [u"][fi"]1 WI W2 

\ 
[u] )\ [fi] ) 

o [u']m; [u"]mi',WI rP [fi']m; [jl"]m;,W2 ' 

(27b) 

Comparing Eq. (27) with Eq. (17) one gets an important 
relation 

d vlr,13l a l&ll"l4> - c[vlp,r[v'I{3'[1'''113" (30) 
[v'l{3'a'I"',[1'"lp"a"I"" - [ul&o-'a",[I"I4>I"'I"'" 

Or, expressed in the form of an overlap integral, 

(
[v] \ 

' t" II 'TV m v m ,puW tfi W2 

[( 
[u] ) ( [jl] )1[v]{3' [V"]/3") 

Ou' u" WI X \.qJjl'jl" , W2 m'm" 

(
[v] \ 

- Tv'm'v"m",/3uWJ/LW2 

[ (
[v' ] ) ( [ v" ] ) 1 [ u] & [fi ] 'I' ) (31 ) 

m'ft'u'jl' X m",/3"u"jl" W\W2 

namely the SU(mnpSU(m)X SU(n) ISF [or thef2 particle 
CFP (coefficients of fractional parentage)) are equal to the 
SU; +i2PS(ft\XS(f2) ISF. 

Furthermore, since the value of S(fl + f2)::JS(fd 
X S (f2) ISF is independent of m and n, one arrives at the , 
conclusion that the value of SU(mnpSU(m)X SU(n) ISF IS 

independent of m and n. The reason we failed to realize this 
obvious fact for so 'long is because we usually use concrete 
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TABLE II. SU(mn):lSU(m)XSU(n) ISF Ci~:::I;XI~'1,3NIIIIIII' 

[V]2T+ I 2S + 'r 
[v]( ,{1l)S 

[21 3
] [32] [32] 

[21 3]22r 

[21'] \12) 1/2 

[u'](Il'] [22](31] 
2T' + I, 2S' + 'r 13r 

(02)1 

quantum number for a given m and n rather than the parti­
tions to represent the irreps ofSU(m) and SU(n). For exam­
ple, in the case ofSU(3), we use (A.p) (corresponding to the 
partition [A. + f-l, f-l]) or the dimension of the irrep; for SU(2) 
we use the quantum number S or T. As a test of the above 
conclusion, in Table II we list the SU(6):JSU(3)X SU(2) ISF 
for [v] = [21 3

], (A. p) = (12),S = 1/2 calculated by Zhanget 
al.2 and the SU(4):J SU(2) X SU(2) ISF for [v] = [21 3], 

S = T = 1/2 given by Jahn. 12 They are exatly the same. (See 
Table II). 

Therefore, every SU(mn):::>SU(m)xSU(n) ISF with a 
particular m and n gives an infinite number of SU(m'n'):J 
SU(m') X SU(n') ISF with m' = m, m + 1, ... and n' = n, 
n + I, ... 

Another point worth mentioning is that not every 
SU(mn):::>SU(m)xSU(n) ISF can be deduced from the 
SU((m - l)n):JSU(m - I)XSU(n) ISF or the 
SU(m(n - 1):::>SU(m)xSU(n - 1) ISF. The reason is that 
the Young diagrams [0"], [0'"] and [0'] ofSU(m - 1) can 
have at most m - 1 rows, therefore the SU(mn):JSU(m) 
X SU(n) ISF with the Young diagrams [0"], [0'"] and [0'] 

of m rows can not be deduced from the SU((m - l)n):J­
SU(m - l)xSU(n) ISF. 

5. SU(mn):J SU(m) X SU(n) ISF AND CLEBSCH-GORDAN 
COEFFICIENTS OF PERMUTATION GROUP 

Putting [v"] = [0'''] = [f-l"] = [1] in Eq. (30), using 
Eq. (4), and omitting redundant indices T,(),t/J,/3 ", one gets a 
relation between the single particle CFP in the group chain 
SU(mn):::>SU(m)XSU(n) and the Clebsch-Gordan coeffi­
cients of S (f) and S (f - 1): 
C[v]P[O'li,,] _ C[v]P,[v']P' 

[v'IP'[O"j[,,'],[Ij[Ij[11 - 0'0'./1/1' 

_ '"' c[v]pm c[v']p'm' 
- L om ll J.lm 2 ami.J1'm ;· (32) 

mjm; 

In the case when/3' is redundant, Eq. (32) reduces to Eq. (5). 

Now we turn to derive a similar expression for f2-
particle CFP. The SU(mn):::>SU(m)XSU(n) basis and the 
Yamanouchi basis of S (fl,l m. P [O'/:J, [/1] w, ), can be expanded 
in the following two ways: 

(1). Transform the Yamanouchi basis of S (f) into the 
S (f):JS (ft) xS (f2) basis 
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[31] [22] 
3Ir 

(21)0 

[31] [31] 
"r 

(21)1 

I [v] ) = L ([V] I [ ] r[v'][v
ll

]) 

m,/3 [0'] WI[f-l] W2 v"m"r m v, m' mil 

I 
[v] ) 

X T[ v']m'[ v" ]m", /3 [0'] WI [f-l] W2 

(33) 
Using Eqs. (27), and (29) this becomes 

I 
[v] ) ([V]I[ T[V'][V

Il

]) 

m,/3[u]WI [f-l]W2 = L m v], m' m" 

X c [v]r,P[O']B[,,]<p C[O']e,w, C[/1I<p,W, 
[v'] P'o'/1', [v"] P "0'",," o'W;. 0''' w;' "'W;,,," w~ 

The sum is over 
v"m"T /3a'f-l'/3IU If-l"()t/JW; W; W;'W;m; m;m;' and m;. 

(2). In analogy with Eq. (28) one has 

W;W;' I [0"] ) I [0'"] ) xC [O']B,W, 

O"W;.O'''W;' m;(i)~,W; m;(i)~,W; (36) 

and a similar equation for I!::]w.), Eq. (35) becomes 

I [v] )-,",c[v]P.m 

m,/3[u]Wdf-l]W
2 
-~ O'm,."m, 

X ([ 0'] I [0'], () [0':] [~" ]) ([f-l] I [f-l], t/J [f-l:] [~" ] ) 
m 1 m1 m l m2 m2 m2 

Jin-Quan Chen 5 



                                                                                                                                    

Comparing Eqs. (34) and (37) one gets 

L L ([V] I [v], 'T[v:] [v,~]) 
v"m"T{3'{3" m m m 

xC [V)T.{3[U)O[tt)<P C[v'){3'.m' C[v"){3",m" 
[v') (3'o'tt'. [v") {3"u"tt" o'mi.tt'm, u"mi'.tt"m, 

x ([ u] I [u], () [u:] [~" ]) ([fL] I [fL], r/J [fL:] [~" ]) , 
m l m l ml m2 m2 m 2 

(38) 

where the sum over m I and m 2 is carried out with fixed m; 
and mi. Utilizing the unitarity property property of the 
Clebsch-Gordan coefficients and of the transformation co­
efficients (!:) I [ v], ~,v~lv" )), we finally get an expression for 
the SU(mn):)SU(m) X SU(n) ISF 

C[v")f3".m" ([V]I [ ] 'T[V'][V"]) 
X u"m" ,,"m" v"" 

I'~ , m m m 

X ([u] I [u], () [u'] [U"]) ([fL] I' [ ], r/J [fL'][fL"]). 
m m ' m" fL m' m" I I I m2 2 2 

(39) 
In the case when any of the multiplicity labels 'T,f3' andf3" is 
redundant, Eq. (39) can be simplified. For example, if'T is 
redundant, one gets 
C [v). (3 [a)O [tt)<p 

[v') (3'o'tt',[v") (3"a"tt" 

C [v') {3', m' C [v"){3",m" 
u'm~. p.'m~ a"m J', p"m2 

For the totally antisymmetric irreps [v'] = [1 fl], 
[v"] = [1 f,], [v] = [1 f], Eq. (40) reduces to 

(
[U] I () [U'][U"]) L L [u]" " 

mimi'ml m l ml ml 

(
[U] I r/J [u'] [U"]) (ha'ha" )112 

X m
l 

[u], m; mi' =OuttOif'tt'~u"tt"Oo<p---,;:-

(41) 

where hu" ha" and hu are the dimensions ofirreps [0'], lUff] 
and [u] of the permutation groups S(fl)' S(f2) and S(f), 
respectively. 
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We know that the total CFP in the shell model can be 
factorized as 

(If. [v']a l f3ILISITI' If,[ v" ]a2f32L2S2T21 }If[ v]a f3LST) 

(42) 

The factor (hv,hv" Ihv)1/2 is called the weight factor. Now we 
know it is a SU(4(21 + 1)):::>SU(21 + 1) X SU(4) ISF for the 
totally antisymmetric states, and the total CFP ofEq. (42) is 
nothing else but the SU(4(21 + 1)):) (SU(21 + I):)SO(3)) 
X (SU(4):) SU(2) X SU(2)) ISF. 

By using the symmetries of the transformation coeffi­
cients13 and those of the Clebsch-Gordan coefficients8 of the 
permutation group, from Eq. (39) we get another symmetry 
ofSU(mn):)SU(m)xSU(n) ISF 

C
[vl.{3[a)O[tt)<p _ C[vl.{3[u)o[Jl)<P 
[v') (3'o'tt'[v") (3"a"tt" - € [v') (3'U'Jl'[V") {3"u"Jl" ' 

where € = ± 1 is a phase factor depending on phase conven­
tions and the tildes represent the conjugate irreps (inter­
change rows and columns in Young diagrams). 

The relations between the SU(m + n):)SU(m)XSU(n) 
ISF and the outer-product reduction coefficients are very 
similar to those between the SU(mn):)SU(m)XSU(n) ISF 
and the Clebsch-Gordan coefficients of the permutation 
group, which will be the subject of our next paper. 
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The question of the possible general existence of real Clebsch-Gordan coefficients (coupling 
coefficients) for compact groups is considered. Criteria are established for a group ~o be . 
susceptible to the classical rotation group approach in which a choice of standard Irreducible 
matrix representations is made such that there is a fixed inner automorphism of the group 
carrying all standard representations into their complex conjugate. In connection with a 
generalization of this approach the concept of quasi-ambivalence of a group is shown to be 
relevant. 

PACS numbers: 02.20. + b 

I. INTRODUCTION 

In his review I of coupling and recoupling theory for 
compact groups, Butler raised the question of the possible 
general existence of real Clebsch-Gordan (C-G) coefficients 
(coupling coefficients). After noting the lack of an answer to 
this problem he stated in a footnote2 that the tetrahedral 
group requires nonreal coefficients. It will be shown below, 
however, that this is not the case (Sec. VI). In fact, there do 
not seem to be examples in the literature contradicting a 
"reality conjecture." In the present paper we consider the 
general problem and establish sufficient conditions for a 
compact group to allow a choice of real C-G coefficients. 

As is well known, C-G coefficients for a compact group 
G are elements of unitary matrices intertwining tensor pro­
ducts of unitary irreducible matrix representations of G with 
matrix direct sums of unitary irreducible representations of 
G. More specifically, if r I and r 2 are unitary irreducible 
matrix representations R~ri (R ), REG, of G, any unitary 
matrix C with the property that the representation 
R--C-I(rl(R) ® r 2(R)) CofGisamatrixdirectsumofuni­
tary irreducible representations of G will be called a matrix 
of C-G coefficients for r I ® r 2' Here ® denotes tensor (or 
Kronecker or direct) product of matrices. 

By a system of standard representations for a compact 
group G we shall mean a system of continuous unitary irre­
ducible matrix representations of G containing one irreduci­
ble representation from each equivalence class and with the 
property that if a matrix representation r of G is among the 
standard representations and r is not equivalent to its com­
plex conjugate representation f, then f is also among the 
standard representations. In connection with systems of 
standard representations we shall understand matrices of C­
G coefficients to transform tensor products of standard re­
presentations into direct sums of standard representations. 

Now, the precise problem which we wish to consider is 
the following one: 

(A) Given a compact group G, is it possible to find a 
system of standard representations of G such that for any two 
standard representations r I and r 2 there exists a real matrix 
ofC-G coefficients for r l ® r 2? 

We shall start by formulating the problem a little differ­
ently in order to make it easier to attack. To this end, we 

introduce a concept closely related to C-G coefficients, 
namely that of triple coefficients. Given an ordered triple 
r I r 2r 3 of matrix representations of a group G, we define a 
set of triple coefficients for r I r 2r 3 to be a column vector c 
satisfying 

[fl(R ) ® fiR) ® f 3(R)] c = c for all REG. (1.1) 

In (1.1) c is ajointfix-vector (i.e., eigenvector with eigenvalue 
l)forthematricesf l (R) ® fiR) ® fiR ),REG. Thus the set 
of all c satisfying (1.1) forms a linear space which we shall 
denote Y(rl r 2r 3). The dimension dimY(rl r 2 r 3 ) of this 
space is equal to the number oftime~the ~ivi~ one-dimen­
sional representation of G occurs in r I ® r 2 ® r 3" Denoting 
the elements of c by (~:~,~,), where the Yi are component 
designations for the ri , Eq. (1.1) may be written 

(1.2) 

Equation (1.2) will be recognized to be an identity satisfied 
by the general 3-j symbols defined by Wigner3 [and in par­
ticular, the famous 3-j symbols for the special case of 
G = SU(2), the rotation group, when the r i are chosen as 
the conventional irreducible matrix representations of 
SU(2)]. The concept of triple coefficients is a slight general­
ization of that of 3-j symbols; it was introduced in Ref. 4 in 
connection with a discussion of the Wigner-Eckart theorem 
[cf. Eq. (1.3) below). 

The problem posed in (A) above now turns out to be 
equivalent to that of the existence of real triple coefficients, 
the latter being precisely formulated as follows: 

(B) Given a compact group G, is it possible to find a 
system of standard representations ofG such thatfor any 
ordered triple r I r 2r 3 of three standard representations there 
is a basis (cl,· .. ,CN )for Y(r l r 2r 3 ) consisting of real column 
vectors? 

It requires a series of arguments of a rather detailed and 
nonfundamental nature to demonstrate the equivalence of 
the reality problems (A) and (B). We therefore defer this dis­
cussion to Appendix A. Before attacking problem (B) in Sec. 
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II, then, we want to observe the following reasons for being 
interested in an answer to it: 

(i) The well-known Wigner-Eckart theorem in our nota­
tion4 reads 

(1.3) 

One usually thinks of this formula for matrix elements of a 
tensor operator d~; between symmetry-adapted basis vec­
tors as giving a factorization into quantities (the triple coeffi­
cients) expressing the "symmetry" or "geometry" of the op­
erator and quantities carrying the "physical" content of it 
(the numbers (q:; r, II dr'llq:;r,) (3 , the so-called reduced ma­
trix elements). It would be nice to know to what extent any 
"nonreality" of the operator d~: can be attributed to the 
reduced matrix element (by choosing real triple coefficients) 
and thus be regarded as an aspect of its physical nature. 

(ii) For practical calculations, real numbers are usually 
preferable to nonreal complex numbers. 

(iii) A theorem proved in Feit's bookS (but apparently 
otherwise not much recognized in the literature) asserts that 
C-G coefficients of a finite group-nonunique as they are­
in a certain sense characterize the group up to isomorphism. 
Thus, these coefficients might also be of a more fundamental 
mathematical interest. 

II. THE REPRESENTATION TRIPLE PROJECTION 
MATRIX 

Let G be a compact group (G may, in particular, be 
finite) and let dR be normalized Haar measure on G [if Gis 
finite of order I G I, this means that S G fIR ) dR 
= IG I-I "J..REGf(R ) foranyfunctionfon G]. Ifr l ,r2X3 are 

continuous unitary (irreducible) matrix representations of G, 
the matrix 

r l23 = i [r\(R) ® f 2(R) ® f 3(R)] dR 

has the following properties: 
(i) r 12/ = r 123 , 

(ii) r 123 = r 123 t (the adjoint matrix) 
(iii) a column vector e is a fix-vector for r 123 if and only 

if e satisfies (1.1). 

Sketch of proof: Property (i) is immediate from the transla­
tional invariance of integration over G. Property (ii) follows 
from the unitarity of the r i and the unimodularity of G, i.e., 
thefact6 thatS G fIR -I) dR = S G fIR ) dRforanycontinuous 
functionf on G. As for (iii), "if' is trivial; "only if' follows 
from the observation that e = r me implies that for all REG, 

[f/R) ® f 2(R) ® f 3(R)] c 
= [fl(R) ® fz(R) ® f 3(R)] r]23 c 
= r l23C = e, 

again because of the translational invariance of integration. 
Thus r ]23 is the matrix for the orthogonal projection 

onto .7(r]r2r), a fact which has also been noted by 
Wigner.7 (This projection property is well known in general 
representation theory.8) This means that Y(r]r2r 3) is 
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spanned by the columns of r ]23' In particular, a basis for 
5' (r] r 2r 3) may be selected from the columns of r 123' 

Therefore, ifr ]23 is a real matrix for all triples r]r 2r 3 of 
standard representations, we can answer question (B) from 
Sec. I. in the affirmative. 

One way in which r ]23 may become real for all standard 
triples is through the existence of a continuous mapping r of 
G into itself and a choice of standard representations such 
that the following conditions are satisfied: 

(a) Haar measure on G is invariant with respect to r, 
that is, 

if(r(R») dR = Lf(R) dR 

for any continuous functionfon G. 
(b) For any standard representation r we have 

r(r(R») = f(R) for all REG. 

Indeed, in this situation we have 

r123 = L [f](R) ® f 2(R) ® fiR)] dR 

= i[r](r(R»)®r2(r(R»)®r3(r(R»)] dR 

= L[r](R)® rz(R)® r 3(R)] dR = f 123 • 

We now point out some consequences of having a situa­
tion with (a) and (b) fulfilled. 

Note first that (b) implies that for any standard r we 
have 

r(r(R)) = r(r(r(R))) = f(r(R)) = 'f(R) = r(R) for all 
REG. This shows, by the Gel'fand-Ra'ikov theorem,9 that 
r(R ) = R for all R, that is, r is an involution and thus, in 
particular, a bijection of G. This is immediate if G, as is often 
the case in practice, has a faithful irreducible representation. 
phism of G since any standard representation composed with 
r gives a representation (the complex conjugate 
representation). 

Thus, the mapping r is necessarily an involutory auto­
morphism of G. In Sec. IV we investigate to what extent the 
above situation may be realized with r being an inner auto­
morphism of G, i.e., a mapping of the form R-+R(-,RR 0-

1
, 

REG, where Ro is a fixed element of G. For inner automor­
phism (a) is automatically satisfied because of the transla­
tional invariance of integration over G. [Actually, (a) is satis­
fied for any continuous involutory automorphism. 10] Since 
the investigation of (b) in the case of inner automorphisms 
falls into two parts, according to the Frobenius-Schur clas­
sification of irreducible representations, we discuss this clas­
sification briefly in Sec. III. 

III. THE FROBENIUS-SCHUR CLASSIFICATION 

We start by introducing the following auxiliary 
concept: 

If R-+r(R ), REG, is a unitary matrix representation of 
a group G, a conjugating matrix for r is a unitary matrix U 
intertwining rand r (the complex conjugate 
representation): 

Ture Damhus 8 



                                                                                                                                    

Vr(R ) V-I = f(R) for all REG. (111.1) 

Ifr and f are equivalent [meaning that there is a nonsingu­
lar V satisfying (111.1 )], it can easily be shown that r has a 
conjugating matrix (see Ref. 4, Sec. 5.2 or refer to the well­
known fact that equivalent unitary irreducible matrix repre­
sentations are unitarily equivalent II). 

Vsing the unitarity of the matrices r(R), REG, we see 
that (111.1) is equivalent to 

rCR)T Vr(R) = V for all REG, (111.2) 

where denotes transposition of a matrix. Now suppose that 
r is irreducible. From the form of the left-hand side of(III.2) 
the linear space of all (for the moment not necessarily uni­
tary) matrices V satisfying (111.2) is stable under transposi­
tion of matrices and is therefore the direct sum of two sub­
spaces consisting of symmetric matrices and antisymmetric 
matrices, respectively. On the other hand, by Schur's lemma, 
this space is of dimension at most 1, since rand f are irredu­
cible. Thus, given r, either all matrices V satisfying (111.2) 
are symmetric or all such matrices are antisymmetric. This 
observation forms the basis for the Frobenius-Schur 
classification: 

Definition: A unitary irreducible matrix representation 
is ofthefirst kind if it has asymmetric conjugating matrix. A 
unitary irreducible matrix representation is of the second 
kind if it has an antisymmetric conjugating matrix. A unitary 
irreducible matrix representation is of the third kind if it is 
not equivalent to its complex conjugate representation. 

Suppose r is a unitary matrix representation and V a 
conjugating matrix for r. Let A be any unitary matrix. Then 
it is immediately verified that AVA -I is a conjugating ma­
trix for the representation R---+Ar(R ) A -I, REG. Since the 
transformation 

V---+AVA -I = (A -I)T VA -I (111.3) 

evidently preserves symmetry/anitsymmetry of V, we see 
that equivalent matrix representations are of the same kind. 

Note: This classification was introduced first by Fro­
ben ius and Schur in a slightly different wayl2 (cf. the remark 
following Theorem 1 below). Various alternative descrip­
tions of the classification exist, including a simple character 
test for classifying an irreducible representation, but as we 
shall not need these we refer the reader to some relevant 
literature 13-17 and to the more detailed treatment in Ref. 18. 

The entries of conjugating matrices are what Wigner3 

and several subsequent authors have named I-j symbols and 
for which Butler l has suggested the name 2-jm symbols. 

IV. COMPLEX CONJUGATION OF MATRIX 
REPRESENTATIONS BY INNER AUTOMORPHISMS 

We now turn to the subject of complex conjugation of 
matrix representations by inner automorphisms announced 
in Sec. II. Suppose a choice of standard representations can 
be made for a compact group G such that there is an inner 
automorphism R---+RoRR 0- 1, REG, taking each of these re­
presentations into its complex conjugate. Since we then have 

f(R) = r(RoRR 0 I) = r(Ro)r(R) r(Rotl for all REG 
(IV. 1) 
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for any standard representation r, we see that all standard 
representations of G must be equivalent to their complex 
conjugate and thus be of the first or the second kind (i.e., G 
must be ambivalent ). Some further necessary conditions for 
the desired situation to be attainable may be noted 
immediately. 

Firstly, by inserting R = Ro in (IV. 1), we see that for 
every r the matrix r(Ro) is necessarily real. 

Secondly, the statement (IV. 1) is equivalent to saying 
that r(Ro) is a conjugating matrix for r for every r. Thus, if 
r is of the first kind, r(Ro) is necessarily symmetric; if r is of 
the second kind, r(Ro) is necessarily antisymmetric. 

Combining these observations on r(Ro)' we see that ifr 
is of the first kind we have 

r(R 6) = r(Ro)T r(Ro) = r(Ro) T r(Ro) 

= f(Ro)T r(Ro) = 1 , 

where 1 is the unit matrix. 
If r is of the second kind we have 

r(R 6) = r(Ro) r(Ro) = - r(Ro)T r(Ro) 

= - f(Ro)T r(Ro) = - 1 . 

(IV.2) 

(IV.3) 

From (IV.2) and (IV.3), we have n(R 6f) = 1 for all 
standard r. This implies (by the Gel'fand-Ral'kov theorem9) 
that (R 6)2 = 1 (the identity element in G). Thus R 6 is an 
involution in G. In Sec. II we noted that R---+RoRR 0- I is an 
involutory mapping of G into itself; this means that 
R 6RR 0 2 = R for all REG or that R 6 commutes with all 
REG. Thus, R ~ is a central involution in G. 

Summarizing, the inner automorphism approach re­
quires G to be ambivalent and to have a central involution 
which is a square and which is mapped to 1 by all irreducible 
representations of the first kind and to - 1 by all irreducible 
representations of the second kind. 

When the approach is actually realized the standard 
irreducible matrix representations of G necessarily have real 
conjugating matrices. 

(We note that for a finite ambivalent group the explicit 
assumption of the existence of a square root of the central 
involution is unnecessary since the remaining assumptions 
and the Frobenius-Schur square-root coune 2,19,20 there are 
~ dimr such elements, where the sum is over all standard 
irreducible representations.) 

The necessary conditions thus established turn out as 
well to be sufficient for the inner automorphism method to 
be applicable. This follows from Theorems 1 and 2, which we 
state below. These theorems have been proved in Ref. 18. 
Note the large degree offreedom which one has in prescrib­
ing the actual form of the conjugating matrices of the stan­
dard representations. This is of importance in establishing a 
convenient Wigner-Racah algebra for the group. Examples 
of groups satisfying the above necessary and sufficient condi­
tions are SV (2), the icosahedral double group 1*, the octahe­
dral double group 0 *, and the dihedral double groups D T, 
D t, and D t. The conventional treatment of the rotation 
group, SV(2), uses standard irreducible matrix representa­
tions fiJ lil all having fiJ Ul(e J) as a conjugating matrix,21 
The inner automorphism approach has been used in the con-
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struction of a Wigner-Racah algebra involving real C-G 
coefficient for 0 • in Ref. 22 and for I· in Ref. 4. See the 
general discussion in Sec. 5.4 of Ref. 4. 

Not all ambivalent groups satisfy the above conditions; 
see Sec. V and Appendix B. 

Theorem I: Let G be a group and r an equivalence class 
of unitary irreducible matrix representations of G of the first 
kind. Suppose RoEG is an element with r(R 6) = I for any 
matrix representation r in r. Let P be any symmetric real 
orthogonal matrix with TrP = X r (Ro) [TrP is the trace ofP; 
X r(Ro) is the character of rat Ro]. Then there exists a ma­
trix representation r in r with the following properties: 

(i) r(Ro) = P , 

(ii) Pr(R) p-I = f(R) for all REG. 

Remark: Taking Ro = I and P = I, we see that there is 
in particular a real matrix form r of r. This was actually the 
criterion for a representation to be of the first kind in the 
paper by Frobenius and Schur. 12 The choice of real matrix 
representations is of course a rather natural one for irreduci­
bles of the first kind and such a choice ensures the existence 
of real C-G coefficients (if no irreducibles of the second kind 
are involved). However, in certain cases, e.g., when adapta­
tion of the standard representations of a group to specific 
group-subgroup hierarchies is desired, it may be necessary to 
have P # I (for several examples of this see Ref. 4). 

Theorem 2: Let G be a group and r an equivalence class 
of unitary irreducible matrix representations of G of the sec­
ond kind. Suppose RoEG is an element with r(R 6) = - I 
for any matrix representation r in r. Let P be any antisym­
metrix real orthogonal matrix. Then there exists a matrix 
representation r in r with the following properties: 

(i) r(Ro) = P , 

(ii) Pr(R) p-I = f(R ) for all REG. 

Remark: It may be seen from the treatment in Ref. 18 
that the assumptions of Theorem 2 imply that P and r(Ro) 
both have trace zero. This is why the assumptions in Theo­
rem 2 do not include, as do those of Theorem I, a condition 
on the trace of P. 

If one has established a matrix form of an irreducible 
representation which is brought into its complex conjugate 
by a certain inner automorphism it may be useful to know to 
what extent this matrix form may be changed by similarity 
transformations without destroying the inner automorphism 
property. This is answered by the following proposition. 

Proposition: Suppose r is an irreducible matrix repre­
sentation of a group G and RoEG is an element such that 

r(RoRR 0- I) = f(R) for all REG. 

Then, if r is unitarily equivalent to r, r is brought into its 
complex conjugate by the inner automorphism 
R_RoRR 0- I if and only ifthere is a real orthogonal matrix 
A such that 

Ar(R) A-I = r(R) for all REG. 
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Proof "If' is easily checked. To see "only if," let B be a 
unitary matrix such thatr(R) = Br(R) B- 1 for REG. Now 
r(Ro) is a conjugating matrix for rand r(Ro) is a conjugat­
ing matrix for r. Remembering the transformation rule 
(111.3) for conjugating matrices and noting that all conjugat­
ing matrices for r are proportional (because r is irreduci­
ble), we see that there is a complex number A with IA I = I 
such that Br(Ro) B- 1 = r (Ro) = ABr(Ro) B- 1

, i.e., such 
that B = AB. Choosing p such that i? = A and putting 
A = pB gives the desired conclusion. Q.E.D. 

Fano and Racah in their argumentation23 for the reality 
of SU(2) coupling coefficients use the "only if' part of this 
proposition for reducible representations without any com­
ment. The line of argument in the present paper circumvents 
this inconvenient point. 

V. FURTHER REMARKS ON THE APPLICABILITY 
OF THE INNER AUTOMORPHISM APPROACH 

There is an immediate consequence for the "representa­
tion algebra" of an ambivalent compact group G-that is, 
the way the tensor products of irreducible representations of 
G decompose into irreducibles-ofthe group being suscept­
ible to the inner automorphism approach. Suppose that 
RoEG with r(R 6) = I for all irreducible representations r of 
G of the first kind and r(R 6) = - I for all irreducible repre­
sentations of the second kind. Then, given a triple 
r 1 r zr 3 of irreducible representations and a fix-vector c [that 
is, a solution to (1.1)], we have 

c = [fl(R 6) ® f 2(R 6) ®f3(R 6)] c 

= [(±ltl®(±lz)®(±13)] c= ±c, (V.l) 

where Ii is the unit matrix of the same dimension as r i ; 

i = 1,2,3. Equation (V.l) shows that if nonzero fix-vectors 
exist, i.e., ifdimy(rl r 2r 3) > 0, an even number of the r i are 
of the second kind (either two of them or none of them). 
Now, it is easily seen, for example by the use of characters, 
that dimY(r I r 2r 3), the number of occurrences of the trivial 
one-dimensional representation of Gin f I ® f 2 ® f 3' is equal 
to the number of times anyone of the r i occurs in the tensor 
product of the remaining two (since G is ambivalent, the 
complex conjugations may be dropped here). Thus, the prop­
erty of triple tensor products deduced above from (V. I ) may 
be translated into the following property of the representa­
tion algebra: the product of two irreducible representations of 
the same Frobenius-Schur kind always decomposes into a 
direct sum of irreducible representations of the first kind. For 
the purpose of the present discussion we shall express this 
property by saying that· "the representation algebra of G is 
regular with respect to the Frobenius-Schur classification." 
[ButlerZ4 uses the term "quasi-ambivalent" for this property; 
this is unfortunate for the following two reasons: (I) this term 
has already been used in the literature for a different proper­
ty (see Sec. VI); (2) an ambivalent group does not necessarily 
have the property, as we point out below.] 

WignerZO noted that multiplicity-free ambivalent 
groups [ambivalent groups with dimY(r\rZr 3)< I for all 
triples, so-called simply reducible groups] have a regular re-
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presentation algebra. (His proof was actually slightly incom­
plete; a full proof was given by Mackey. 17) The property of 
being multiplicity free is not necessary for the representation 
algebra to be regular; this is demonstrated by the examples of 
the octahedral and icosahedral double groups referred to in 
Sec. IV. The question arises whether all ambivalent groups 
have a regular representation algebra. Butler and King25 ex­
amined various groups and came up with an example (due to 
1.S. Frame) ofa group, 2F4(2), of very large order featuring a 
triple of two first-kind irreducible representations and one of 
the second kind having nonzero fix-vectors; however, this 
group is not ambivalent. 26 Here we.demonstrate that the 
above question must be answered in the negative. Indeed, 
there is an ambivalent group of order only 72 which has a 
nonregular representation algbebra. Because of its funda­
mental interest we describe this example briefly in Appendix 
B. 

It still remains to be investigated to what extent it is 
possible and desirable to apply the inner automorphism ap­
proach to groups of practical importance other than the sub­
groups ofSU(2) mentioned in Sec. IV. We stress, though, 
that even if the group satisfies the necessary and sufficient 
conditions of Sec. IV there may not exist matrix forms of the 
irreducible representations compatible with the inner auto­
morphism and which have additional desirable properties. 
Thus, for example, it is demonstrated in Ref. 4 that a choice 
of standard representations with the inner automorphism 
property allows for an adaptation to the icosahedral grouIr­
subgroup hierarchy 1* :J C t (in the usual Schoenflies nota­
tion) but does not allow for adaptation to 1* :J D t :J C t or 
I*:JT!:JC!. 

VI. QUASI-AMBIVALENT GROUPS 

Referring to the discussion in Sec. II, we note that a 
consequence of condition (b) is that for every irreducible 
character X of G we have 

x(r(R)) = X(R) = X(R -I) for all REG. 

If G finite, this means that for any R the elements r(R ) 
and R -I belong to the same conjugacy class (since the irre­
ducible characters of G separate its conjugacy classes27

). 

Groups admitting an involutory automorphism r with the 
property that r(R ) and R -I are conjugate for all REG have 
been called quasi-ambivalent.28 (Note that an ambivalent 
group is quasi-ambivalent; indeed, in this case r may be tak­
en to be the identity.) Thus, ajinite group to which the auto­
morphism approach expressed by (a) and (b) may be applied is 
necessarily quasi-ambivalent. 

Conversely, one may ask if the automorphism approach 
may be applied to any quasi-ambivalent group. We do not 
have an answer to this, but we give an example of a more 
restricted result which still indicates the relevance of quasi­
ambivalence to the problem we are studying. 

Proposition. The automorphism approach may be ap­
plied to any quasi-ambivalent compact group G having no 
irreducible representations of even dimension. 
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Proof Let r be a (continuous) conjugacy class-inverting 
involutory automorphism of G. It will be sufficient to show 
that given an equivalence class r of unitary irreducible ma­
trix representations of G we may find a r in r such that 

r(r(R» = r(R) for all REG. (VI.1) 

Now, if X is the character of the representation r and X T is 
the character of the representation R--+r (r(R », REG, we 
have 

XT(R) = X(r(R» = X(R -I) = X(R) for all REG 
(VI. 2) 

from the assumptions on r. Let r be any m~rix representa­
tion in r. From (VI.2) the representations rand 
R--+r(r(R» are equivalent (they have the same character). 
Thus there is a unitary matrix V such that 

r'(r(R )) = V-I r'(R ) V for all REG. (VI.3) 

Rewriting-as was done in obtaining (III.2)-we get 

r(R)T Vr(r(R)) = V for all REG. (VI.4) 

Using that r is involutory one now shows that V satisfies 
(VI.4) if and only if V T does. As in the discussion following 
(111.2), this leads to the conclusion that V is symmetric or 
antisymmetric. Since it is of odd dimension, it must be sym­
metric. This means29 that there is a unitary matrix Q such 
that V = QQ-I. Putting 

r(R ) = Q-lr(R ) Q for all REG 

gives a matrix representation with the desired 
properties. Q.E.D. 

An example of a group satisfying the conditions in the 
proposition is the tetrahedral group T (isomorphic to the 
alternating group A4)' This group is not ambivalent since it 
has nonreal irreducible characters, but it is quasi-ambiva­
lent28 and has only irreducible representations of dimensions 
one and three. Thus, real Clebsch-Gordan coefficients may 
be chosen for T (cf. Sec. I). In fact, in Ref. 30, we have even 
given real coefficients for the two double-group hierarchies 
T*:JCr and T*:JC!. 

APPENDIX A 

In this appendix we shall demonstrate the equivalence 
of the reality problems (A) and (B) of Sec. I. Some ofthe 
material needed for this demonstration has been given in the 
thorough treatment of triple coefficients in Ref. 4. We shall 
not repeat all of that here but instead give references to the 
appropriate parts of Ref. 4. 

We start with an important remark concerning prob­
lem (B). In practice-and partly in the arguments to fol­
low-one requires more than just some basis for Y(r I r 2r 3)' 

Firstly, the basis may be required to be orthonormal, and 
secondly, when two or three of the r; are identical, leading 
to a partial or full permutational symmetry of r I ® r 2 ® r 3' 

one may require the basis vectors to be adapted to irreducible 
representations of the relevant permutation group (S2 or S3; 
see Sec. 3.2 of Ref. 4). These additional requirements, howev­
er, raise no difficulties in the present context since the group­
theoretical projection operators of S2 and S3' as well as the 
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Gram-Schmidt orthonormalization procedure, applied to a 
set of real columns will lead again to a set of real columns. 

We next need to introduce some notation. The matrix 
direct sum C-1(r1 ® r 2) Cofrepresentations ofG referred to 
in connection with formulation (A) is of the form 

4.1 

(A.I) 

o . 

where the 4. j are standard matrix representations of G. If any 
two of the 4. j are equivalent they are identical because they 
all are standard. Suppose now that 4. is a matrix representa­
tion of G appearing among the 4. j in (A. 1 ). If YI is a compo­
nent of r I' Y 2 is a component of r 2' and 0 a component of 4., 
we shall designate the element of C corresponding to these 
components as 

(A.2) 

This is the conventional coupling coefficient notation. The 
index f3 is needed to indicate the position of 4. in the block 
diagonal matrix representation in (A. 1 ) when several of the 
4. j are identical to 4.. Thus the pairs YIY2 serve as row indices 
in C and the triples f3 4.0 as column indices in C. 

Furthermore, if(cl, ... ,cN ) is a basis for Y(rlr24.), 
where r I' r 2' and 4. are unitary irreducible matrix represen­
tations of G (not necessarily standard), we shall denote the 
element of a basis column cf3 corresponding to the compo­
nents YI ofrl, Y2 ofr2, and 0 of 4. by the symbol 

(A.3) 

The connection between CoG coefficients and triple co­
efficients may now be stated compactly in the following 
formula: 

(rIYlrZY21 f3 4.0) 

= 4p (rlr2M )(dim4.) 1/2 (1\ 
YI 

(A.4) 

Here the triple coefficients are assumed to come from an 
orthonormal basis (CI"",CN ) for Y(£\I\4.); 4p(r Ir 2M) is a 
phase factor (complex number with modulus 1) and dim4. is 
the dimension of 4.. The formula is to be interpreted in the 
following way: 

Given triple coefficients 

(~ 1\ 4.) 
Y2 0 (3 

for each distinct 4. occurring in (A. 1 ) and a choice of 
t/> (rlr2M)foreverypairM, the numbers (r1Yl r 2Y21 f3 4.0) 
defined by (A.4) will form a matrix of C-G coefficients for 
r I ® r 2' [The number of times a given 4. occurs in (A. 1 ) is 
equal to the dimension of Y(I\1'24.), cf. Appendix of Ref. 4.] 
Conversely, given a matrix of C-G coefficients 
(rlylr 2Y21 f3 4.0) for r l ® r 2 and a choice Of4p(r1r 2M) for 
every M, the numbers 
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defined by (A.4) will form sets of triple coefficients for the 
ordered triples 1'11'24.. (See Sec. 5.4 of Ref. 4 for the specific 
phase conventions relevant to groups susceptible to the inner 
automorphism approach.) The proof of these assertions runs 
along the following lines: 

(1) One shows that triple coefficients of the form 

(
1' 1'2 4.) 
YI Y2 0 f3 

couple r I with r 2 to give 4.: rearranging 

for all YI' Y2, 0 and all REG, 

using the unitarity of 4., gives 

I [rl(R )y,y; r 2(R )y,y;] 
y; ,y, 

for all YI, Y2' 0 and all REG, 

(A.5) 

(A.6) 

which is that part ofthe matrix equation obtained from (A. 1) 
by multiplying by C from the left which pertains to the par­
ticular copy of 4. distinguished by f3. 

(2)Oneshowsthatthecoefficients (rly1r 2Yzl f3 4.0) de­
fined from triple coefficients by (A.4) form a unitary matrix 
C. This is the least trivial part of the proof; it requires Schur's 
lemma (see Sec. 3.3 and Appendix of Ref. 4). 

(3) Conversely, one shows that CoG coefficients 
(rlYlrzY21 f3 4.0) are triple coefficients of the type 

(~: ~: !t; 
this isjust a reversal of the argument in (1). The unitarity of 
the C-G coefficient matrix assures that an orthonormal basis 
for Y(1'I1'24.) is, in fact, obtained if (A.4) is used to define the 
triple coefficients. 

Thus, having established (A.4), we see that we shall be 
satisfied to show the equivalence of the reality problem (B) 
and the corresponding one "with two conjugations", i.e., the 
one obtained from (B) by replacing Y(rlrZr 3) by 
Y(1'I1'2r 3). Let us call this one (B'). We proceed as follows: 

First note that ifr is a unitary irreducible matrix repre­
sentation of G and we have a nonzero set of triple coefficients 

(~ 
r 
Y' 

for the triple rn G (where IG denotec; the trivial one-dimen­
sional representation of G and 0 its component), then for a 
suitably chosen real number n(r) the matrix U with elements 

r 
Y' 

(A.7) 
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will be a conjugating matrix for r. This follows by observing 
that the equation 

satisfied by the u yy , , if rewritten as 

L r(R )Y,1' uy,y,T(R )1'(1" = U yy ' for all REG, (A.9) 
YI .y( 

demonstrates that r(R r Ur(R ) = u. Compare Eq. (III.2). 
From the discussion in Sec. III we now see that U is propor­
tional to a conjugating matrix for r. Obviously, r is of the 
first or second Frobenius-Schur kind if and only if nonzero 
triple coefficients of the type (A.7) exist. 

Suppose now that (B) can be answered in the affirma­
tive. We want to show that then (B') can as well, i.e., that for 
any three standard matrix irreps r I' r 2 , and r3 ofGthereis a 
real basis for Y(I\i\r3). We distinguish four cases: 

(i) Ifr 1 and r 2 are both of the third kind, their complex 
conjugates are, according to the definition of a system of 
standard representations in Sec. I, both standard representa­
tions themselves and there is nothing to show. 

(ii) If r 1 is of the first or second kind and r 2 is of the 
third kind, we argue as follows: define a matrix U 1 by (A.7), 
with r, taking the place ofr, so that U, becomes a conjugat­
ing matrix for r ,. In doing this, use real triple coefficients 
[this is possible because there is a real basis for Y (r 1 r 1 I G ) 

by assumption] and a real number nCr,); then U, will be a 
real matrix. Since r 2 is itself a standard matrix representa­
tion, there is by assumption a real basis (cl, ... ,CN ) for 
,Y(rir\r). Put U = U,-l ® 12 ® 13, wherel j istheunitma­
trix of the same dimension as r j ; i = 2,3. It is then seen by 
direct verification that (Uc" ... ,UcN ) is a real basis for 
y(r\rZr 3). 

(iii) If r 2 is of the first or second kind and r, is of the 
third kind, the argument is completely analogous to the one 
in (ii). 

(iv) If neither r, nor r 2 is of the third kind, the argu­
ment is as in (ii) except that now two real conjugating matri­
ces U, and U 2 enter, the matrix U turning a real basis for 
Y(r,r2r) into a real basis for Y(I\i\r3) being then de­
finedbyU=U, '®Uz-' ®1 3 . 

If, conversely, we assume that (B') can be answered in 
the affirmative, we get to (B) by using conjugating matrices 
for the conjugates of standard representations, using then 
(A.7) with r instead ofr. 

The desired proof is hereby completed: formula (A.4) 
and the discussion following it showed the equivalence of 
(A) and (B'), and we have just shown (B') to be equivalent to 
(B). 

APPENDIXB 

Here we describe the example alluded to in Sec. V, 
namely a group of order 72 which is ambivalent and the 
representation algebra of which is not regular with respect to 
the Frobenius-Schur classification. The inner automor­
phism approach is not applicable to such a group (see Secs. 
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IV and V). P. Landrock constructed this example31 when 
asked by the author if all ambivalenty groups have the cen­
tral involution property derived in Sec. IV. 

The group in question is a semidirect produce2 

G = (e) x e3)OD T ofthe direct product e3 X e3 of the cyclic 
group of order three with itself and the dihedral double 
group D T , the latter being isomorphic to the quaternion 
group. This semidirect product is constructed in such a 
way33 that it has six conjugacy classes: 'fj 1 = ! E 1 ; 'fj 8' 

which is all of C3 X C3 except E and thus contains eight ele­
ments of order 3; 'fj 9' which consists of nine (noncentral!) 
involutions, among which is the involution of D! (the ele­
ment usually described as the rotation of 360°); and three 
classes 'fj ~ 8 , 'fj i 8 , and 'fj i 8> each consisting of 18 elements 
of order 4 and each intersecting D T in two elements. The 
group therefore has six irreducible characters, and the char­
acter table is 

'fj , 

X" 
1'12 
1'\3 -1 

1"4 -1 

1 
-1 

-1 

'fj3 
'8 

-1 
-1 
+1 

first kind 

1'2 2 2 -2 0 0 0 second kind 

1'8 8 -1 0 0 0 0 first kind 

The characters X Il' X 12, X lJ' X 14> and 1'2 will be recognized 
each to yield one of the five irreducible characters of D ! 
when restricted to (subduced to) D T. The sixth character is 
easily found by the orthogonality relations. The Frobenius­
Schur classification of the irreducible representations may 
be found using the character test referred to in Sec. III 

Since all characters are real, the group is ambivalent. 
Furthermore, it is readily verified that the tensor product 
1'8 ® 1'8 decomposes according to 

1'8 ®X8 = X" + 1'12 + 1'13 + 1"4 +21'2 +7Xx' 

from which it is apparent that the representation algebra of 
G is not regular. 
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A straightforward derivation of the matrix elements of the U(n) generators is presented using 
algebraic infinitesimal techniques. An expression for the general fundamental Wigner coefficients 
of the group is obtained as a polynomial in the group generators. This enables generalized matrix 
elements to be defined wit1:Iout explicit reference to basis states. Such considerations are 
important for treating groups such as Sp(2n) whose basis states are not known. 

PACS numbers: 02.20.Sv 

1. INTRODUCTION 

It was shown in a previous publication 1 (herein referred 
to as I) that the polynomial identities satisfied by the infini­
tesimal generators of a semisimple Lie group may be applied 
to give a simple determination of the (multiplicity-free) 
Wigner coefficients of the group. In this paper we shall ex­
tend some of the techniques presented in I to give a simple 
self-contained derivation of the matrix elements of the U(n) 
generators. 

An orthonormal basis for the finite dimensional irredu­
cible representations ofU(n) was first constructed by 
Gel'fand and Zetlin. 2 The matrix elements of the U(n) gener­
ators in this basis were first derived by Gel'fand and Zetlin2 

and rederived using boson-calculus techniques by Baird and 
Biedenharn.3 In their discussion of the Gel'fand-Zetlin re­
sults Baird and Biedenharn made an important contribution 
by explicitly expressing the general matrix element as a 
product of a reduced matrix element and a Wigner coeffi­
cient. As a result the fundamental Wigner coefficients of 
U(n), for general n, were given for the first time. It is our 
principal aim to obtain these results using algebraic infinites­
imal techniques in contrast to the integral techniques of Gel­
'fand and Zetlin and Baird and Biedenharn. 

The relationship between our approach and that em­
ployed by Biedenharn et al.3

-
5 has been discussed in I. Al­

though the two approaches are closely related we feel that 
our approach offers some novel features. In the literature it is 
customary to obtain the matrix elements of generators of the 
form a;;: + 1 and a;;: + 1 (m < n) first and to obtain the matrix 
elements of the remaining generators by repeated commuta­
tion. Making use of the concept of simultaneous shift opera­
tors which shift the representation labels ofU(n) and each of 
its canonical subgroups in a certain prescribed way, we shall 
present an alternative derivation where the matrix elements 
of all generators are obtained just as easily as those of the 
form a;;: + 1 and a;;: + 1 • An expression for the general funda­
mental Wigner coefficients ofU(n) is also given in terms of 
polynomials in the group generators constructed using the 
characteristic identities ofU(n) and each of its canonical 
subgroups. The expressions obtained are clearly generaliza­
ble to more general groups. 

a)Present address: School of Physical Sciences, The Flinders University of 
South Australia, Bedford Park, South Australia, 5042. 

We shall also obtain an expression for the 
U(n) : U(n -1) reduced Wigner coefficients (or isoscalar 
factors) as a polynomial in the group generators. The simul­
taneous shift operators used in this paper are obviously relat­
ed to the pattern calculus of Biedenharn et al.5 and their 
concept ofWigner operator. The exact relationship between 
them will be discussed in a forthcoming publication. 

The extension of this work to the discrete series of re­
presentations of the noncom pact groups U(n,l) and the 
orthogonal groups O(n) and O(n,l) is evident. 

2. WIGNER COEFFICIENTS AND REDUCED MATRIX 
ELEMENTS 

The generators aj(i,j = l, ... ,n) of the Lie group U(n) 
satisfy the commutation relations 

[ 
j k] k j j k aj,al = t)ja l - t)laj 

and the Hermiticity property 

(aj)t = a/. 

These generators may be assembled into a square matrix a 

whose (i,j) entry is the generator aj. Polynomials in a may be 
defined recursively by the formula 

(am + I); = (am)~ aJ = a~ (am)J. 

Associated with the matrix a is its adjoint a with entries 
a/ = - a;. Polynomials in a may be defined by 

(am +1); = (am)Jaf = ~k(am)~. 

It has been shown5 on a finite dimensional irreducible repre­
sentation ofU(n) with highest weight A = (A1, ... ,An )that the 
matrices a and a satisfy the polynomial identities 

/I /I II (a - a r ) = 0, II (a - ar ) = 0, 
r = I r= 1 

where the roots a r and ar are given by 

ar=Ar+n-r=n-l- ar· 

(1) 

~y virtue of the identities (1), projection operators P [r] 
and P [r] may be constructed by setting 

P[r] = II (a-a l
), 

l'f'r a r - a l 

P[r]= II(a-iil
). 

l'f'r iir-~ 

The matrix elements of such projectors in unitary represen-
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tat ions of the group were shown in I to be bilinear combina­
tions ofWigner coefficients. To be more explicit let V (A) be a 
finite dimensional irreducible representation with highest 
weight A and let 12v) ) and I~i» be Gel'fand basis states in the 
space V (A ). According to I we have 

(~)Ip[r)jl(:) 

(
A lolA -.1, \ (A -.1, 110 A) 

= ~ (v); i (/-l) I (/-l) j ;(v') , 
(2) 

where liD) constitutes an orthonormal basis for the contra­
gredient vector representation and where jJD;2v) ) denotes the 
product state WJ) ® 12v»' Similarly, we have 

(3) 

where 1;6) forms the usual basis for the fundamental vector 
representation. Substituting i = j = n into Eqs. (2) and (3) 
we obtain 

(~) I P [r)~ 1(:) = D(v).(v') I (~) ; ~ol 
(~)Ip [r]~ 1(:) = D(v),(v') I (~); ~61 
It is our aim now to apply the U (n) characteristic identi­

ties (1) to evaluate the operators P [r] ~ and P [r] ~ which, by 
Eqs. (4), are essentially squares of Wigner coefficients. 

We now turn our attention to the group U(n + 1) 
whose generators aj (i,j = I, ... ,n + 1) may be assembled 
into a matrix b whose (i,]) entry is the generator a;.T~e ma­
tarix b satisfies an n + 1 degree polynomial identity analo­
gous to the U(n) matrix a: 

11-+ 1 II (b -f3d = 0, 
"~I 

where the f3 k take constant values on an irreducible repre­
sentation with highest weight A = (AI, ... ,A" +1) given by f3k 
= Ak + n + 1 - k. In a similar way we define the adjoint 

matrix b whose roots ilk are given by ilk = n - f3 k . 
As for U(n) we may construct the U(n + 1) projection 

operators 

"+1 (J -13, ) Q [k] = II ' 
,- I k -13, 

_ "+1 (;--il,) 
Q [k] = II - _. 

'~I k - 13, 

Also, according to I, ifp(x) is any polynomial we may write 
" +1 

P(b)= L. P(13dQ[k]. 
k-I 

From the U(n +1) identity we have 

bQ [k] =13kQ [k). 

(5) 

Taking the (i,n +1) entry of this matrix equation we may 
write 
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n+1 
L. aiQ[k]~+1 =13kQ[k]~+I' i= 1, ... ,n. 
,~ I 

Rearranging this expression we obtain 

a~+1 Q[k]~!: = (13k -a),Q[k):,+I' 

Similarly, we may write 

Q[k]~!: a7+ 1 =Q[k]7+1(13k -a):. 

(6) 

(7) 

For simplicity let us for the moment denote the U(n) 
invariant Q [k ]~!: by Ck • Clearly, the Ck are U(n + 1) 
analogs of the operators P [r] ~ whose matrix elements are 
squares ofWigner coefficients. It is our aim to express Ck as 
a function of the 13k and a,. Note that Eq. (5) implies 

n + I 
P(b)~!: = L. P(13dCk, 

k~1 

which enables a systematic evaluation ofU(n) invariants of 
the form P(b)~!: once the Ck have been determined. 

We may invert Eqs. (6) and (7) by writing 

Q[k)~+1 = [(13k -atl]ja~+1 Ck, 

Q [k ]7-+ 1 = Ckaj+1 [(13k -atl ]!, 

where (f3k - at l denotes the matrix 

(13k -at l = i (13k -a,tIP[r]. 
r= 1 

(8) 

Throughout the remainder of this section let ¢ denote the 
U(n) vector operator with components tI/ = a~ +1 , 

i = 1, ... ,n, with adjoint ¢t whose components are given by 
¢J = aj + I . Following Green and Bracken,6 the vector oper­
ator ¢ and its contragredient ¢t may be resolved into a sum 
of shift vectors 

¢ = i ¢[r], lpt = i ¢t[r] 
r= 1 r = I 

which alter the U(n) representation labels according to 

Ak ¢[r) = ¢[r ](Ak + Dk,), 

Ak¢t[r] = ¢t[r](Ak - Dk,). 

Such shift vectors may be constructed by application of the 
U(n) projectors P [r] and P[r] as follows: 

tP[r] =P[r)¢=tPP[r], 

tPt[r] = P[r]¢t = ¢tp [r]. 

Decomposing the U(n) vector tP into its shift compo­
nents allows us to write Eqs. (8) in the form 

i ¢[r]'(13k - a, _1)-1 Ck, 
r= I 

i Ck(13k - a, -It I ¢t[rJ.. (9) 
r= 1 

However, from Eq. (5), we have 
n +1 L. Q[kt+1 =D~+I =0, for i= I, ... ,n. 
k_1 

Hence, summing Eqs. (9) over k from 1 to n + 1, we obtain 

,tl ¢[r]( :%1 (f3k - a, -It I C,) = 0. 

However, the shift vectors ¢[r] form a linearly independent 
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set since they effect different shifts. This implies that 
n +1 L ({3k - a r _1)-1 Ck = 0, r = 1, ... ,n. (10) 
k~1 

This set of equations together with the condition 

n+1 (n+1 ) 
k~1 Ck = 1 k~1 Q[k]~!: =8~!: 

uniquely determine the Ck • These equations are easily solved 
(using Cramer's rule for example) and yield the solution 

n + 1 n 

Ck = II ({3k - {3pt l II ({3k - at -1). 
p~1 

#k 
t~ I 

(11) 

Similarly, using the adjoint projectors Q [k], one may 
deduce the equations 

Q [k]~ +1 = i Ck ({3k - artl¢[rr, 
r = 1 

Q [k]7 +1 = i ,pt[rL({3k - artlCk, (12) 
r = I 

whereCk is shorthand notation for Q [k ]~!: whichmaybe 
expressed in terms ofthe{3's and a's according to 

_ n+1 n 

Ck = II ({3k - {3pt l II ({3k - at)· 
p~ I t~ I 

(13) 

#k 
The U(n) invariants Ck and Ck are the U(n +1) ana­

logs of the operators P [r] ~ and P [r] ~ which may likewise 
be expressed in terms of the roots in the U(n) and U(n -1) 
identities. This then enables us to evaluate the fundamental 
Wigner coefficients (4) as required. However, in order to 
determine the matrix elements of the group generators we 
must also determine the reduced matrix elements of ¢ and 
¢t. 

Since the matrix elements ofthe projectors P [r] and P [r] 
are bilinear combinations ofWigner coefficients, the 
Wigner-Eckart theorem allows us to write 

¢[r]¢t[r] = Mr P [r], 

¢t[r]¢[r] = Mr P [r], (14) 

where the Mr (Mr) are U(n) invariants whose eigenvalues 
determine the squares of the reduced matrix elements of ¢ 
(¢ t). Equation (14) is clearly an operator generalization of 
the Wigner-Eckart theorem and may be derived using pure­
ly algebraic techniques as demonstrated in Ref. 7. By taking 
the traces of Eqs. (14) we obtain the result 

¢[rr¢t[rL 
Mr= ----

tr(P [r]) , 
(15) 

¢t[r];¢[r]i 
Mr= , 

tr(P [r]) 

which enables the invariants Mr and Mr to be expressed as a 
function of the {3k and a r using techniques similar to those 
used in the derivation of the Ck and Ck (see Ref. 7 for further 
details). We obtain 

_ n+l 

Mr = (-1) n II ({3p - ar)II (a r - at -ltl, (16) 
p~ I t#r 
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n +1 

Mr = (-1) n II ({3p - a r -1) II (ar - at +ltl. 
p~ I t#r 

(17) 

One may check directly from Eq. (15) and the Wigner-Eck­
art theorem that the Mr and Mr in fact determine the re­
duced matrix elements as required. 

Taking the (n,n) entries of Eqs. (14), we obtain 

¢[rr¢t[r]n = MrP [r]~, 
(18) 

¢t[r]n¢[rr =MrP[r]~, 

which, using formulas (11), (13), (16), and (17), enables us 
immediately to write down the matrix elements of the gener­
ators a~ + I and a~ + I . However, in order to obtain the matrix 
elements of the remaining generators we need more informa­
tion. To this end we obtain a relationship between the 
U(n +1) and U(n) projection operators which, as we shall 
later see, reflects the properties ofU(n +1) : U(n) reduced 
Wigner operators. 

First of all it is easily seen, as a trivial property of 
Wigner coefficients and Eqs. (2) and (3), that the following 
relations holds: 

Q [k L +1 (CktlQ [k]j +1 = Q [k ]", 

Q[k]7+I(Cd-1Q[k]~+1 =Q[k](. 

A proof of this result which exploits only the Lie algebra 
commutation relations is presented in Ref. 7 (see also 
Green8

). By applying the U(n) projectors P [r] (P [r)) to both 
sides of the above equations, we obtain, by virtue of Eqs. (9) 
and (12), the result 

i P [r]~Q [k ]~P [r]7 
t.m~ I 

= ¢[r]iCk({3k - a r -lt2 ¢t[r] j' 

We now note, from the form of Ck given by Eq. (11), that 
Ck({3k -a r -ltl is independent ofar and hence com­
mutes with ¢[r). We therefore obtain 

P [r];Q [k ]~nP [r]7 

= Ck({3k - a r -It\ {3k - artl¢[rr¢t[r] j' 

Using Eqs. (14) this in turn may be written 

P [rJ;Q [k ]~P [r]7 

= CkM r({3k - a r _1)-I( {3k - artlp [r]~. (19) 

Similarly, we obtain 

P [r] ~Q [k ]7'P [r] /n 

= Ck M r({3k - a r _1)-I( (3k - artlp [r](. (20) 

As we shall see Eqs. (19) and (20) are essentially all we 
need to determine the matrix elements of the U(n) 
generators. 

3. SIMULTANEOUS SHIFTS 

The Lie group U(n) admits the canonical9 chain of 
subgroups 

U(n):JU(n -1):J ... :JU(1), (21) 

where each group U(m) occurring in this chain has infinites-
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imal generators consisting of the U(n) generators aj for val­
ues of i andj in the range 1 , ... ,m. Before proceeding we estab­
lish some notation. We denote the U(m) matrix whose (i,]) 
entry is the U(m) generator a~ (i,j = 1, ... ,m) simply by am' 
We denote the characteristic roots of am byar.m 
(r = 1, ... ,m). They take constant values on a finite dimen­
sional irreducible representation ofU(m) with highest 
weight (Alm, ... ,Amm) givenbyar.m =Ar.m +m -r. We de­
note the corresponding U(m) projectors simply by P (;.") and 
PC;): 

( m) IT (am -a'.m ) 
P r = '#r a r.m -a'.m ' 

p(m) = IT (~m -~m ), 
r '#r a r.m - a'.m 

where am is the U(m) adjoint matrix whose roots a/.m are 
given by a/.m = rn -1 - a;.m' We denote the (rn,m) entries 
of these projectors by Cr•m and Cr•m , respectively. From the 
previous section we know that these operators are essentially 
squares ofWigner coefficients whose eigenvalues are given 
by [cf. Eqs. (11) and (13)] 

m m-l 

Cr.m = IT (a r.m -ak.m)-I IT (a r.m -a'.m_1 -1), 
k= 1 ,= 1 

#r 
(22) 

m m-l 

Cr.m = IT (ar.m - ak.m yl IT (ar.m - a'.m -I ). 
k= 1 /= 1 

#r 

Finally we denote the U(m) vector operator {a~ +1 1 
(i = 1, ... ,m) simply by tf;(m). Its Hermitian conjugate tf;t(m) 
constitutes a contragredient vector operator with compo­
nents tf;t(m); = a'(' +1. We denote the shift components of 
these operators by tf;(';) and tf;t(,;), respectively. According 
to Eqs. (14) we may write 

(23) 

tf;t(7)tf;(7) = M r•m p (7). 
where the U(m) invariants M r•m and M r•m (the squared re­
duced matrix elements) are given by 

m+1 

M r.m = (_I)m IT (ak.m+1 - a r.m -1) 
k=1 

x IT (a r•m - a/.m + Itl, 
/ ,. r 

_ m+l 

M r.m = ( -1) m IT (ak.m +1 - a r.m) 
k=1 

x IT (a r•m - a/.m _1)-1. 
/ ,. r 

The (m,rn) entries of Eqs. (23) yield the relations 

tf;(7rtf;t(7t = Mr,mCr,m' 
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(24) 

(25) 

which determines the matrix elements of the generators 
a;;: +1 anda;;:+I. 

IfU(rn +1) and U(m) are two canonical subgroups of 
U(n), we have already remarked that the operator tf;(m) with 
components tf;(rn)/ = a~ +1 constitutes a U(m) vector opera­
tor. Hence, each operator a~ +1 may be written as a sum of 
shift components tf;(';) which alter the representation labels 
of the group U(rn), However, if k is a positive integer less 
than m, then the components tf;(mY (i = I, ... ,k) also consti­
tute a vector operator with respect to the subgroup U(k ). 
Hence, any given operator of the form a~ + 1 (I < m + 1) 
transforms as a component of a vector operator with respect 
to the subgroups U(rn), U(rn -l), ... ,U(l). 

In the limiting case when 1= rn we see that a;;: +1 can 
only be a component of a vector operator with respect to the 
subgroup U(m). In this case a;;: +1 can only alter the repre­
sentation labels of the subgroup U(m) and we may resolve 
a;;: +1 into its U(m) shift components according to 

a;;: +1 = f tf;(rn)m. 
r = 1 r 

Suppose now we consider a generator of the form a;;: :;:: : 
which transforms as a component of a vector with respect to 
the subgroups U(m - 1) and U(m). Firstly, a;;: :;:: must alter 
the representation labels ofthe subgroup U(rn) and we ob­
tain a primary decomposition into U(rn) shift components 

= f tf;(m)m-I 
r= 1 r 

where 

tf;(7)'=p(7)'a~+1 =a~+1 p(7Y 
] ] 

Now each tf;(,;)m -I is also a component of a vector op­
erator with respect to U(m -1). Hence, we may further de­
compose tf;(,;)m -I into its U(m -1) shift components ac­
cording to 

tf;(7r- 1 

= ~~: tf;(7 m 71 r- I

, 

where 

Hence, we obtain the resolution 

m m-I (m m -1 )m-I 
a;;::;:: = I I tf; r I 

r = I J =- I 

where each component tf;('; "; -I) simultaneously alters the 
representation labels of U(m) and its subgroup U(rn -1) 
according to 

Ak •m tf;(7 rn 71 
) = tf;(7 m 71 

)(Ak,m + c5kr ), 

Ak,m -I tf;(7 m 71 
) = tf;(7 m 71 

)(Ak •m -I + 15k,), 

By our construction the shift components tf;('; "; -I ) are giv­
en by 
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(
m m-I)=p(m-I 

'" r I I 
-(m = t/J(m)P r 

7)t/J(m) 

m -1) 
I ' 

where PG." "; -I) may be interpreted as an (m -I)Xm ma­
trix of operators with entries 

p(m -I 1 m)i = "II p(m _I)i p(m)k, 
r j k=1 I k r J 

i = I, ... ,m -1, j = I, ... ,m. 

Similarly, we define the operators P G." "; -I ). 
More generally, an operator a~ +1 (I < m + 1) may be 

decomposed into a sum of shift components which simulta­
neously alter the representation labels of the subgroups 
U(m), U(m -I), ... ,U(/). We write this decomposition as 

1 ( m m -1 I )1 
am +1 = ~ t/l i(m) i(m -1 )"'i(/) , 

(26) 

where the summation symbol is shorthand notation for 
m m-l I 

I I ... I . 
i(m) = I i(m-I)= I i(I)= I 

Each shift component simultaneously alters the representa­
tion labels of the subgroups U(m), ... ,U(/) according to 

A t/l( m m -1 ... I ) 
k.p i(m) i(m -1) i(/) 

= t/lC(:) i(: -=.11) "'i(~»)(Ak'P + Dk,i(P» (27) 

for p = I, ... ,m and k = I, ... ,p. 
These shift components may be constructed by repeat­

ed application of the subgroup projectors as in the a;;::;:: 
case. Let us denote the I X m matrix of operators with entries 

rtl ... :~: :~: pC(~)X PC:I :11) y .. ·pC(: -=.~) X 
xpC(:)X 

simply by 

(
1m -1 

p i(/)"'i(m -1) 

It is clear that these operators project out the simultaneous 
shift components of the generator a~ + I = t/l(m)1 from the 
left: 

t/lC(:)"'i(~») = pC(~)·"i(:»)t/l(m). (28) 

Similarly, we define the projectors 

-( m m -1 I ) 
P i(m) i(m -1) "'i(/) , 

whose (i,}) entry is given by 

m-lm-2 1 -(m)p-(m-I)Q -(Iy' I I ... I p. p. ...p . 
p = I Q = I r = I l(m) i l(m -1 ) p 1(1) r 

for i = I, ... ,m andj = 1, ... ,1. Clearly, these operators project 
out the simultaneous shift components of the generator 
t/l(m)' = a~ +1 from the right: 

19 J. Math. Phys. Vol. 22, No.1, January 1981 

t/lC(:)"'i(~») = t/J(m)PC(:)'''i(~»)' (29) 

In a similar way we define the operators 

p( I ... m -1 m ) 
i(/) i(m -1) i(m) 

and (30) 

( 
m m -1 I ) 

P i(m) i(m -1) '''i(/) , 

defined in the same way but with the order reversed. 

By taking the Hermitian conjugate ofEqs. (26)-(29) we 
see that the generator a'l' + I (I < m + 1) may also be resolved 
into its simultaneous shift components according to 

( 
m m -1 I ) 

a'l'+1 = "t/lt ft;s i(m) i(m -1) '''i(/) " 

where each component 

t/lt(;(:) ... i(~») 
may be constructed by aplying the projectors (30): 

t( m m -1 I ) 
t/l i(m) i(m -1) "'i(/) 

= PC~)'''i(: -=.11) i(:)t/lt(m) 

= t/lt(m)PC(:) i(: -=.~) "·i(~»). 
We conclude this section by obtaining a generalization 

of Eqs. (23) for the multiple shift vectors 

( 
m m -1 I ) 

t/l i(m) i(m -1 )"'i(/) . 

We have 

t/lt( m ... I ) t/l( m ... I )1 
i(m) i(/) 1 i(m) i(/) 

m _( I m)i t '-( m 1)1 
i'~ I P i(/)"'i(m) 1 t/l (m)it/l(m)JP i(m)"'i(/) j 

= mf p( I ... m -1 )i t/lt( m ) t/l( m Y 
i,j= I i(/) i(m -1 ) 1 i(m) i i(m») 

xp( m -1 ... I )1. 
i(m -1) i(/) j 

However, from Eqs. (23), we know that 

t/ltC(:)}t/lC(:») =M;(m),mPC(:)X 

and it follows that Eq. (31) may be written 

(31) 

-( I m -1 ) -( m ) -( m -1 I )1 
Mi(m),m P i(/)"'i(m -1 ) P i(m) P i(m -1 )'''i(l) I' 

(32) 

By repeated application ofEq. (20) this in turn may be 
written 

IT (ai(p),p - ai(p_I),p_1 -Itl(ai(p),p - ai(p_I),p_1 t l 

p=I+1 

(33) 
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Similarly we have 

( 
m /)1 t( m /) tP ... tP ... 

i(m) i(/) i(m) i(/) I 

m 

II (a -1)-1 i(p),p - ai(p_I),p_1 
p~/+l 

X(a - a )-III
m 

M C /( pl, p /( p -1 l, P -I i(rl,r i(r),r' (34) 
r= I 

These are the required generalizations of Eqs, (25), 
They in fact determine the squares of the matrix elements of 
a~ +1 and a'!' +1, respectively, 

4. MATRIX ELEMENTS OF THE GROUP GENERATORS 

Throughout this section we assume that we are working 
in a finite dimensional irreducible representation ofU(n) and 
we shall adopt the usual Gel'fand basis notation. Our aim is 
to evaluate the matrix elements of the generators a~ + I and 
a'!' +1 (/<m), The matrix of a;;:!: is of course diagonal with 
entries 

m+l m 

L Ai,m+1 - L A"m' 
i= I i= 1 

Suppressing the labels ofU(m +2), we may write an 
arbitrary Gel'fand pattern in the form 

Ai,m+l 

Ai,m 

Ai,l-I 

(v) 

where (v) denotes a Gel'fand pattern for the subgroup 
U(/-2). Let us fix this Gel'fand pattern and write it in the 
form IA j,k) for ease of notation, We begin by obtaining the 
matrix elements of the generators a;;: +1 and a;;: +1, 

Resolving a;;: +1 into its U(m) shift components, we 
have 

m 

L N;"[A j,m+l ;Aj,m;Aj,m_1 
r = 1 

X IA j,k + Lir,m)' 

where IA j,k + Li r,m ) is shorthand notation for the state ob­
tained from IA j,k ) by increasing the label A r,m of the group 
U(m) by one unit and leaving the remaining labels un­
changed, The matrix elements N;", in view of the Hermiti­
city property 

and Eq, (25), are given by 

N;"(A j,m +1 ; A j,m; A j,m -1 ) = (A j,k IMr,m Cr,m IA j,k) 1/ 2, 
(35) 

(Strictly speaking, this matrix element is to be multiplied by 
a phase factor. However, it is customary to choose the phases 
of the matrix elements of a;;: + 1 to be real and positive, The 
question of phases shall be discussed more fully in the next 
section.) Substituting for Mr,m and C"m using Eqs, (22) and 
(24) gives the result 

N;,,=(-I)mrr;~+i (Ap,m+1 -A"m +r-p)rr,!,~-/ (Ar,m -AI,m_1 +/-r+l) )112. 
rr'!'= I (Ar,m - AI,m + /- r)(Ar,m - AI,m + 1- r + 1) 

ier 

(36) 

Similarly, the matrix elements of a;;: +1 are 

N;"(A j,m + I ; A j,m; A j,m -1 ) = (A j,k IMr,m Cr,m IA j,k) 1/2 

=(-I)mn;:im(Ap,m+1 -Ar,m +r-p+l) ll':-II (A"m -AI,m_l 

"/= 1 (A"m - AI,m + /- r)(Ar,m - AI,m + /- r -I) 
ier 

(37) 

The method for calculating the matrix elements of 
a~ +1 and a'!' + I is similar and, in view of Eqs, (33) and (34), 
no more difficult. Resolving a~ +1 (l<,m) into its simulta­
neous shift components, we have 

a~ +1 IA j,k) = ~ tPC:)"'i(~»)' IA j,k) 

~ NC(:)'''i(~») 
x IA j,k + Li'(m),m + '" + Lii(l),/)' 

where IA j,k + Li'(m),m + '" + Lii(l).l) denotes the state ob­
tained from IA j,k ) by increasing the representation label 
Ai(r),r of the subgroup U (r), r = I, .. "m, by one unit and leav­
ing the other labels unchanged, In this case the matrix 
elements 
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NC(:)"'i(~») 
are given by 

± ( A j.k ItPtC:)"'i(~)\ tPC(:)"'i(~J IA j.k) 1/2, 

which, by virtue of Eqs, (33) and (35), equals 

[(Ai(r).r -Ai(r-I),r-l +i(r-l)-i(r)yl 

X(Ai(r).r -Ai(r-l),r-I + i(r-l)-i(r)+lyl r/2
, 

(38) 

where N ~(r) are the matrix elements of the generator a; + 1 

which are given by Eq, (36). The undetermined phase ( ± ) 
will be obtained in the next section. 

Clearly, 
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NC(:)'''i(~) 
corresponds to the matrix element 

(A~;;I la~+1 IAj(~;I), 
where (A ') = (A) except for A :(r),r = Ai(r),r + 1, r = I, ... ,m. 

Similarly, the matrix elements 

-( m I) 
N i(m)"'i(l) 

of the generator a'!' + I (I < m + 1) are given by 

± (A j,k 1 tPC:)'''i(~JtPtC(:)'''i(~»){ IA j,k) 1/2, 

which, in view of Eq. (34), equals 

± fi N~(r) IT [(Ai(r),r - Ai(r-I),r-I + i(r -1) - i(r) 
r~{ r~{+1 

+ltl (Ai(r),r - Ai(r-I),r-I + i(r -1) - i(r)tl ]1/2, 

where N ;(r) are the matrix elements of the generator a~ + I 

which are given by Eq. (37). 

5. CHOICE OF PHASES 

In obtaining the matrix elements of the U(n) generators 
there is a degree of freedom in that the phases of the gener­
ators a:;: +1 may be chosen arbitrarily. Following Baird and 
Biedenharn,3 we have chosen these phases to be positive 
[which agrees with the Condon-Shortley convention for 
SU(2)]. By Hermiticity it follows that the phases of the gen­
erators a:;: +1 are also positive. The phases ofthe remaining 
generators are then dictated by the Lie algebra commutation 
relations. It follows from these considerations that the gen­
eral matrix element 

NC;:)"'i(~») 
has phase3 

S(i(m -1) - i(m»S(i(m -2) 

- i(m -1»"S(i(/) - i(1 +1», 

where S (x) is the sign of x and S (0) = 1. 
I t is interesting to note that the choice of phases may be 

obtained algebraically using the U(n) characteristic identi­
ties as demonstrated in Baird and Biedenharn.4 

6. ANALYSIS OF RESULTS 

We have shown that the only non vanishing matrix ele­
ments of the generator a~ + I are of the form [suppressing the 
labels of the subgroup U(m +1)] 

(39) 

where A ' is of the form A ' = A +.J i(m)' where.J i(m) is the 
U(m) weight with 1 in position i(m) and zero elsewhere. 
Also, since a~ + I is a vector with respect to the subgroups 
U(l),,,.,U(m -1), we see thatthe only allowed patterns (,u') 
are of the form (,u') = (,u) except ,u :(r),r =,u i(r),r + 1 for 
r = I, ... ,m - 1 and some i(r) in the range 1, ... ,r. The matrix 
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element in this case is 

NC(:)"'i(~») 
and is given by Eq. (38). On the other hand, using the 
Wigner-Eckart theorem, this matrix element may also be 
written 

(40) 

where the first term is the U(m) reduced matrix element 
(Mi(m),m) 1/2. 

In the notation of Baird and Biedenharn3 let us denote 
the U(l) Wigner coefficients (Ci(l).I) 1/2 by (~~{I ), the reduced 
matrix element (Mi(r),r)1/2 by (;(~):/), and the corresponding 
"reduced Wigner coefficients" by (;(/(I')I')'r -I ). Then the ma­
trix element 

NC(:)"'i(~») 
may be written in terms of reduced matrix elements, Wigner 
coefficients, and reduced Wigner coefficients according t03 

( 
m I) (m +1) m ( i(r):r )(i(/):/) 

N i(m)"'i(l) = i(m):m r~I;L i(r-l):r-l 1-1' 

It is interesting to note that by taking the trace of Eq. 
(20) we obtain the result 

(-(m m +1 
tr P r k 

= Ck,m+1 Mr,mCr,m(ak,m +1 -ar.m _1)-1 

x (ak,m +1 - ar,mt l. 

In terms of reduced Wigner coefficients this relation may be 
written in the form 

(-(m m +1 
tr P r k 

which shows that the reduced Wigner coefficients are deter­
mined solely by the subgroup projectors. 

Finally, from Eq. (32) we may write the matrix element 
(39) in the form 

(AI -(I m) -( m {)' 1 A ) 1/2 
(,u) Mi(m),m P i(l)'''i(m) P i(m)"'i(l) ,(,u) . 

Comparing this with the Wigner-Eckart factorization (40), 
we see that the general Wigner coefficient is given by 

( A 1-( 1m) -( m I )'1 A ) 
(j..l) P i(l)"'i(m) P i(m)"'i(l) , (,u) 

= I (~) ; 1{6 1 A ~,u~;(m) ) n (41) 

This is clearly a generalization ofEq. (4) in Sec. 2. 

7. CONCLUSION 

Equation (41) shows that the general fundamental 
Wigner coefficients may be obtained solely from a knowl­
edge of the subgroup projection operators. This form for the 
Wigner coefficients is useful and clearly may be generalized 
to arbitrary (multiplicity free) Wigner coefficients corre­
spondingtothereductionofV(A) ® V(,u), where V(A )isone 
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of the tensor representations. One simply applies the U(n) 
projectors corresponding to the U(n) tensor identity with 
reference representation V(A )(seeRef. 1 for further details) 
and the canonical subgroup tensor projectors with reference 
representation given by the decomposition of V (A ) into irre­
ducible representations of its subgroups. By this means we 
may give a general expression for the U(n) Wigneroperators 
of Biedenharn et al. as a polynomial in the group generators. 
This procedure is probably best described in the context of 
the pattern calculus and will be discussed more fully in a 
later publication. 

Finally, we note that we have given an expression for 
the general matrix element (and the corresponding Wigner 
coefficients) as a polynomial in the group generators. This 
enables us to discuss "generalized matrix elements" without 
explicit reference to a basis state. It is therefore suggestive 
that this approach may be useful for obtaining generalized 
matrix elements for groups whose basis states are not known. 
In particular, it is hoped that useful information concerning 
the symplectic groups may be obtained by this method. 
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The main purpose of this paper is to describe a technique of reduction, whereby from the class of 
evolution equations for matrices of order N solvable via the spectral transform associated to the 
(matrix) linear Schrodinger eigenvalue problem, one derives subclasses of nonlinear evolution 
equations involving less than N 2 fields. To illustrate the method, from the equations for matrices 
of order 2 two subclasses of equations for 2 fields (rather than 4) are obtained. The first class 
coincides, or rather includes, that solvable via the spectral transform associated to the generalized 
Zakharov-Shabat spectral problem; further reduction to nonlinear evolution equations for a 
single field reproduces a number of well-known equations, but also yields a novel one (highly 
nonlinear). The second class also yields highly nonlinear equations; some examples are given, 
including another novel evolution equation for a single field. 

PACS numbers: 02.30.Jr 

1. INTRODUCTION 

Recently we have introduced and discussed a class of 
matrix nonlinear evolution equations that can be solved via 
the spectral transform associated with the matrix Schro­
dinger spectral (or "scattering") problem. I These equations 
involve generally N 2 fields (here and below N is the order of 
the matrices under consideration); but this number can be 
reduced by identifying equations (or rather classes of equa­
tions) that are satisfied by matrices having some special 
structure. For instance the requirement that a matrix of or­
der Nbe Hermitian halves the number of independent fields 
(from N 2 complex fields to N 2 real fields); the requirement 
that it be symmetrical reduces the number of independent 
fields to!N (N + 1); and so on. Such reductions are, however, 
rather trivial, and the corresponding restrictions on the class 
of evolution equations, that are required to guarantee com­
patibility with the time evolution, are easily established. I But 
other reductions are also possible, that decrease the number 
of independent fields by inducing nontrivial relations be­
tween different matrix elements that are compatible with the 
time evolution (for appropriately restricted classes of equa­
tions). The main purpose of the present paper is to introduce 
a technique to identify such reductions. The method is then 
illustrated by applying it to the case of matrices of order 2, 
thereby obtaining, from the general class of equations in­
volving 4 independent fields, sublcasses of equations involv­
ing only two fields, or just a single one. One such class coin­
cides with (or rather includes, since there is one added 
element of generality) that solvable via the spectral trans­
form associated to the generalized Zakharov-Shabat spectral 
problem2

; a result that has been obtained independently by 
Jaulent and Leon.3 

For matrices of order 4, the simpler equation of the 

a)Permanent address: Istituto di Fisica, Universita di Roma, 00185 Roma, 
Italy. 

class solvable via the Schrodinger spectral transform has 
been analyzed by Bruschi, Levi, and Ragnisco.4 This equa­
tion involves of course 16 fields; reduced versions involving 
respectively 10, 8, 6, 5, or 4 fields have also been obtained, by 
iden tifying the cases in which some of the 16 fields, if vanish­
ing at the initial time, continue to vanish for all time.4 Thus 
these reductions are rather simple; although the equations 
obtained in this manner are certainly far from trivial. All 
these reductions can be treated by the technique described in 
this paper, but this technique is actually richer. We plan to 
present the results obtained by its application to matrices of 
order 3 and 4 in separate papers. 

The plan of this paper, and an outline of its content, can 
be evinced from the titles of the following sections and sub­
sections. Here we merely report two novel, highly nonlinear 
evolution equations involving a single field, whose solvabil­
ity is demonstrated below. The first reads 

u, = Uxxx - 6u x I u2 
- (u + Uxx - 2U3

)2/ 

[a 2 _ 4(u2 + u; - u4 )]J; (1.1) 

u=u(x,t), u( + 00 ,t) = 0, u( - 00 ,t) = 0 if a
2

=/= 1, 

u( - 00 ,t ) = arbitrary constant if a2 
= 1. 

The second reads 

v, = Vxxx - i v~ + VX [A exp(v) + B exp( - v} + C]; 

v=v(x,t }, v( + 00 ,t} = 0, v( - 00 ,t) = 0 

or 

v( - oo,t) = In(B /A). 

2. PRELIMINARIES AND NOTATION 

(1.2) 

The class of matrix nonlinear evolution equations solv­
able via the spectral transform associated with the matrix 
Schrodinger spectral problem reads I 

Q, = am(l~)[O'm,Q] +/3I"(~)CiO'I" . (2.1) 
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Here and below Q Q (x,t) is a matrix of order N vanishing 
(sufficiently fast l

) asymptotically, 

Q(± co,t)=O. (2.2) 

Latin subscripts run from 1 to N 2 
- 1, Greek sUbscripts 

from 0 to N 2 - 1 and repeated subscripts are summed upon. 
The N 2 matrices U /1 provide a basis for matrices of order N, 
with Uo = 1; the 2N2 - 1 functions am (z) and.B/1 (z) are ratios 
of entire functions (in all interesting cases, they are in fact 
rational functions; in most interesting cases, they are just 
polynomials of low degree); except for these restrictions, 
these functions are arbitrary, and it is their choice that char­
acterizes each particular evolution equation of the class (2.1). 
The possibility to solve the Cauchy problem for (2.1) via the 
spectral transform technique is maintained even if the func­
tions am and.B /1 depend explicitly on the time variable t; but 
we assume, for the sake of simplicity, that they are time inde­
pendent. Then the evolution Eq. (2.1) is invariant under time 
translations; the (Cauchy) problem we shall always have in 
mind is the determination of Q (x,t ) for t> ° given by 

Q (x,O) = Q (x) (2.3) 

(of course with Q ( ± co) = 0). Finally the integro-differen­
tial operators 1:.. and (!., are defined by the following formulas 
that detail their action on the generic matrix F(x): 

1:..F (x) = Fxx(x) - 21 Q(x,t),F(x) J + (!., f" dx' F(x'),(2.4) 

(!.,F(x) = 1 QxCx,t ),F(x) J 

+ [Q(X,t), L"" dx' [Q(X',t),F(X')]]. (2.5) 

Here of course, as well as above and below, sUbscripted var­
iables denote partial differentiation, and the square and 
curly brackets with a comma inside indicate as usual com­
mutators and anticommutators: 

[A,B]=AB-BA, IA,BJ=AB+BA. (2.6) 

The solvability via spectral transform of(2.1) hinges 
essentially on the fact that the corresponding evolution 
equation for the reflection coefficient R (k,t) is linear 1 : 

R,(k,t) = [A ( - 4k 2),R (k,t)] 

+ 2ik 1 B ( - 4k 2),R (k,t ) J ; (2.7) 

here and always below 

(2.8) 

In fact, to solve completely the Cauchy problem via the spec­
tral transform, the time evolution of the appropriate param­
eters corresponding to the discrete part of the spectrum (if 
any) must also be given I; but we assume for simplicity that 
these results can all be extracted by analytic continuation in 
k of R to the poles on the upper imaginary axis I; so that in the 
following we limit our analysis to the time evolution of R. 
This simplifies considerably our presentation; of course the 
results are then, strictly speaking, established only for Her­
mitian matrices Q vanishing asymptotically faster than ex­
ponentially; but they clearly have a more general validity, as 
can be easily demonstrated by looking directly also at the 
time evolution of the part of the spectral transform associat­
ed to discrete eigenvalues. 1 
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The basic tool of our treatment obtains from the Wrons­
kian-type formulas 1 

2ik [F( - 4k 2),R (k)] 

= f~+",oo dxiP(x,k H fm(1:..)[um,Q(x)] J l[I'(x,k), (2.9a) 

(2ik )21 H ( - 4k 2),R (k)J 

= L+",OO dxiP(x,k H h/1 (1:..)(!"U/1 J l[I'(x,k). (2.9b) 

Here and below,fm (z) and hi' (z) are arbitrary entire func­
tions (in fact, in all applications below, low-order 
polynomials); 

(2.10) 

1[1' and 1[1' are appropriate matrix solutions of the Schrodinger 
equation characterizing the spectral problem I; while the re­
maining symbols have already been defined. We have not 
indicated explicitly, in these equations, the time dependence 
(of R, Q, iF, and 1[1'); indeed these equations are merely a 
consequence of the spectral problem, having nothing to do 
with the time evolution. But they remain of course valid if Q, 
and therefore also R, iP and 1[1', depend on time (such depen­
dence is indeed, from the spectral point of view, purely 
parametric). 

3. REDUCTION TECHNIQUE 

The task here is to identify matrices Q having a special 
structure that is maintained as they evolve in time according 
to (2.1), or rather according to some appropriate subclass of 
(2.1). The essential requirement characterizing such a spe­
cial structure is that it induce, at any given time, relations 
between the different matrix elements of Q, so as to reduce 
the number of these that can be assigned independently (as 
functions of x, for any given t and in particular for t = 0); 
these relations need not be algebraic, but can in fact be inte­
gro-differential (see below). 

Since the time evolution (2.1) of Q is complicated, while 
the corresponding time evolution (2.7) of R is simple [indeed 
this simplicity constitutes the foundation of the spectral 
transform technique to solve (2.1)], it is clearly easier to find 
matrices R that have a special structure compatible with the 
time evolution. On the other hand, since there is a one-to-one 
correspondence between Rand Q (up to the discrete spec­
trum part of the spectral transform, that, as explained above, 
is ignored in this analysis), clearly to any reduction in the 
number of independent elements of R (each being a function 
of k ) there corresponds an analogous reduction in the num­
ber of independent elements of Q (each being a function of x). 

Thus the main question is to translate a special struc­
ture of R into the corresponding special structure of Q; or 
rather, to identify those special structures of R that make 
such a translation easy (namely, to identify those restrictions 
on R such that the corresponding restrictions on Q are easily 
ascertained). A convenient tool to achieve this goal was re­
ported at the end of Sec. 2, for the results (2.9) imply that, if 
the matrix Q (x,t ) satisfies the (nonlinearintegro-differential) 
equation 

F. Calogero and A. Degasperis 24 



                                                                                                                                    

(3.1) 

the corresponding matrix R (k,t ) satisfies the linear equation 

[F(-4k2),R] +2ik [H(-4k2),R ) =0, (3.2) 

where the matrices F and H are of course defined by (2.10). 
Note that in these equations the 2N2 - 1 functionsfm (z) and 
hI' (z) are arbitrary (they must be entire; in all practical appli­
cations they will be low-order polynomials). 

The matrix equation (3.2) yields of course, for given F 
andH, N 2 homogeneous linear equations fortheN 2 elements 
of R; thus, for a generic choice of F and H, it is compatible 
only with the trivial solution R = 0. But for appropriate 
choices of F and H, the restriction (3.2) merely implies a 
reduction in the number of independent elements of R; and 
the corresponding relation for Q is then explicitly given by 
(3.1). Note that this last equation is generally integro-differ­
ential and nonlinear [see (2.4) and (2.5)]; however, if the 
functionsfm (z) and hi' (z) are polynomials of very low order 
(zero, or perhaps one) (3.1) can be explicitly solved; namely 
the relations between the different matrix elements of Q im­
plied by (3.1) can be rewritten as explicit expressions of some 
elements in terms of the others (see below). 

Of course this process of reduction can be applied more 
than once, namely it can be required that R satisfy n equa­
tions of type (3.2) (with F(z) = F(;)(z), H (z) = H (;)(z), 
j = 1 ,2, ... ,n), the corresponding Q being then constrained by 
the n corresponding equations of type (3.1). 

Thus, this technique provides the possibility to trans­
late appropriate types of constraint on R (k ) into the corre­
sponding constraints on Q (x), and vice versa. Let us empha­
size that one is displaying here certain properties of the 
spectral transform, that have a priori nothing to do with the 
time evolution, and which may indeed also have applications 
just in the context of the spectral (or "scattering") problem. 
But of course if Q, and therefore R, evolve in time, the ques­
tion of compatibility of any condition imposed on these ma­
trices arises: if at the initial time Q resp. R satisfy a certain 
restriction of type (3.1) resp. (3.2), shall they satisfy it for all 
subsequent time? We identify below subclasses of the evolu­
tion Eq. (2.1) for which this is the case; clearly each evolution 
equation of these subclasses may be considered to describe 
the evolution of M fields, with M < N 2 (the precise value of M 
in each case depending on the specific case under consider­
ation, see, for instance, the examples discussed below). 

As we have already mentioned, rather than discussing 
the compatibility of a restriction of type (3.1) with the time 
evolution (2.1) ofQ it is convenient to consider the compati­
bility of the corresponding restriction of type (3.2) with the 
time evolution (2.7) of R; the correspondence between Rand 
Q being then a guarantee that one kind of compatibility im­
plies the other. 

Let us thus define 

Z (k,t) = [F( - 4k 2),R (k,t)] + 2ik [H ( - 4k 2),R (k,t) J, 
(3.3) 

in order to ascertain when Z (k,t) = ° is compatible with 
(2.7). Differentiating with respect to t and using (2.7) one 
easily obtains 
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Z,(k,t) 

= [A ( -4k 2),Z(k,t)] + 2ik [B ( -4k 2),Z (k,t») 

+ C (k,t) (3.4) 

with 

C (k,t )=[R (k,t ),([A ( - 4k 2),F ( - 4k 2)] - 4k 2[B ( - 4k 2), 

H( -4k2)])] -2ik [R (k,t),([B( -4k 2),F( -4k2)] 

+ [A (-4k2),H( -4k 2)])). (3.5) 

Thus Z (k,O) = ° implies Z (k,t ) = 0 for t> 0 provided 

C (k,t) = 0; (3.6) 

this last equation is therefore the compatibility condition. 
Note that C, as defined by (3.5), depends on the matrices 

F and H, that characterize the restrictive condition (3.2), and 
on the matrices A and B, that characterize the evolution 
equation (2.7); it depends moreover on R itself, that is of 
course a priori unknown except for the requirement that it 
satisfy the restriction (3.2). Thus (3.6) is required to hold for 
any R compatible with (3.2). Of course (3.6) is required to 
hold for all values of k. 

There is always at least one evolution equation of the 
class (2.1) for which the compatibility condition holds, 
namely the "scalar" case corresponding to 

am(z) = (3m (z) = 0, 

or equivalently 

A = 0, B =(3o( -4k 2)1. 

(3.7a) 

(3.7b) 

Examples in which the reduction process is compatible with 
a larger subclass of (2.1) than this are given below. 

If the compatibility condition (3.6) is satisfied, a matrix 
Q, that has been reduced by the condition (3.1) to have only 
M < N 2 independent elements (each being a function of x, for 
given t ), may be required to evolve in time according to (2.1). 
Then this matrix evolution equation, although correspond­
ing formally to N 2 scalar equations, yields in fact only M 
coupled evolution equations, the remaining N 2 - M being 
automatically satisfied. Thus one is finally left with a system 
of M coupled evolution equations for M fields; these may be 
assigned (as functions of x, for - 00 < x < 00) at any given 
time (and in particular at the initial time t = 0), their values 
at all subsequent times being then determined by the require­
ment that they obey the system of evolution equations. 

In conclusion, the process of reduction can be summa­
rized as follows: (i) choose the matrices F (z) and H (z); (ii) 
ascertain the constraint they imply on R through (3.2); (iii) 
ascertain the constraint implied on A (z) and B (z) by the re­
quirement that (3.6) hold for any R compatible with (3.2), as 
determined in step (ii) [of course with the sameF (z) andH (z) 
in (3.6) as in (3.2)]. All these steps are algebraic, and they 
determine the class of reduced evolution equations. The cor­
responding structure for the matrix Q is determined by (3.1); 
this last step need not be purely algebraic. This process of 
reduction may be performed more than once, with different 
Gudicious!) choices of F and H. 

4. APPLICATION TO MATRICES OF ORDER 2 

In this section the analysis is restricted to matrices of 
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order 2, in which case the natural choice for the basic matri­
ces ull identifies them with the standard Pauli matrices: 

(1o=(~ ~), (11=(~ ~), 

(12 = ( ~ - ~). (13 = ( ~ _ ~ ); (4.1) 

((1m,(1nl = 28mn , [Um,un ] =2iEmn/(1/· 

Here of course 8mn is the (symmetrical) Kronecker symbol 
(8mn = 1 if m = n, 8mn = 0 if m 'in) and Emn/ is the (com­
pletely antisymmetrical) Ricci symbol (E123 = 1). It will be 
convenienttorepresentalsothematricesQ (x,t )andR (k,t )in 
this basis, writing 

Q=QIl(1/l =QO+Q",(1m' R=RIl (11l =RO+Rm(1m· 
(4.2) 

Thus our task here is (i) to analyze the constraint condi­
tion (3.2) [for various possible choices of the matrices F (z) 
and H (z)] and to investigate how it reduces the number of 
independent components of R; (ii) to identify, using the con­
dition (3.6), the subclass ofthe nonlinear evolution equations 
(2.1) that are compatible with the constraint; (iii) to extract 
from the corresponding constraint (3.1) relations determin­
ing some of the elements of Q in terms of the others, or equiv­
alently some of the components Qfl in terms of the remaining 
ones; (iv) to write explicitly the novel class of nonlinear evo­
lution equations for the reduced number of fields, introduc­
ing at this stage if need be an appropriate notation (to make 
contact with known results) and discussing some specific 
examples. 

We note first of all that, as can be easily shown, there is 
no choice of the matrices F and H in (3.2) that reduces the 
number of independent components of R from 4 to 3. There 
exist instead several possibilities to reduce the independent 
components to 2; and then the reduction process can be ap­
plied once more (sometimes rather trivially, sometimes non­
trivially; see below) to reduce to one field only. The more 
interesting instances are discussed in Sec. 4.1-4.4. 

4.1 Simple example: The class of nonlinear evolution 
equations solvable via the generalized Zakharov­
Shabat spectral problem as a subcase of the class of 
nonlinear evolution equations solvable via the matrix 
SchrOdinger spectral problem 

Set 
F(z) = 0, H (z) = U 3' (4.1.1) 

in (3.2). There immediately follows 

R (k,t) = R I(k,t )(11 + Rz{k,t )(12' (Ro(k,t) = R3(k,t) = 0). 
(4.1.2) 

It is also easy to obtain the corresponding relations for Q (x,t ) 
that obtain inserting (4.1.1) in (3.1): 

Q (x,t) = Qo(x,t) + QI(X,t )(11 + Qz{x,t )(12' (Q3(X,t) = 0), 
(4.1.3) 

QO<x,t) = [i~ dx' QI(X"t)r + [1"0 dx' Q2(X',t)r 

(4.1.4) 

To obtain the last equation, we have used the boundary con-
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dition QO< + 00 ,t ) = 0; the condition Qo( - 00 ,t ) = 0 im­
plies a constraint on QI and Q2 (see below). 

We consider next the compatibility condition (3.6), and 
using (4.1.2) it is easily seen that it implies 

A (z) = a 3(z)(13' (al(z) = a 2(z) = 0), 

B (z) = (3o(z), VJl(Z) = (32(Z) = (33(Z) = 0). 

(4.1.5a) 

(4.1.5b) 

[Actually the compatibility condition does not con­
strain{33' but the validity of(3.2) with (4.1.1) implies that the 
(33 term does not contribute in the nonlinear evolution equa­
tion (2.1); thus by setting (33 = 0 no generality is lost.] 

Thus the subclass of nonlinear evolution equations for 
the two fields QI and Q2 reads 

Qt(x,t) = 2{3o(~.JQx(x,t) + aJl.~.)[u3,Q (x,t)], (4.1.6) 

where of course L is defined by (2.4) and Q is expressed in 
terms ofQl and ti2 by (4.1.3) and (4.1.4). The corresponding 
equation for the reflection coefficient R (k,t ) reads of course 

R t (k,t) = 4ik{3o( - 4k 2)R (k,t) + a 3( - 4k 2) [(13,R (k,t)]. 
(4.1.7) 

To show the complete correspondence of these equa­
tions to those solvable via the generalized Zakharov-Shabat 
spectral problem (Ref. 2) we introduce the matrix 

( 
0 q(X,t)) 

V(x,t) = r(x,t) 0 

= (1lql(x,t) + i(12q2(X,t), (4.1.8) 

so that 

q = ql + q2' r = ql - qz; ql = ~(q + r), q2 = ~(q - r), 
(4.1.9) 

and we relate it to Q (x,t ) via the formula 

Q = Vx + V 2 = (qr qx), 
rx qr 

(4.1.10) 

so that 

fX> dx' QI(X',t) = - ql(x,t), 

1"0 dx' Q2(X' ,t ) = - iq2(X,t ), 

QI=qlx' Q2=iq2X· (4.1.11) 

This last formula provides some motivation for introducing 
the "matrix Miura transformation"S (4.1.10). The corre­
sponding formula for R reads 

with 

( 
0 a l

-
I
( - k,t)) 

R(k,t)= al+l(k,t) o. (4.1.12) 

With these notations (4.1.6) and (4.1.7) become 

(13Vt(X,t) + r(~zs)v(x,t) = 0, (4.1.13) 

at I ± i(k,t) ± y(k )al ± I(k,t) = 0, (4.1.14) 

( r(x,t») 
v(x,t) q(x,t) 

r(k) = - 4ik{3o( - 4k 2) + 2ai - 4k 2), 

(4.1.15) 

(4.1.16) 

the matrix integro-differential operator ~zs being defined by 
the formula 
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(
u(l)(X) ) 

0s U(2)(X) 

= ~ ( Ux (I)(X) ) + i (r(X,t) ) 
2i - Ux (2)(X) q(X,t) 

X f" dx' [r(x',t )U(2)(X') - q(X',t )U(l)(X')], (4.1.17a) 

or equivalently 

0su(x) = (2i)-10"3Ux(X) 

- u(x,t) 1''' dx' (u(x',t )'0"2U(X')). (4.1.17b) 

The complete equivalence of these equations to those of Ca­
logero and Degasperis2 is apparent. 

Actually the class of nonlinear evolution equations ob­
tained here is more general than that of Calogero and Dega­
speris,2 because there one had the condition that the two 
fields q and r vanish asymptotically (x- ± 00) together with 
all their derivatives, while here one must require that Q van­
ish asymptotically (x_ ± 00) with all its derivatives, namely 
[see (4.1.10)] all the derivatives of the two fields q and rare 
required to vanish asymptotically, but the two fields them­
selves need not both vanish as x- - 00 [that they should 
vanish as x_ + 00 is implied by (4.1.11) and (4.1.9)] 

q(x,t) _ 0, r(x,t) - 0, q(x,t )r(x,t ) - O. 
x- + 00 x_ + 00 X"-----" - 00 

To display an explicit example, we set 

aiz) = (2i)-·(a + bz), f3o(z) = !(e + dz). 

Then the nonlinear evolution equations read 

(4.1.18) 

(4.1.19) 

r, = iar + ib [rxx - 2(qr)r] + erx + d [rux - 6(qr)rx ], 
(4.1.20a) 

q, = -iaq-ib [qxx -2(qr)q] +cqx 

+ d [qxxx - 6(qr)qx ], 

or equivalently [see (4.1.9)] 

q.t = - iaq2 - ib [q2xx -2(q~ - q~)q2] + eq.x 

(4.1.20b) 

+ d [q.xxx -6(qi - qDq.x], (4.1.2Ia) 

q2' = -iaq.-ib [q.xx -2(qi -q;)ql] +eq2x 

+d [q2xxx -6(qi -q~)q2x]. (4.1.2Ib) 

A reduction of the class of nonlinear evolution equa­
tions solvable via the matrix Schrodinger spectral problem 
to the class solvable via the "generalized Zakharov-Shabat 
spectral problem" can be performed also in the case ofmatri­
ces of order N, in close analogy to the treatment given here. 
We propose, however, to treat this problem in a separate 
paper, where we shall also provide a more detailed analysis 
of the connection between the two spectral problems [such 
an analysis may also serve to better motivate the transforma­
tions (4.1.10) and especially (4.1.12), that have been given 
here without much explanation of their origin]. 
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4.2 Further reduction: Identification of a novel highly 
nonlinear class of solvable equations for a single field 

In Sec. 4.1 we described the reduction of the class of 
nonlinear evolution equations solvable via the 2 X 2 matrix 
Schrodinger spectral problem to that solvable by the gener­
alized Zakharov-Shabat problem Ref. 2. As is well-known, 
several classical nonlinear evolution equations are contained 
in this class, including in particular the nonlinear Schro­
dinger equation, the modified K dV equation and the sine­
Gordon equation. These equations (in particular the last 
two, that are generally written for a single real field) can be 
obtained by applying once more the reduction technique; but 
these developments are too trivial and well-known to deserve 
reporting. In this section we consider instead a less trivial 
additional reduction of the class of evolution equations 
(4.1.6) [with (4.1.3) and (4.1.4)], namely that resulting from 
the choice, in (3.1) and (3.2), of 

(4.2.1) 

where Co and clare constant. 
It is then immediately seen that 

R (k,t) = R.(k,t )[0"1 + i(co - 4k 2cd0"2] = R1(k,t )F( - 4k 2). 
(4.2.2) 

The derivation of the corresponding formula for Q, re­
sulting from the constraint (3.1) that now reads 

[O"I>Q] + i(eo + C.~)[0"2,Q] = 0, (4.2.3) 

is less elementary; we outline the main steps in the Appen­
dix. The final result is most conveniently written in terms of 
the fields ql and q2 of Sec. 4.1 [see in particular (4.1.8-
4.1.11)], and it reads 

q2 = [e~1 - cI(2q~ - q.xx)]I 

[l-4coClqi +4c~(q~ -qix)r12
• (4.2.4) 

Next one considers the compatibility condition (3.6), 
and it is easily seen that it implies a 3 = O. 

In conclusion, a class of nonlinear evolution equations 
for the single field 

u(x,t )==q.(x,t), (4.2.5) 

solvable by the spectral transform technique obtains setting 
a 3 = 0 in (4.1.6), letting f3o(z) be an arbitrary entire function 
(or more generally, the ratio of two entire functions), and 
expressing the matrix Q in terms of the single field u as im­
plied by (4.1.8H4.1.11), and (4.2.4-4.2.5). Equivalently but 
more simply, the same class of nonlinear evolution equations 
obtains from (4.1.13), with y(z) odd in z and entire (or, more 
generally, the ratio of two entire functions), the fields rand q 
being given in terms of u by (4.1.9), (4.2.4), and (4.2.5). 

The asymptotic boundary conditions that must supple­
ment this class of equations, so as to assure consistency, via 
(4.2.5), (4.1.11), (4.1.10), and (4.1.9), with the assumed as­
ymptotic vanishing of Q and its derivatives, require U to van­
ish with its derivatives as x- + 00, 

0= u( + oo,t) = ux( + oo,t) = uxx ( + oo,t) = ' .. , (4.2.6a) 

and moreover that all the derivatives of u vanish as 
x_- 00, 

O=ux(- oo,t)=uxA- oo,t)= ... ; (4.2.6b) 
but the value of u itself as x- - 00 is required to vanish only 
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if c6 #- 1 (elementary algebra shows that, if C6 = 1, any as­
ymptotic value of u is consistent with the requirement that 
the matrix Q vanish asymptotically): 

u(- co,t)=O if C6#-1, 

u( - co,t) = arbitrary constant, if c6 = 1. (4.2.6c) 

In fact it is easily seen that, provided c~ = 1 and C I #- 0, u 
might even diverge as x~ - co [but the derivatives of u 
must vanish, see (4.2.6b)]. 

Of course another requirement on u is that Q2' as given 
by (4.2.4) and (4.2.5), be finite for - co <x < co; a condition 
sufficient to guarantee this is the requirement that u itself be 
regular and that the denominator on the right-hand side of 
(4.2.4) not vanish for real x. It is clearly sufficient that all 
these conditions hold at the initial time, since they are then 
automatically guaranteed to hold throughout the time 
evolution. 

A simple example of nonlinear evolution equation of 
this class obtains inserting (4.2.4)-(4.2.5) in (4.1.21a) (of 
course with a = b = 0, as required by the consistency condi­
tion that forces a 3(z) to vanish; see above). It reads 

Ut = cU x + d (uxxx - 6u x [u2 - (cou - 2C lU
3 + Cl uxx )2/ 

(1-4coclu2+4ciu4-4ciu~)]). (4.2.7) 

The change of dependent and independent variables 

u(x,t) = (ColC I)I/2U'(X',t '), x = (CoIC I )I/2(X + ct), 

t' = d (ColC.)3/2t, (4.2.8) 

yields for u'(x',t') the neater equation 

u, = U xxx - 6u x (u
2 

- (u - 2u3 + uxxf/ 

[a 2 
- 4(u2 

- u4 + u;)]J, (4.2.9) 

that we have written omitting all primes (for notational con­
venience; and we persevere below), and setting Co = Va. The 
boundary conditions for this equation are 

0= u( + co,t) = ux ( + co,t) = uxx ( + co,t) = ... ; 
(4.2. lOa) 

0= ux ( - co,t) = uxx ( - co,t) = ... ; (4.2. lOb) 

u( - co ,t ) = ° if a2 #- 1, 

u( - co ,t) = arbitrary constant if a2 = 1. (4.2.lOc) 

Let us emphasize once more that the technique to solve 
this equation is through the equivalence of (4.2.7) to (2.1) 
with am = O,13m = 0, f3o(z) = !(c + dz) and Q given in terms 
of u by (4.1.8-4.1.11) and (4.2.4-4.2.5). This implies of course 
not only the possibility of solving the Cauchy problem I [giv­
enu(x,O)onecanclearlycomputeQ (x,O); and given Q (x,t ) one 
can recover u(x,t ) with just one quadrature, as implied by 
(4.1.11 n, but also to obtain all the results associated with the 
solvability of (2.1) by the spectral transform technique: An 
infinite number of conserved quantities, Backlund transfor­
mation, all the soliton phenomenology. I Here we merely re­
port the single soliton solution of (4.2.9), that reads 

u(x,t) = 2pa[(1 + 4p2f - a2]-1/2/coshl2p[x - 5(t)]J, 

(4.2.11) 

with 
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(4.2.12) 

In writing this equation we assume that p is a positive con­
stant such that the square root on the right-hand side of 
(4.2.11) is real, or equivalently, such that the quantity v de­
fined setting 

cothv = (1 + 4p2)1a, (4.2.13) 

is real. Note that the soliton of this equation moves with 
constant speed; this is in contrast with the generic behavior 
of the solitons associated with matrix nonlinear evolution 
equations, I but it agrees with the generic behavior of the 
solitons of the nonlinear evolution equations of the Zak­
harov-Shabat class (4.1.13),2 of which after all (4.2.9) is 
merely a subcase (although one that would not have been 
easy to discover without the technique given above). We also 
report the spectral transform I of the matrix Q corresponding 
to (4.2.11); it has of course R = 0, and a two-fold degenerate 
discrete eigenvalue - p2, so that the matrix C associated 
with ie has the structure 

C = CI + C2 (4.2.14) 

Cj = 2p exp(2p 5j)Pj , j = 1,2, (4.2.15) 

51 = 5 - (2p)-1 In sinlvL, 52 = 51 - i1r/(2p), (4.2.16) 

(4.2.17) 

fi~j) = 0, j = 1,2. 

Note that the constant f-l is in fact not present in C, 

C = 2p exp(2p5 )(<TI sinhv + i<T2 coshv), (4.2.19) 

and accordingly does not appear in (4.2.11). Let us empha­
size that, for equations obtained by reduction, the fact that 
the solitons may correspond to degenerate discrete eigenval­
ues appears not to be exceptional.4 

Let us finally discuss some limiting properties of the 
solutions u(x,t;a) of Eq. (4.2.9). 

Clearly u(x,t; co ) satisfies the mK dV equation 

(4.2.20) 

(with 1] = +1); and indeed in this limit (4.2.11) yields the 
single-soliton solution of the mK dV equation (this solution 
is imaginary; indeed it is (4.2.20) with 1] = -1 that has real 
solitons). 

Another limiting case obtains setting 

U(€X,EJt;2/E) = i'" dx' sin[ 2 i~ dx" ii(x" ,t)], (4.2.21a) 

ii(x,t) = ~ ~ arcsin [ ~ U(EX,E"t;2/E)] , 
2 dx dx 

(4.2.21b) 

with E~O. It is then easily seen that ii(x,t ) satisfies again the 
mK dV equation (4.2.20) (with 1] = -1). 

A third limiting case obtains setting instead 
u(Ex,E3t;l) 

= - f" dx' exp [ - 2 i~ dX"U(X",t)] , (4.2.22a) 

U(x,t) = ~~ln[~U(EX'E3t;I)], (4.2.22b) 
2 dx dx 
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again with E---+<). It is easily seen that also ii(x,t) satisfies the 
mK dV equation (4.2.20) with (71 = +1). 

It is remarkable that these three limiting procedures all 
yield sol utions of the mK dVequation. It should however be 
noted that while the first two prescriptions produce solu­
tions of mK dV that vanish asymptotically, the last one ap­
pears to yield solutions that diverge asymptotically; the way 
is thereby opened to the study of the Cauchy problem for the 
mK dV equation with diverging asymptotic behavior, that 
however does not appear to be anywhere as interesting and 
important as the analogous problem for the K dV equation.6 

4.3. Another class of nonlinear evolution equations 
involving two fields 

In this section we consider another reduction of the 
class of evolution equations (2.1) for matrices of order 2, that 
again decreases the number of independent fields from 4 to 2, 
but in a different fashion than in Sec. 4.1. It obtains setting in 
(3.2) 

F(z) = - i(yo + YIZ)O"I' H (z) = Y0"3' 

There immediately follows 

R (k,t) = - [(Yo - 4k 2YI)/(2iyk )]Rz(k,t) 

+ R I(k,t )0"1 + RzCk,t )0"2, 
(Rik,t) = 0), 

or equivalently 

R (k,t) = Ro(k,t) + R I(k,t )0"1 

- [2iyk /(Yo - 4k 2yl )]Ro(k,t )0"2' 

(4.3.1) 

(4.3.2a) 

(Rik,t) = 0). (4.3.2b) 

These two expressions display the fact that R contains now 
only 2 independent components; while their equivalence is 
quite obvious, the first is to be preferred in the special case 
Yo = YI = 0, the second in the special case Y = 0 (see below). 

The corresponding expression for Q obtains inserting 
(4.3.1) in (3.1). After some labor, that we consider sufficient­
ly straightforward not to warrant any reporting, there ob­
tains the result 

Q(x,t) = Q,,(x,t) + QI(X,t)O"I + Qz(X,t)0"2' (Qix,t) = 0), 
(4.3.3) 

Qo(x,t) = (y + 2YI W2)~2 [Yl(Y + 2Yl W2)W2xx - fz W~x 
+ W~(y + y 1W2)2 + YoW2(y+ y 1W2) 

+ y2 W i + 4fz U 2 
- 4YIYUW1], (4.3.4) 

~ = ~(x,t) = Ioc dx' Qj(x/,t), 

Q/x,t) = - ~xCx,t), j = 1,2, 

U= U(x,t) = - L" dx' Ql(X/,t)W2(x',t), 

V(x,f) = - W1(x,f)W2(x,t) 

+ L'" dx' Qz(x',t)W1(x',t). 

(4.3.5) 

(4.3.6a) 

(4.3.6b) 

Note the similarity of this definition of ~ to the definition 
(4.1.11) of the fields q j; the differences are caused by the 
need, in Sec. 4.1, to reproduce the notation of Calogero and 
Degasperis. 2 
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We consider next the compatibility condition (3.6), and 
using (4.3.2) it is easily seen that it implies 

a1(z) = i[(yo + YIZ)/y]/33(Z), 

az(z) = f3zCz) = 0, 

aiz) = i[yz/(yo + Y1Z)]/31(Z), 

(4.3.7a) 

(4.3.7b) 

(4.3.7c) 

withf3o(z),f3l (z), andf32(z) arbitrary entire functions, or rath­
er ratios of entire functions. Note moreover that the con­
straint condition (3.2) with (4.3.1), together with (4.3.7a), 
implies that thea 1 and 133 terms in (2.1) cancel each other, so 
that one can set, without loss of generality, 

(4.3.7d) 

In conclusion the class of nonlinear evolution equations 
that we have now obtained corresponds to (2.1) with the 
functions am (z) andf3,u (z) restricted by the conditions (4.3.7) 
and with the matrix Q given by (4.3.3-4.3.6). This class, for 
any choice of the functions am and f3,t [compatible with 
(4.3.7)], yields two coupled evolution equations for the two 
fields Ql(X,t) and QzCx,t), or equivalently for the fields 
WI (x,t ) and Wz(x,t) of (4.3.5) (indeed the evolution equa­
tions have generally a neater appearance when written in 
terms of the dependent variables Wj rather than Q j; see 
below). The boundary conditions to be required are clearly 

0= W/ + oo,t) = WjxC + oo,t) = W jxx ( + oo,t) = "', 
j = 1,2, (4.3.8a) 

and 

0= WjxC - oo,t) = WjXxC - oo,t) = ... , j = 1,2. (4.3.gb) 

As for the values of the fields Wj as x- - 00, the relevant 
condition must be read from (4.3.4), corresponding to the 
requirement 

(4.3.8) 

The first example we consider corresponds to the choice 

Yl = 0, f3o(z) = !(c + dz), f3l(z) = -! byo/Y. (4.3.9) 

Then one obtains for the two fields 

u(x,t) = W1(x,t), V(X,f) Wz(x,f) +! yoly (4.3.10) 

the evolution equations 

u, = - b [vxx -2v(u2 + v2 - C 2)] + cux 
+d[uxxx -6UxCU2+V2-C2)], (4.3.11a) 

v, = b [u xx -2u(u 2 + v2 
- C 2)] + CVx 

+ d [vxxx -6vxCu2 + v2 - C 2
)], (4.3.11b) 

where we have introduce the constant 

C=! Yo/Y. (4.3.12) 

Assuming the constants b, c, d, and C 2, as well as the fields u2 

and v2
, to be real, one can introduce the complex field ifJ (x,t ) 

setting 

ifJ (x,t ) = u(x,t) + iv(x,t ). (4.3.13) 

Then the two evolution equations (4.3.11) combine into the 
single equation 

ifJr = ib [ifJxx - 27J( 1 ifJ 12 - 1 C 12)ifJ ] + cifJx 

+ d [ifJ xxx - 67J( 1 ifJ 12 - 1 C 12)ifJ x], 71 = ± 1 
(4.3.14) 
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(for'T/ = + I, u, v, and C are real; for'T/ = - I, they are 
imaginary). Moreover the boundary conditions for the field 
<p (x,I), besides requiring the asymptotic vanishing of all its 
derivatives, read 

<p ( + 00 ,I ) = iC, I <p ( - 00 ,I) I = I C I· 

Thus the field 

t/J(x,l) = exp( - ial + ip)<p (X,I), 

(4.3.15) 

(4.3.16) 

where a and p are real constants, satisfies the "generalized 
Hirota equation"? 

t/Jt = - iat/J + ib [t/J xx - 2'T/( I t/J 12 - I C 12)t/J] + ct/J x 
+d[t/Jxxx -6'T/(1t/J12_ICI2)t/Jx], (4.3.17) 

with boundary conditions 

I t/J( + 00 ,f ) I = I t/J( - 00 ,I ) I = I C I· 

[Note that the last equation need not imply 
t/J( + oo,t) = t/J( - oo,t).] 

(4.3.18) 

Of course subcases of this equation are the (generalized) 
versions of the nonlinear Schrodinger equation and of the 
mK dV equation, that obtain respectively for a = c = d = 0, 
b = I, reading 

it/Jt = -t/Jxx +2'T/(1t/J12_ICI2)t/J, 

'T/= ± I, It/J(± oo,t)1 = ICI, (4.3.19) 

and for a = b = c = 0, d = I, t/J(x,t) = t/J·(x,1 ) = u(x,t), 
reading 

Ut = Uxxx - 6'T/(u 2 
- I C 12)U, 

'T/= ± 1, u2(± oo,t)= ICI 2
• (4.3.20) 

The second example we consider corresponds to the 
choice 

(4.3.21) 

One obtains then the two nonlinear evolution equations 

~,(X,/) = c~x(x,t) + d [~xxx(x,t) 
-6Qo(x,t) Jfjx(x,t)], j= 1,2, (4.3.22) 

with Qo given in terms of WI and W2 by (4.3.4)-(4.3.6). These 
equations are rather complicated; but they yield a simpler 
equation if a further reduction is performed. This is dis­
cussed in Sec. 4.4. 

4.4 Further reduction: Novel solvable nonlinear 
evolution equation for a single field 

The further reduction that we apply here is directly sug­
gested by the structure of (4.3.22), that is clearly compatible 
with the position 

W2(x,t) = u(x,I), WI(x,l) =PU(X,I), (4.4.1) 

P being a constant. This implies [see (4.3.5)-(4.3.6)] 

U (x,t) = - ~ pU2(X,1 ) (4.4.2) 

and [see (4.3.4)] 

Qo(x,l) = (y + 2ylu)-2{ YI(Y + 2ylu)uxx - ftu; 

+ u(y + YIU)[YO + (1 + p2)(y + ylu)uJ). (4.4.3) 

Thus one obtains now for the single field u(x,t ), or rather 
for the field 
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u'(x' ,I') = 2(y Ily)u(x,1 ), x' = AX + pI, I' = dA 3/, 
(4.4.4) 

the nonlinear evolution equation (hereafter all equations are 
written for the primed variables, but dropping all primes for 
notational convenience) 

- ~ [ _ 1 2/(1 ) u, - uxx 2 Ux + U ax 
+ tA(1 +u)3-B/(1 +u)+Cu], 

where 

A = - i(1 + p2)y2/(ftA 2), 

B = A + ~ yoI(YIA 2), 

C= -A -B+(d -p)/(dA 3
). 

(4.4.5) 

(4.4.6a) 

(4.4.6b) 

(4.4.6c) 

Of course some of these constants can be eliminated or set to 
unity by appropriate choices of the constants A andp. 

The boundary condition to be associated with (4.4.5) 
requires all derivatives of u to vanish asymptotically, and 
moreover u itself to vanish as x_ + 00 (we are assuming 
A>O): 

0= u( + 00,1) = ux( + 00,/) = uxx ( + 00,1) = "', 
(4.4.7a) 

O=ux(- oo,t)=uxx (- oo,t)=.... (4.4.7b) 

As for the value of u as x_ - 00, the following four possi­
bilities are all compatible with the condition Qo( - 00 ,t ) = 0: 

u(-oo,t)= -1±1, u(-oo,t)= _1±(BIA)1/2; 
(4.4.7c) 

of course the last one can be contemplated, for real u, only if 
the ratio B I A is positive (this we assume below). 

Another interesting version of the nonlinear evolution 
equation (4.4.5) obtains setting 

u(x,t) = expBv(x,t)] -1, (4.4.8) 

since v obeys then the nonlinear equation 

v, = Vxxx - ! v! + Vx [A exp(v) + B exp( - v) + C ], 
(4.4.9) 

while the boundary conditions read 

0= v( + oo,t) = vxC + oo,t) = vxx ( + oo,t) = "', 

O=vx(- oo,t)=vxxC- 00,1)="', 

v( - 00,1) = 0 or v( - oo,t) = In(B I A ). 

(4.4. lOa) 

(4.4. lOb) 

(4.4.lOc) 

Let us note that the expression of the (matrix) reflection 
coefficient corresponding to the matrix Q of(4.3.3)-(4.3.5) 
and (4.4.1)-(4.4.3) reads 

R (k,t) = Ro(k,t )[1 - 2iky(yo - 4k 2Yltl(p(71 + (72)]' 
(4.4.11) 

and evolves according to the simple equation 

ROt(k,t) = 2ik (c - 4k 2 d )Ro(k,t) (4.4.12) 

[here we are again using the unprimed t variable; see (4.4.4)]. 
Finally let us note the limiting cases that can be ob­

tained from (4.4.9) [or equivalently (4.4.5)], setting 

v(x,t) = Et/J(X,t), (4.4.13) 
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(4.4.14a) 

(4.4. 14b) 

c = - 2A 2€-2, (4.4.14c) 

and considering the limit €-<l. Then (4.4.9) becomes 

tPr =tPxxx +tPx(Ao+AltP+A2~) (4.4.15) 

with the boundary conditions 

0= tP( ± oo,f) = tPx( ± oo,f) = tPxx( ± oo,f) = .... 
(4.4.16) 

This equation is, however, already contained in the class 
considered in Sec. 4.3 [see (4.3.17)]. 

5. CONCLUDING REMARKS 

The main purpose of this paper has been to present the 
method of reduction. Since the worth of any pie is apparent 
only in the eating, we have also applied it, but in the simplest 
context, namely to matrices of order 2. This has not only 
displayed the connection between the class of nonlinear evo­
lution equations solvable by the spectral transform associat­
ed to the Zakharov-Shabat spectral problem2 and those 
solvable by the matrix Schr6dinger problem, 1.3 but has in 
fact provided some generalization of the Zakharov-Shabat 
class (by allowing a less restrictive asymptotic behavior of 
the solutions). Moreover novel classes of nonlinear evolution 
equations involving two fields, or a single field only, have 
been obtained; we have displayed some of these, that provide 
therefore novel additions to the stock of nonlinear partial 
differential equations of evolution type solvable by the spec­
tral transform technique. All these equations possess of 
course all the properties characteristic of the "soliton" equa­
tions; and it is straightforward to display such properties 
using the formalism given in this paper and elsewhere. 1 

A number of additional applications are naturally sug­
gested by the results of this paper; in particular we shall 
report separately the findings yielded by the application of 
this approach to matrices of order higher than two. 
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APPENDIX 

In this Appendix we indicate how the nonlinear inte­
gro-differential equation (4.2.3) [with (4.1.8)-(4.1.11) and of 
course (2.4)-(2.5)] can be solved to yield (4.2.4). 

Trivial algebra yields first of all 

. . [ 6 2 4 2 q2x + IC~.x + IC. q.xxx - q.xq. + qL,q2 

+4q2A.q2 + 4q2x L" dx' q2X<X')ql(X')] = O. (AI) 
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It is then convenient to set 

w(x) = 100 

dx'q.X<x')qz{x'), 

qz(x) = - wx<x)lq.x<x), 

(A2a) 

(A2b) 

and to note that the left-hand side of (A 1) is a perfect differ­
ential, so that integration from x to 00 yields 

q2 + ic~. + ic.(q.xxx -2qi +4q2W) = O. (A3) 

Multiply this equation by q.x, and use (A2b) to elimi­
nate q2' One obtains again in this manner a perfect differen­
tial, whose integration from x to 00 yields the equation 

(A4) 

This is immediately solved for w (to identify the correct solu­
tion out of the two possible ones note that w must vanish 
when q.x and q. vanish, since this is what happens in the 
limit x- + 00), and subsequent insertion in (A2b) yields 
(4.2.4). 
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A method is suggested to solve the Helmholtz equation in an arbitrary domain with general form 
boundary conditions. The method permits reducing this equation to that of Poisson and an 
infinite set of simultaneous linear algebraic equations. Convergence of the method is proved for 
any wave number. Thus, it becomes possible to solve the Helmholtz equation by using any known 
method developed to solve the Poisson equation. As an illustration, an effective algorithm is 
constructed to solve the two dimensional diffraction problem on the arbitrary periodic boundary 
for any wavelength by using the conformal mapping techniques. If the boundary contains 
irregular points, then the field in all approximations has in all these points singularities of the 
needed type. 

PACS numbers: 02.30.Jr, 02.30.Mv, 02.60 Lj, 03.40.Kf 

INTRODUCTION 

The Helmholtz equation describes a rather great num­
ber of physical processes, so the task of developing methods 
for its solution is important both for theory and applications. 
As explicit solutions of the Helmholtz equation are known 
only for a few domains of the simplest form, it is necessary to 
develop numerical algorithms for less specific cases. A lot of 
publications have been devoted to this problem. Application 
of general methods of numerical mathematics, such as vari­
ational and network methods, the moment methods, etc., 
enabled solution of many concrete problems. As the wave 
operator - (..1 + k2

) is not positive definite, however, the 
amount of needed operations grows abruptly when the do­
main size increases or the domain form becomes more com­
plicated; besides, no effective error estimates are known. 
Note also that these methods require a certain smoothness of 
the domain boundary. When applied to domains with irreg­
ular boundaries, the methods should be specially modified 
for each type of irregularity to capitalize on some particular 
features. This is especially bothersome when the boundary 
contains irregularities of different types, e.g., angle points 
with different angles. This all resulted in the construction for 
a number of special domains and boundary conditions of 
"hybrid" semianalytical methods which are highly effective 
in numerical calculations and take into account singUlarities 
in irregular boundary points in the natural way in the frame­
work of the method. 1-4 The methods are effective only for 
domains with cylindrical or infinitely thin plane boundaries 
and they make substantial use of domain geometry. The situ­
ation in the field was pessimistically summed up by R. Mit­
tra who wrote (Ref. 1, Chap. I): "As is the common feature 
of analytically oriented computer techniques, these methods 
cannot be applied to arbitrary configurations." Actually, the 
situation is not so hopeless because application of analytical 
transformations permits the construction of effective meth­
ods to solve many types of equations including the two di­
mensional Helmholtz one in the arbitrary configuration 
domain. 5

.
6 

In this work we present a general scheme for construct­
ing an effective method to solve the Helmholtz equation in 
domains of arbitrary configuration and with general form 

boundary conditions. The method consists of reducing the 
Helmholtz equation..1u + k 2u = f(x) (k is arbitrary) to the 
Poisson equation and a convergent infinite set of simulta­
neous linear algebraic equations. So it is possible to solve the 
Helmholtz equation in all cases when there exists an effective 
algorithm to solve the Poisson equation. As a specification of 
the scheme we consider the two dimensional problem of 
plane wave diffraction on an arbitrary periodic surface. Here 
the Poisson equation is solved explicitly by means of confor­
mal mapping. This enables one to solve the diffraction prob­
lem with no assumptions as to boundary smoothness; be­
sides, if the boundary has irregular points, then the field in 
all approximations has in these points singularities of the 
needed type. The solution obtained in this way is semianaly­
tical for it is given by a series with numerically calculated 
coefficients that converges everywhere in the domain. 

1. FORMULATION OF THE PROBLEM AND SOLUTION 
SCHEME 

Consider the equation 

..1u + k2u =/(x), x = (x1, ... ,xn ), 

in the domain fl with the boundary r. A general form 
boundary condition 

B [u] I r = cP (x), 

(1.1) 

(1.2) 

providing that the unique solution exists, is given on r; if the 
domain fl is infinite, then the operator B also contains radi­
ation (or equivalent) conditions on infinity. The formal 
scheme of the suggested method is as follows: 

Rewrite Eq. (1.1) in the form 

..1u =/(x) - k 2u. (1.3) 

Partition the domain fl into the sum of non intersecting 
subdomains fl i' fl = Ui': I fl i' Let us take in each subdo­
main fli a function system I Uin (x) J,;' ~ I complete in a func­
tion class containing the solution. Generally speaking, the 
choice of fli is arbitrary and made for convenient construc­
tion of the systems I Uin (x) J or for usage of a priori informa­
tion on the solution. For example, if it is possible, one can 
choose fli so that variables will separate; then corresponding 
partial solutions (modes) are taken as uin(x). Let lij be a 
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system oflinear functionals defined on functions continuous 
in [Ji' By definition this system is biorthogonal to ! Din J: 
lij(Din ) = t>i, where t>i is the Kronecker symbol. Substituting 
the expansion ofu(x) with respect to the functions Uin (x) in 
[Ji to the right-hand side ofEq. (1.3): 

U = .! Ain Uin (x), XE [Ji , (1.4) 
ti= 1 

we obtain 

.:iu = f(x) - k2 ! Ain uin(x), XE [Ji . (1.5) 
n=l 

Denote uin (x) = Uin (x)tP;. where tPi is a characteristic 
function of the subdomain [Ji' and let R fg(x)] be a solution 
(or a generalized solution) of the Poisson equation with the 
right-hand sideg(x) and boundary conditions (1.2); ifEq. 
(I .2) includes radiation conditions, then while defining R fg] 
they must be replaced by a condition of bounded ness on in­
finity. Using this notation, Eq. (1.5) can be rewritten in the 
form 

U = R [11 - k 2 f ! Ain R [uin ] . (1.6) 
i= 1 n= 1 

Applying functionals lij to both sides of Eq. (1.6) and 
taking into account Eq. (1.4), we obtain an infinite set of 
linear algebraic equations of the second kind to compute the 
coefficients 

.:P 00 

Aij = fu(R [f]) - k2 I I Ainlij(R rUin D, i = 1, ... ,go . 
i= 1 n = 1 

(1.7) 

Equating to zero the determinant ofEq. (1.7), we obtain 
the characteristic equation that determines the Laplace op­
erator spectrum for boundary conditions (1.2). 

With some modifications this scheme can be applied to 
the Neumann problem which corresponds to the Poisson 
equation that has no solution for an arbitrary right-hand 
side. 

The suggested scheme can be easily recognized as the 
somewhat generalized abstract method by Galerkin. 7

,8 The 
generalization deals with the domain partitioning and intro­
ducing several systems of coordinate functions and corre­
sponding functional systems. When go = 1 we obtain the 
abstract Galerkin method with functionals biorthogonal to 
the coordinate functions. Such choice offunctionals results 
in equations of the second kind for the sought coefficients. 

Rigid formalization of this scheme and general theo-

.!I 

d 

... X 

FIG. I. 
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rems on convergence will be published elsewhere. In the pre­
sent work we consider, as an illustration, the two dimension­
al problem of plane wave diffraction on a general config­
uration periodic surface. 

By our method we shall be able to obtain a semianalyti­
cal solution of the problem that automatically accounts for 
the field singularities in irregular boundary points (if there 
are any). Such a solution is of interest by itself. 

2. PLANE WAVE DIFFRACTION ON A PERIODIC 
BOUNDARY 

Consider a two dimensional problem of plane wave dif­
fraction on a periodic surface. 

The domain [J is a half-space with a periodic boundary 
r with the period a (see Fig. 1). 

That part of [J that is bounded by one period of r from 
below and by the segmenty = 0, O,;;;x,;;;t>, of the OX axis from 
above will be called the main resonator D. All domains ob­
tained by translating D along the OX axis by the integer 
number of periods will be also called resonators. Denote the 
boundary of D by aD. The part of aD which is coincident 
with r will be called the actual boundary of D and denoted 
by!m while the segmenty = 0, O,;;;x,;;;t> will be called the 
resonator gap. 

The plane wave u(O) = A ei/3x + ay meets r with the inci­
dence angle cp. Here fJ = k sincp,a = - ik coSqJ, k = 21T/ A. 
= w/c is the wave number, w is the frequency, and c is the 

light velocity. The field u(x,y) to be found is the sum ofu'o) 
and the scattered field us; u(x,y) will be determined from the 
Helmholtz equation (1.1) withf(x) = 0. As boundary condi­
tions we take those of Neumann for 

aul -0 an r 
(2.1) 

(it is evident what changes should be made in all following 
considerations to treat the Dirichlet problem), those of Flo­
quet for quasiperiodicity 

u(x + d,y) = e i/3dU(X,y), (2.2) 

and the condition of radiation or limiting absorption. If r 
contains sharp bends (angle points), then the Meixner condi­
tions9 must be added as well. By insignificant changes in the 
arguments of the papers, 10.11 one can demonstrate that the 
conditions suffice to determine the field sought for complete­
ly and uniquely. 

According to conditions (2.2) and the radiation condi­
tion, the field at y > 0 can be given in the form 

n = - 00 

where 

fJn =fJ+ (21Tn/d), an = (fJ~ - k2)1/2, 

ao=a, Iman < 0; an > ° if Ima n = 0. 

(2.3) 

Terms in Eq. (2.3)with IfJn I < k describe reflected prop­
agating waves while terms with IfJn I > k describe surface 
waves. For the sake of simplicity we introduce the following 
notation: 
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e
' =ei{3"x' + a,,y' 
n- , 

e + =eifJX+ay, 

The field in the resonator D will be given in the form 
similar to Eq. (1.4): 

U = ! Bmum(x,y) , (2.4) 
m=O 

where! Um (x,y) l is a complete in !f 2(D) orthonormal sys­
tem off unctions. The condition (2.2) permits one now to 
extend the field to all resonators. 

Let us make certain changes in the general scheme to 
simplify further treatment, namely, instead ofEq. (1.5) we 
take the equation 

{ 

N_ 

u(o) + L Cne", y>O, 
LJU<:) = _ k 2 n~ -N 

m ~ 0 lim Um (x,y), (x,y)ElJ. 

(2.5) 

The equation above is obtained from Eq. (1.5) by formal 
substitution of series in the right-hand side by their finite 
segments. Accordingly, instead of u,Cn , and Bm we intro­
duce new variables U<:),e" , and lim' respectively. The 
right-hand side ofEq. (2.5) is, generally speaking, discontin­
uous, with a jump in the resonator gap. It is not difficult to 
see that the equation with the fixed coefficients en' and lim 
and boundary conditions discussed above has a unique solu­
tion continuous with the first derivatives in {} (the solution is 
regarded as a generalized one lO or classical everywhere but 
in the points ° < x < D, y = ° where matching is made.) With 
U <:) found, we shall determine the coefficients en, and lim 
from Eq. (1.7) changed accordingly. U<:) will be construct­
ed with the help of the quasistatic Green function. 

3. CONSTRUCTION OF QUASISTATIC GREEN 
FUNCTION 

The quasistatic Green function is defined as a Green 
function for the Laplace operator that satisfies the equation. 

LJG=D(X-x',y-y'), O<x<d,O<x'<d, (3.1) 

and the boundary conditions 

aGI =0, 
an r 

G (x + d,y,x',y') = eifJd G (x,y,x',y');G (x, 00 ,x',y') = 0. 
(3.2) 

[In general, the quasistatic Green function may be de­
fined as a Green function for the Laplace operator with 
boundary conditions depending on the wave number. When 
q; = 0, i.e., when the incidence angle is right, the conditions 
(3.2) become independent of k and the problem (3.1) and 
(3.2) becomes a standard periodical static Neumann prob­
lem for which the Green function is known to be nonexis­
tent. That can be seen from the formula (3.11). So the case of 
q; = ° is a special one for the given method and must be 
regarded as a limit of the problem for slanting angles. More 
details will be given in part II of the present work.] 

Let us construct the function G. To this end let us map 
conformally the domain {} of the plane z = x + iy onto the 
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half-plane 1] > ° of the plane; = 5 + i1] so that the point 
z = ° would be mapped into; = 0, z = d into; = d, and 
infinity into infinity. 

This mapping will be further called canonical. Exis­
tence of a canonical mapping follows from the Riemann 
theorem. II It can easily be demonstrated that the mapping 
function; (z) has the form 

; (z) = z + q; (z), (3.3) 

where q;(z) is a periodical function with the period d, 
q;(z + d) = q; (z), and the inverse mapping z(;) has a similar 
form 

z(;) =; + t/t( 0, t/t(; + d) = t/t(;). (3.4) 

Estimates in previous work 12 imply that 

q;(z)-const., y---+oo; t/t(;)---+const., 1]---+00. (3.5) 

Direct calculation shows that Eq. (3.1) does not change 
in 5,1] coordinates 

LJS'l G=D(S-S',1]-1]/), O<s<d,O<s/<d. 
(3.1') 

( ; / = 5 / + i1]' is the point corresponding to z' = x' + iy'.) 

General properties of conformal mappings, the condi­
tion; (00) = 00, and Eq. (3.3) imply that the conditions (3.2) 
are also invariant in the plane;: 

aG lOG ( £- d £- ' ') - ifJdG ( E:- £- / '). - =, '!> + ,1],':J ,1] - e '!>,1]'':J,1], 
a1] '/~O 

G(5,oo,S',1]') = 0. (3.2') 

Hence, it is clear that G can be sought as a series 

(3.6) 

where 

Gn = ~ Sad e- ifJ"SG dS. (3.7) 

After some transformations we obtain Gn from Eqs. (3.7), 
(3.1), and (3.2): 

d
2
Gn _ (32G = ~e-ifJ"s'D(1"l_1"l'), (3.8) 

d1]2 "" d .,., 

dGn I = 0, Gn I'I~ 00 = 0. (3.9) 
d1] '/ ~O 

Hence, 

G = n (3.10) 

Substituting Eq. (3.10) into Eq. (3.7) we obtain G: 

G = _ ! eifJ,,(s-s') 

e -lfJ"II'I - '1'1 + e -lfJ"II'I + '1'1 

X 21(3" Id 
(3.11) 

From Eq. (3.11) characteristics of the function G needed for 
further considerations can be derived: 

LJx'y' G = D(X - x/,y - y/), (3.12) 
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aGI =0 
an' (X',y')Er 

(3.13) 

(alan' denotes differentiating with respect to the outward 
normal of r by variables x' ,y'), 

G (x,y,x' + d,y') = e - i(JdG (x,y,x',y'). (3.14) 

For the fixed x,y and y' - 00 there exists the constant C such 
that 

IG(x,y,x',y')1 <Ce-(Jy', 
and for all z, z' from n a representation 

G = - -1-lnlz - z'l + g(z,z'), Igl < 00 
21T 

holds. 

4. CONSTRUCTION OF U;:J 

(3.15) 

(3.16) 

Let us prove that the sought solution U<fj) of Eq. (2.4) 
can be represented in the form 

U<fj) = - k
2 LC dx' fO (Ae'+ + n~~N Cne~ )GdY' 

+ f f m~ 0 ifm urn (x' ,y')G dx' dy' } 
N _ M _ 

AI+(x,y) + L Cnln(x,y) + L Bmgm(x,y). 
n= -N m=O 

(4.1) 

Indeed, existence of improper integrals in Eqs. (4.1) is guar­
anteed by the estimates (3.15), and the fact that u<fj) in the 
form (4.1) satisfies Eq. (2.4) follows from the construction 
method. Conditions (3.2) also imply that U<fj) meets the 
quasiperiodicity condition and the Neumann condition on 
r. Equation (3.16) and well-known theorems on logarithmic 
potentials13 imply that U<fj) and aU<fj)/ay are continuous 

on the resonator gap. One has only to check how U<fj) be­
haves on infinity. To this end transform the first integral in 
Eq. (4.1) by means of the Green formula, taking into account 
the equality - k2ei(J"x' ± a,.v' = Li (/(J"x' ± a,.v), We obtain 

I = - k2!ad dx' fO G (Ae'+ + n ~~ N Cn e~ )dY' 

= rd 
dx' roc GLi x'y' (Ae'+ + i c;, e~ )dY' Jo Jo n ~ - N 

= !ad dx'i
OC 

(Ae'+ + n~~N Cne~)Lix,y,GdY' 
+r[G~(Ae'++ i Cne~) 1 an n~ -N 

- (Ae'+ + i Cne~) a~] dl II + 12, 
n ~ - N an 

Here L is a contour made of rays x' = O,y';;;'O,x' = d,y';;;.O, 
and the segment y' = O,O<x' <d. 

Taking into account Eq. (3.12), we have 
N 

II =Ae+ + L Cnen . 
n = _. N 

Because ofEq. (3.14) the integrals along the rays x' = ° and 
x' = din 12 cancel each other, so we are left with 
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N 

1= II+I2 =Ae++ L Cnen 
n= -N 

-f [(aAe'+ - n ~~ N Cnane~)G 
- (Ae'+ + i Cne~) a~] dx' . (4.2) 

n~ -N ay y'~o 

Making use of Eqs. (3.12), (3.4), and (3.5), it is not difficult to 
obtain for G and aG lay' estimates similar to Eq. (3.15): 

IGI<Ce-(Jy, I~~I <Ce-(Jy, (4.3) 

which are valid wheny-oo for x',y' in any fixed domain. 
Hence, it immediately follows that 12 and functions gm (x,y) 
decrease as e -(JYwheny_oo. This remark together with Eq. 
(4.2) shows that U<fj) satisfies necessary conditions on infin­
ity, which completes the proof of the formula (4.1). 

By using the quasiperiodicity condition this representa­
tion for U<fj) is easily extended to the whole domain. 

5. SIMULTANEOUS EQUATIONS TO DETERMINE 
COEFFICIENTS en and tim 

To determine the unknown coefficients Cn, and ifm in 
Eq. (4.1) we demand that for y;;;,O the Fourier coefficients of 

U<fj) with respect to the function system [ei(J"xl when Inl <N 
should coincide with Cne - a,J' while the coefficients with re­
spect to the system (um 1 in the domain D when O<m<M 
should coincide with ifm • This condition will be called the 
condition of coefficient coincidence. Applying it to Eq. (4.1), 
we obtain simultaneous linear algebraic equations to deter­
mine c;, and ifm 

~{A rdre-i(J,,xdx + i Cn r
d 
In 

d Jo n~ -N Jo 
Xe - i(J"xdx + f ifm rd 

gm e - i(J,,xdX} 
m ~o Jo 

= ~e-a,J' + 0{; A eay, y;;;.O(IPI<N); (5.1') 

A f f rujdxdy+ n~~N c;, f f Inujdxdy 
D D 

(5.1 ") 

where 0{; is the Kronecker symbol. 
The condition of coefficient coincidence is evidently an 

approximation of the exact equality (1. 7) written for the con­
crete case considered. After formal passage to the limit with 
N,M-oo, Eqs. (5.1) turn to exact equations ofEq. (1. 7) type. 
Foundation for the passage to the limit will be provided in 
the next section. 

The right-hand side of Eq. (5.1 ') and their matrix ele­
ments depend on y. Let us show that the solution of Eqs. 
(5.1) is nevertheles independent ofy. To this end transform 
the set of equations (5.1') so that it would be possible to 
exclude dependence ony. 

Applying the Green formula toln = Sgdx' 
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XS~GLi (e~)dy', taking into account Eqs. (3.12)-(3.14), and 
the problem boundary conditions, we obtain 

/" (x,y) = en + fd (an G + a~) I ei/3"x'dx' )0 ay y'~o 
-===en + fn(x,y), (5.2) 
'" wherefn is evidently a harmonic function (wheny > 0) that 

satisfies the Floquet condition (2.2) and the infinity condi-
A A 

tionfn (x, 00 ) = 0. Because of the Floquet conditionfn can be 
expanded into the Fourier series 

s = - 00 

Substituting this series into the harmonic equation, we ob­
tain the following for IPns (y): 

A 

From this equality and the conditionfn (x, (0) = ° we find 

() /,
'" - j/3,jy 

IPns Y = ns e , 

where Ins are constant coefficients. Thus,1n can be repre­
sented as 

(5.3) 
s= - 00 

We get in a similar way 

r(x,y) = e+ + f J/ //3;< - j/3,jy, y> 0, (5.4) 
s = - 00 

gm (x,y) = ! gmsei/3,x - j/3,jy, y> 0. (5.5) 
S = - 00 

Substituting Eqs. (5.2)-(5.5) into Eq. (5.1'), we get Eq. (5.1') 
in the form 

A N _A M_ 

Af/ + I CJnp + I Bmgmp = 0, 
n= _I\T m=O 

Ipl<N. 
(5.6) 

Now we see that the sought values Cn and Jim are actually 
independent of y. 

6 . ANALYSIS OF EQS. (5.1) 

To prove convergence we transform the set of equations 
(5.1) to the form without diagonal elements in the right-hand 
part and sety to zero in Eq. (5.1'). We obtain 

f - In(p) ~ - _g_m...;(p:...;.)_ 
L Cn + L Bm 

n ~ - N 1 - J;,(p) m ~ 0 1 - J;,(p) 

(6.1') 

(6.1") 

where 

1 fd 
/,,(p) = "dJo fn(x,O)e i/3,;< dx, 
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1 id 

( - i/3,;< d gm(p) = - gm x,O)e x, 
d 0 

1 + = J.- fdf+(X O)e - i/3,,x dx 
(p) dJo' , 

gmj = f f gmujdxdy, 
D 

Inj = f f In ujdx dy, 
D 

D 

[We shall demonstrate further thatJ;,(p) -0 whenp-+oo and 
gjj-o whenj-+oo. For a finite number of indices, however, 
J;,(p) and gjj may equal 1. In this case we leave Eqs. (5.1) in 
the original form.] Let us show that Eqs. (6.1) permit passage 
to the limit when N,M-+oo, i.e., show that limits 
C n = limN,M_oo Cn and B m = limN,M_ 00 Jim exist and the se­
quences are summable quadratically, i.e., l:: ~ _ oc I Cn 12 
< 00 and l:;;; ~ 0 IBm 12 < 00 and satisfy the infinite set of 
equations 

C = f Cn 
In(p) 

+ f Bm 
gm(p) 

p 
1 - J;,(p) 1 - J;,(p) n = - oc m=O 

(n¥op) 
f+ & +A (p) - 0, (6.2') 
1 - J;,(p) 

Bj = fBm~+ f C~ 
m~O l-gjj n = - 00 

n 1 _ gjj 
(m¥oJ) 

+A~, 
1 - gii 

(6.2") 

which is obtained from Eq. (6.1) by the formal passage to the 
limit. To prove that it will suffice to show that Eqs. (6.2) 
satisfy the Koch conditions l4 which reduce in this case to 
quadratic summability of coefficients and free terms. 

Prove at first convergence of the series 

S, = f Ifn(p) 1

2
, S2 = f f Igm(p) 1

2
, 

n,p = m = 0 p = - 00 

S3 = ! 1/(;) 1
2

, S4 = f Igmj l2, 
p= - ~ mJ= 0 

It follows from the Parseval identity for Fourier series that 

00 2 1 fd 2 
p~~ oc Ifn(p) 1 = "dJo Ifn~x,O)1 dx, 

00 2 1 fd 2 (6 3) 
p~~oo Igm(p) I ="dJo Igm(x,O)1 dx, . 

and that 

S3 = J.- fd 1 r(x,OW dx. 
d Jo 
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Thus, we proved convergence of S3' When an > 0, the value 
In = (lid) sg Ifn(x,OW dx can be estimated as follows: 

lld - I/" (x,OW dx 
d 0 

= :4 r dxlid dx'i'" G(x,O,x',y')e~ dyf 

< kd
4 

i
d 

dx {i'" e-a,..v' dy'i
d 

IG(x,O,x',y')1 dxf 

(6.3') 

where L = maxSg IG (x,O,x',y') I dx'. Using estimates (3.15) 
and (3.16), it is easy to see that L < 00 • 

It evidently implies that the series SI converges and 
therefore the limitJ;,(p) = ° exists. 

To prove convergence of Sz we use the second of identi­
ties (6.3). We obtain 

1 v ld 
S2,v - I Igm(x,OW dx 

d m~O 0 

k4 >' r 
= -I dx 

d m~O 0 

x I I Urn (x' ,y')G (X,O,x' ,y') dx' dy' 

D 

k4 ( v II = dJo m5;o umG(x,O,x',y')dx'dy' dx. 

D 

(6.4) 

The Parseval identity for the function system I Urn J and the 
fact that GE2" 2(D ) imply existence of the limit 

>~~~mto I I umGdx' dy' = m~o I I umGdx'dy' 
D D 

(6.5) 

D 

and it easily follows from here that 

v ---'00 

:4 i
d 

dx I I IG (x,0,x',y')1 2 dx'dy' < 00. 

D 

(6.6) 

Convergence of the series S4,S5,S6 is proved similarly, the 
sums for S4 and S6 being found explicitly: 

S4 = J I dxdy J JIG 12dx' dy', 
D D 

S6 = J I I f+(x,yWdx dy. 

D 

Convergence of the series S4 implies that gjj---+O whenJ-~ 00. 

So denominators of matrix elements ofEqs. (6.2), i.e., 
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1 - J;,(p) and I - gjj' tend to unity whenp-+oo,j-+oo and 
this together wi th the convergence of the series S I, ••• ,S 6 guar­
antees that the Koch conditions are satisfied in Eqs. (6.2). 
Show at last that U<;P converges to the sought solution U 

whenM,N-+oo. 
Note that as sequences of coefficients I Cn J n+~ 00_ 00 and 

I H m J::; ~ 0 are quadratically sum mable, the series 

! Hmum(x,y), (x,y)ED, 
m=O 

converge in 2"2 metric to a certain function O{X,y)E2" 2 and 
are defined as their sums in appropriate domains. 

It was shown in Ref. 15 that solutions of finite sets of 
equations obtained by reducing infinite sets that satisfy the 
Koch conditions converge to the solution of the original set 
in 12 metric. It means in our case that 

M~t~oo L ~~ 00 len - Cn 12 + m~o IBm - Hm 12] = 0, (6.7) 

where en = 0, In I> N and if", = 0, m > M. Having written 
U <:P in the form 

U<:p = - k 2{f dX'i

oo 

(Ae'+ + n ~~ oc Cne~)G dy' 

+ I J L~o HmUm(X',y')]Gdx' dy' 

D 

+ r dX'i

oc 

n~~oo (en -Cn)e~Gdy' 

+ J f mt (Bm -Bm)um{x',y')Gdx' dY'} 

and having used the estimate (6.7) and the Buniakovsky­
Schwartz inequality, we show the existence of the limit 

lim U<;) =v(x,y) 
M,N---.oc 

+ J J o{x' ,y')G dx'dy' . (6.8) 

D 

Similarly, having passed to the limit in Eqs. (5.1) and taking 
into account Eqs. (6.8) and (4.1), we find 

e - a,.vC
p 

+ {j~A ea"v = ~ Sad v(x,y)e - if3"x dx, y;;.O; 

Hj = J J v(x,y)uj(x,y) dx. 

D 

From the Euler-Fourier formulas and completeness of func­
tion systems I /f3"x I and I uj I we conclude 
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(6.9) 

I.e., 

v(x,y)-u(x,y). (6.10) 

Substituting Eq. (6.10) into Eq. (6.8), we find that v(x,y) 
satisfies the integral equation 

v(x,y) = - k 2f f v(x',y')Gdx' dy', (6.11) 

where flo is the sum of the domains (0 <x <d,O<y < 00) and 
D. It is seen from Eq. (3.2) that v satisfies the quasiperiodi­
city condition and therefore is extended to all the domain fl. 
Using relations (3.12)-(3.16) and properties of potential­
type integrab, it is easy to show that V(X,y)EC \{} ), the right 
side ofEq. (6.11), has generalized second derivatives and 
..1 f f fl vG dx' dy' = v(x,y) almost everywhere in fl; hence, 
..1 v = "- k2..1 f f [} vG dx' dy' = - k2v, and v is a generalized 
solution of the Ii'elmholtz equation. 10 The condition 
avian I r = 0 follows from Eqs. (3.2) and (6.11); the validity 
of radiation conditions follows from Eq. (6.9). At last, from 
the theorem on uniqueness it follows that v(x,y) = u(x,y), 
Q.E.D. 

Passing to the limit M,N- 00 in Eq. (4.1), we find that 
the exact solution u can be written as 

u = Ar(x,y) + ! Cn In (x,y) 
n = - 00 

+ ! Bmgm (x,y). (6.12) 
m=O 

It follows from the above estimates that the approximations 
U<t:) uniformly converge to u in ii. Note also that for all M 
and N, U<t:) has the needed singularities (satisfies the 
Meixner conditions exactly) in all boundary angle points. 
This follows from the method of constructing U<t:) and can 
be immediately checked. It also follows from the given proof 
that determinants of equation sets (6.1) converge, when 
M,N-oo, to the determinant of the set (6.2). The latter de­
terminant roots form the spectrum of the set eigenwaves and 
can be found as the limits for the roots of determinants in 
Eqs. (6.1) when M,N-+oo. 

COMMENTS 
(1) There are many publications where the Helmholtz 

equation is solved by means of conformal mapping (e.g., see 
Refs. 16-19). However, when conformal mapping is applied 
in a straightforward manner, it causes appearance ofa vari­
able refraction coefficient. It hinders further solution and 
permits one to receive only qualitative, asymptotic, or mere­
ly numerical results. Our method circumvents the difficulty 
as conformal mapping is used not directly for the Helmholtz 
equation but to the Poisson equation. That enabled receiving 
a semi analytical solution in the general case. 

(2) In realizations of the described method for domains 
of complex configuration certain difficulties arise in con­
structing the conformal mapping; and in calculating inte­
grals for matrix elements of Eqs. (5.1). The former difficulty 
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is inherent in the problem considered because the Helmholtz 
equation transfers when k-D to the Laplace equation whose 
solution is equivalent to the construction of a conformal 
mapping. The latter difficulty is characteristic of all projec­
tion-type methods.s We regard the problem of constructing 
; as solved since numerical methods have been widely devel­
oped and many cases are known when the mapping can be 
found in the analytical form. As to matrix coefficients in Eq. 
(5.1), they can be simplified considerably, the order ofinte­
grals in them can be lowered, and some of the integrals can 
be even implicitly calculated. These equations as well as the 
development of the technique to solve Eqs. (5.1) will be treat­
ed in part II of the present work. 

(3) In several cases our method permits one to obtain 
solutions in the analytical form. 6

,20,21 

(4) It is evident that our method can be extended to 
more general operators whose dominant part can be effec­
tively inverted. In the cases when the corresponding Green 
function is not quadratically summable (e.g., the Laplacian 
with n > 3) the general scheme of the method must be some­
what changed, but we will not dwell on this question here. 
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A Bessel-Watson type of transform pair is developed. Since this result differs from a previously 
published result, a comparison between these two results is also presented. 

PACS numbers: 02.30.Qy 

1. INTRODUCTION 

A new generalized transform pair is developed in Ref. I. 
This transform pair is expected to be a generalization of the 
Fourier, Watson, and Kontorowich-Lebedev transforms 
which are frequently used in mathematical physics for solv­
ing boundary value problems. It appears, however, that the 
assumed properties, stated explicitly or implicitly and used 
in the proof for the development of the transform pair, are 
inconsistent. When these properties of the transform func­
tion, E(v,,p) are used in the integral representation of the 
solution, Ez ( s,,p ), it can be shown that Ez ( s,,p ) vanishes 
identically. 

In this paper we first develop a Bessel-Watson type 
transform in Sec. 2 and then show in Sec. 3 why the previous 
result of Ref. 1 is inconsistent. 

2. DEVELOPMENT OF THE TRANSFORM PAIR 

A foundation on which many integral transform pairs 
in mathematical physics are based can be developed2

•
3 from 

an appropriate spectral representation of Dirac's delta func­
tion in terms of a Green's function associated with a differen­
tial operator subject to appropriate boundary conditions. It 
may be emphasized that the Green's function is different for 
different transform pairs. The same technique can also be 
employed for the development of the transform pair present­
ly being discussed in this paper. Let us consider the following 
differential equation defining a Green's function G (S,So; v). 

~ ~ (s ~ G ( S, So; V)) + (I - ~) G (S, So; v) 

8(s-so) 

S 
(2.1) 

where G (SR ,So; v) = 0 and G (S, So; v) satisfies the radi­
ation condition at S = 00. The quantity v is a complex pa­
rameter. Then the spectral representation of 8( S - So) can 
be shown2

.
3 to have the form 

s8(5 - so) = - ~" G (s,so; v) dA, A = v , 
2m Jc 

= - ~ { G ( S, So; v) v dv , 
m Jc 

where the contour C encloses all the singularities of 

(2.2) 

G ( S, So; v) in the complex v plane in a clockwise sense (see 
Fig. I). For the present problem defined by (2.1), the Green's 
function G ( S, So; v) is given by 

G(s,So,;v)= -(i1T/4)"'v(s)H~)(So), So<S 
= - (i1T/4)"'v(So)H~)(s), So<S. (2.3) 
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and 

The function "'v (5 ) is defined by 

"'v(S) =H~)(S) +RvH~)(S)' (2.4a) 

(2.4b) 

S = Kr,SR = KR,R is the radius ofacylinder, andK = pro­
pagation constant. The quantities, H~)(s) and H~)(s) are 
Hankel functions of the first and second kind, respectively. 
Thus the desired spectral representation of the Dirac delta 
function is given by the following expression, 

s8(s - so) = ~ { "'v(s < )H~)(s > )v dv, (2.5) 
4 Jc 

where S < is the smaller of S and So' Similarly, s> is the 
larger of S and So· Since the only singularities of G ( S, So; v) 
are the poles of "'v ( S < ) located at the zeros of H~)( SR)' the 

Imv 

o 
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contour of integration C in (2.5) encloses these zeros in the 
fourth quadrant of the v plane (see Fig. 1). In view of(2.5) the 
desired integral transform pair may be expressed in the fol­
lowing manner: 

(2.6a) 

and 

E(~t,6) = ! 1: Ez(5,t,6)H~)(5) i ' (2.6b) 

where t,6 is a parameter. In a boundary value problem rand t,6 
(with 5 = Kr) represent a polar coordinate system. We re­
quire that E (v,t,6 ) decreases faster than vH ~)(5 > ) in the lower 
half of the complex v plane as Ivl approaches infinity, al­
though E (v,t,6 ) may have pole singularities in the neighbor­
hood of, or along, the real axis. The necessity for such behav­
ior of E (v,t,6 ) at infinity will become clear later on. In order to 
prove the validity of (2.6a) and (2.6b) let us consider the fol­
lowing analysis, 

Ez(5,t,6) = L E(v,t,6)t/lv(5)dv 

= Lt/lv(5)V:V 1: Ez(5o,t,6)H~)(5o)1°· (2.7) 

In view of (2.5) and its development, the spectral theory 
guarantees2

•
3 that the interchange of the order of the integra­

tion in (2.7) is permissible. Then the right-hand side of (2.7) 
becomes Ez( 5,t,6) in view of(2.5). Thus the validity of the 
transform pair (2.6a) and (2.6b) is established. 

Let us now investigate whether the contour C can be 
shifted to anywhere in the lower half of the complex v plane. 
In order to accomplish this it is first necessary to study the 
behavior of the respective integrands when Ivl approaches 
infinity in the lower half-plane. For this purpose let us first 
consider the integral in (2.5). From the asymptotic behav­
ior4.5 of the Bessel and Hankel functions for large order vand 
with a fixed finite argument, it can be shown that 

(2) 21 _!>_< _ _!>_R_ . [(k )V (f;- 2 )V] 
vt/lv(5< ).H v (5))~ -; L LL (2.8) 

in the region to the right side of the curve Co as Ivl ap­
proaches infinity in the fourth quadrant of the complex v 
plane. The zeros of H ~)( 5 R ) are situated along the curves Co 
and C b in the fourth and second quadrants, respectively. 
Initially the tangent to the curve Co makes4~ an angle of 
- 1T13 with the real axis for a real value of 5R and then 

becomes parallel to the imaginary axis as Ivl tends to infin­
ity. In addition, one finds also that 

vt/lv( 5 < ) H~)( 5> ) 

~ -1T
2i [(~: r - (5gf< y] (2.9) 

as Ivl approaches infinity in the third quadrant, as well as to 
the left of Co in the fourth quadrant ofthe complex v plane. It 
may be noted that C b can be obtained from Co by changing 
the sign of v. Let us also define a contour L which is parallel 
to the real axis and lies between the real axis and the lowest 
order zero of H ~)( 5 R ) in the lower half of the v plane. If 
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5 < #5> ,the expression (2.8) vanishes as lvi-co and, 
therefore, the portion of C running along the right side of Co 
can be deformed onto the portion of L situated to the right 
side of the lowest order zero of H ~)( 5 R ). It may be noted that 
5R <5 < <5> . In view of the relation (2.9) the integrand (2.5) 
vanishes in the third quadrant; however, it diverges in the 
region of the fourth quadrant lying to the left of Co as I vi 
approaches infinity. Therefore, the portion of the contour C 
lying to the left of Co cannot be deformed onto the remaining 
portion of L. 

Before considering the investigation of the deformabi­
lity of the contour C associated with the transform in (2.6a), 
let us first note that on Co whereH~)( 5R) vanishes, the quan­
tity I (2vle5R ) ± VI approaches unity as lvi-co and the phase 
of v is - 1T/2 + Eo, 0< €o<l. Then it can be shown that 
€o~~1T/(ln(2Ivl/e5R))< 1, where 5R is a real positive finite 
number. The phase of v in the region between Co and the 
negative imaginary axis is - 1T/2 + € (€<€o), when Ivl ap­
proaches infinity. Therefore, in view of(2.9) one finds that 

Ivt/lv( 5 <) H~)( L )1 ~elvIEln~, T> l, (2.10) 

in the region to the left of Co in the fourth quadrant as I vi 
tends to infinity. 

Let us now investigate whether C in (2.6a) can be de­
formed onto L if so, under what conditions. Since it is as­
sumed that E (v,t,6) decreases faster than vH~)( 5> ) in the 
lower half of the v plane as Ivl approaches infinity, a com­
parison ofthe integrands of (2.5) and (2.6a) shows that the 
portion of the contour Cin (2.6a) lying to the right side of.Co 
can be deformed onto a portion of L in this case also, notmg 
that this was possible for (2.5). The assumption that E (v,t,6) 
decreases faster than vH~)( 5> ) at infinity in the v plane is 
justified in many practical problems of interest. For in­
stance, in a problem of scattering or diffraction of waves 
(acoustic or electromagnetic) by a cylinder, E (v,t,6 ) contains a 
factor like exp( - ivt,6 ), where t,6 is the angular coordinate. If 
t,6 # 0, then this expotential factor contributes to the rapid 
decay of the integrand in (2.6a) for Imv < ° as Ivl approaches 
infinity. For example, in many problems of interest one finds 

E (v,t,6 )~vH~)( 5> ) e - iv.p , (2.11a) 

i.e., 

(2.11b) 

as Ivl-oo. 
By virtue of the property (2.9), it can easily be seen that 

the integrand E (v,t,6 ) t/lv( 5) of (2.6a) vanishes in the third 
quadrant of the v plane as Ivl approaches infinity. However, 
the relation (2.10) shows that in the fourth quadrant, be­
tween the negative imaginary axis and Co, the integrand of 
(2.6a) behaves in the following manner as Ivl-oo: 

IE (v,t,6 ) t/lvI 5)I_elv'(Eln~-.p), (2.12) 

where 

€<€O~!1T!1n (2Ivlle5R) <1. 
Since T> 1, the right-hand side of (2.12) vanishes if the fol­
lowing condition on t,6 and T is satisfied 

€lnT<t,6, 
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~ lnr < tP , 
or r<e</>IE, 

or r"/2</> < 21vl/e5R . 
(2.13) 

Note that the inequality (2.13) defines a relationship 
among the parameters, tP, 5 < ,5> ,and 5R for which (2.12) 
vanishes. Therefore, if condition (2.13) is satisfied, the con­
tour C in (2.6a) can be deformed onto L. It may be noted that 
since tP = 0 in (2.5), condition (2.13) cannot be fulfilled and 
consequently the contour C in (2.5) cannot be deformed onto 
the portion of L lying to the left of the lowest order zero of 

H~'(5R)' 
It may be observed that expression (2.5) also gives the 

spectral representation of Dirac's delta function in terms of 
radial eigenfunctions. This can easily be seen by applying 
Cauchy's residue theorem in (2.5). In view of this observa­
tion, expression (2.6a) represents the radial eigenfunction ex­
pansion of the function of Ez ( 5,tP ). 

The transform pair (2.6a) and (2.6b) is suitable for a 
function Ez( 5,tP) which satisfies a Dirichlet boundary con­
dition at 5 R' Similar transform pairs can also easily be ob­
tained for functions which satisfy either a Neumann or 
mixed boundary condition at 5 R' For all such problems, the 
starting point should be to construct an appropriate Green's 
function and then follow the steps similar to (2.2), (2.5)-(2.7). 
It may now be emphasized that in all such integral trans­
forms, the initial contour of integration in the v plane must 
enclose all the singularities (poles and branch cuts, if any) of 
the Green's function concerned, and then the asymptotic 
behavior of the integrand must be investigated before the 
initial contour can be deformed onto a new one. 

3. COMPARISON OF THE PRESENT RESULT WITH A 
PREVIOUS ONE 

The generalized transform pair developed in Ref. 1 is 
given by 

(3.1) 

and 

E(v,tP) = ~ (''' Ez(5,tP)H~'(5)V d5 , (3.2) 
4 JSH 5 

where r, tP, and z represent a cylindrical coordinate system. 
The function f/;v( 5) and Rv are given by (2.4a) and (2.4b), 
respectively. The apparent discrepancy between these pairs 
of transforms (2.6a), (2.6b) and (3.1), (3.2) is in the choice of 
the contours C and L, respectively. In addition, the method 
of approach in deriving (3.1) and (3.2) is entirely different 
from that used for (2.6a) and (2.6b). In the development of the 
pair (3.1) and (3.2), it is assumed implicitly that E (v,tP ) is 
analytic in a horizontal strip bounded by two lines parallel to 
the real axis of the complex v plane (one below and the other 
above). The integration path L lies inside this strip. The 
boundary line lying in the lower half-plane is above the low-
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est order zero of H ~'( 5 R ) and the other boundary line is just 
a mirror image of this line with respect to the real axis. Since 
f/;v( 5) is also analytic inside this strip, the path Lin (3.1) can 
be shifted onto the entire real axis of the v plane. It is evident 
from the properties (3.3a) and (3.3b) that the integrand in 
(3.1) is an odd function v and, therefore, the integral (3.1) 
vanishes identically. 

HI~2~( 5) = exp( ± iV1T).H~,2'( 5) , (3.3a) 

and hence 

E( - v,tP) = - E(v,tP) exp( - i1Tv) , (3.3b) 

which follows from (3.3a) and (3.2). 
It was shown earlier that the contour C can be deformed 

onto L provided the condition (2.13) is satisfied. Consequent­
ly, the following Dirac delta function representation as given 
in Ref. 1 is not valid. 

50( 5 - 50) = ~ r f/;v( 5) H~'( 50) v dv . (3.4) 41 
It may now be observed that the representation s(2.6a) 

and (3.1) are equivalent provided the condition (2.13) is satis­
fied and the assumption of the analyticity of E (v,tP ) is not 
imposed. However, when the contour L is used, the trans­
form pair (3.1) and (3.2) cannot be used for any arbitrary 
function, Ez ( 5,tP ), which has a strong singularity like a delta 
function, 0 (5 - 50)' On the other hand, the transform pair 
(2.6a) and (2.6b) can represent a field as singular aso (5 - 50)' 

The derivation of (3.1) and (3.2) presented in Ref. 1 is 
based on a method similar to that given by Kontorowich and 
Lebedev.7 One of the main differences between these two 
transform pairs 1,

7 is that the contour of integration L is hori­
Lontal (below the real axis) in Ref. 1, whereas it is vertical for 
the Kontorowich-Lebedev transform.7 It is very important 
to note that the transform function in Kontorowich-Lebe­
dev transform is analytic inside a vertical strip including the 
imaginary axis of the v plane. In the same way, in Ref. 1 the 
transform function E (v,tP ) was implicitly treated as analytic 
inside a horizontal strip containing the real axis in the v 
plane [see the development ofEqs. (2.6b)-(2.7b) of Ref. 1]. 
However, in many physical problems E (v,tP ) may contain 
many pole singularities [see Eqs. (3.5)-(3.7) of Ref. 1] inside 
such a horizontal strip. This is the reason why the proof and 
the transform pair as given in Ref. 1 are invalid. Consequent­
ly, the derivation of the Kontorowich-Lebedev transform 
presented in Ref. I, as a special case, is also invalid. 

1 E. Bahar, J. Math. Phys. 12, 179 (1971). 
2B. Friedman, Principles and Techniques of Applied Mathematics (Wiley, 
New York, 1956), Chap. 4. 

3I. Stakgo1d, Boundary-value Problems of Mathematical Physics- Vol. 1 
(Macmillan, New York, 1967, 1968), Chap. 4. 

4J. A. Cochran, Numer. Math. 7, 238 (1965). 
5W. Franz and P. Beckmann, IEEE Trans. Antennas, Propag. AP-4, 203 
(1956). 

6J. A. Cochran (private communication) (1979). 
7M. J. Kontorowich and N. Lebedev, J. Phys. 1,229 (1939). 
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We classify all R-separable coordinate systems for the equations .d4 1ft = I.~j~ Ig ~ 112 

a j (g1/2i jai 1ft) = 0 and I.~j~ lijai wa j W = 0 with special emphasis on nonorthogonal 
coordinates, and give a group theoretic interpretation of the results. For fiat space we show that 
the two equations separate in exactly the same coordinate systems and present a detailed list of the 
possibilities. We demonstrate that every R -separable system for the Laplace equation .d4 1ft = 0 on 
a conformally fiat space corresponds to a separable system for the Helmholtz equations 
.:i 4 cP =...tcP on one of the manifolds E4, SI XS3, S2XSZ' and S4' 

PACS numbers: 02.40.Ky, 04.20.Cv 

1. INTRODUCTION 

In this article we study the problem of R separation of 
variables for the Laplace and Hamilton-Jacobi equations 

4 

(a)L141ft= L g~1/2ai(gl12ijajlft)=0, 
i.j~ I 

(1.1) 
4 

(b) L tjaiWajW= o. 
i.j~ I 

ric, g = det(gij) #0, I.~j ~ Igijgjk = 8~,gij = gp, and a j 1ft 
= ax' 1ft . Some aspects of R separation for these equations 

have been treated in an earlier paper. I In that paper we stud­
ied the orthogonal coordinate systems for which Eqs. (1.1) 
are R separable. For conformally flat spaces it was shown 
that each R-separable orthogonal coordinate system for Eq. 
(1.1 a) corresponds to coordinates which permit pure separa­
tion for the Helmholtz equation .:i4 cP =...tcP on one of the 
manifolds E4 (flat space), SI XS3• S2 XS2, or S4' where Sj is 
the} dimensional sphere. In this paper we show that the same 
basic results hold for nonorthogonal coordinate systems. 
However, our methods here differ considerably from those 
of Ref. l.1t is easy to show that if a coordinate system {xjj 
(orthogonal or not) is R separable for Eq. (l.la) on a given 
Riemannian space, then it is also additively separable for Eq. 
( 1.1 b). For orthogonal coordinates on conformally flat 
spaces the condition that an additively separable system for 
Eq. (l.lb) also R separates Eq. (l.la) could be completely 
solved by employing the Robertson condition in the geomet­
rical form due to Eisenhart.2

.
3 However, the Robertson con­

dition no longer holds in general for nonorthogonal coordi­
nates4 and in this paper we find it necessary to employ 
detailed facts concerning the structure of the conformal 
symmetry group ofEq. (l.lb) in order to obtain our results. 
Indeed the use of Lie theory appears to be absolutely essen­
tial in this regard. 

The paper is arranged as follows: In Sec. 2 we classify 
the possible types of separable systems for the Hamilton­
Jacobi equation (l.lb) and in Sec. 3 we give the correspond-

ing (crude) classification of R-separable systems for the La­
place equation (l.la). Then in Sec. 4 we study in detail the 
nonorthogonal separable systems for conformally fiat spaces 
and obtain an explicit list. Finally, in Sec. 5 we use our de­
tailed results to show that, even allowing nonorthogonal co­
ordinates, the flat space equations (l.la) and (l.lb) separate 
in exactly the same systems and that on a conformally fiat 
space every R-separable system for Eq. (l.la) corresponds to 
a separable system for the Helmholtz equation on one of the 
manifolds E4 , SI XS3 , S2 XSz, and S4' Nonorthogonal co­
ordinates arise only from E4 and S4' The extreme importance 
of these constant curvature manifolds for variable separation 
on conformally fiat spaces is now clear. 

The authors have already given an exhaustive study of 
non orthogonal separation for the Helmholtz equations on 
£4, S2' and S3.4

.
5

.
7 The remaining case S4 will be treated in a 

forthcoming paper. This paper will then conclude our analy­
sis of variable separation for the Hamilton-Jacobi, Helm­
holtz, and Laplace equations on three and four dimensional 
Riemannian spaces.6-9 

2. SEPARABLE SYSTEMS FOR THE HAMIL TON­
JACOBI EQUATION 

We now discuss the classification of separable systems 
for Eq. (1.1 b). Recall that separation of variables for this 
equation means W = I.; ~ I W('\x i

) . The existence of sep­
arable systems for Eq. ( 1.1 b) is closely related to the symme­
tries of this equation. To define symmetry operators we em­
ploy a phase space formalism. The coordinates of this space 
are (x j

, p J, where p j = ax) W,} = 1,2,3,4. The Poisson 
bracket of two functions F, G on phase space is the function 

4 

(F,Gj(x,p)= I (axjGapjF-axjFapp), (2.1) 
j~ I 

Afirst order symmetry ofEq. (l.lb) is a function 
4 

.!t' = I Si(X)Pi (2.2) 
i= 1 
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some analytic functionp. The {s i(X) J are just the conformal 
Killing vector fields for the metric {gij J. The first order sym­
metries form a Lie algebra JY under the Poisson bracket 
with dimK ..; 15 and the maximum dimension is achieved if 
and only if gij is conformally flat, in which case JY ~O(6,C). 
A (strictly) second order symmetry is a function 

4 

.!L" = I 'TJij(X)Pi P j' 'TJij = 'TJ ji , 
i.j~ I 

(2.3) 

such that 

{.!L'\~ I gij Pi P j } = /-l(s, p) ( i.~ I i j 
Pi P j ) , 

where /-lex, p) is a linear function ofthe PI' The vector space 
of second order symmetries can be decomposed into orbits 
under the adjoint action of JY. We will show explicitly that 
every class of separable solutions W of Eq. ( 1.1 b) is charac­
terized by a triplet of first or second order symmetries .!L'I' 
.!L' 2' .!L' 3 which are in involution, i.e., {.!L' i' .!L' j J = 0 for 
i =f j. The exact characterization is .!L'i = Ai (i = 1,2,3), 
where the Ai are the separation constants. 

Our classification of separable systems is based on the 
number of ignorable and essential variables. A variable Xi in 
a separable system is termed ignorable if.!L' = Pi is a sym­
metry for Eq. (1.1 b), where Pi = a Xi W. Otherwise the vari­
able Xi is essential. If the separated ordinary differential 
equation in the essential variable Xi is first degree, then Xi is of 
type 1; if second degree, then Xi is of type 2. 
We consider a separable system for Eq. (1.lb) with two es­
sential variables of type 2 (X

I
,X

2
), one essential variable of 

type 1 (x3
), and one ignorable variable (x4

). (This is called a 
type G equation.) With W = I.~j ~ I W(J)(x-'), Wj = a j W 
we can write the separated ordinary differential equations in 
the form 

wi + II W~ + AlaI + A2b l -<I>1 = 0, 

W~ + 12W~ +Alaz + Azbz=<I>2 = 0, 
(2.4) 

W4 = A3, 

where I j , a j' b j are function of x
j 
and AI' A2, A3 are the 

separation constants. Making the trivial change of variable 
x j = X j(i-') if necessary, we can assume without loss of gen­
erality that a l = b2 = a3 = 1. To relate Eq. (Ub) with Eqs. 
(2.4) we seek functions e j(x l , ... ,x4) such that 

3 4 

I ej<l>j= IgijW;Wj (2.5) 
j ~ I i,j 

identically in the separation constants, i.e., the coefficients of 
AI' A2, A3 should vanish in Eq. (2.S). As is easily verified, this 
condition determines the e j up to an arbitrary multiple 
Q (Xl , ... ,x4

) and leads to the Hamilton-Jacobi equation 

(G) Q [(a2b3 -1)( wi + II W~) + (b , - b3) 

X(W~ + 12W~) + (1 - a2bl)W3W4] = 0, (2.6) 

with symmetry operators 

43 

.!L'I = (a2bl -It' (pi + II p~ - b,(p~ + 12p~» , 

.!L'z = (a2bl -It' (p~ + 12p~ -az(pi + I,P~», 

.!L' 3 = P4' (2.7) 
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The most general metric tensor yielding separation of this 
type can be read off from Eq. (2.6) and the separation is 
characterized by .!L' j = A j,j = 1,2,3. 

In addition to the type G separable equations above, the 
following Hamilton-Jacobi equations admit separation: 

(A) Four ignorable variables: 
4 

(A) Q I p~ = 0 ,.!L'i = p~, i = 1,2,3 ; (2.8) 
i= 1 

(B) Three ignorable variables: 
4 

(B) Q I G ij(X4) Pi P j = O,.!L'i = Pi> i = 1,2,3; 
i.j~1 (2.9) 

(C) Two ignorable variables with two essential variables 
of type 2: 

(C) Q [pi + p~ + (e l + e2)pi + 2(h , + h2)P3P4 

+ (/1 + 12) p~ ] = 0 , 

.!L'I = PJ, .!L' 2 = P4' (2.10) 

.!L'3 = pi + e,Pi + 2h l P3P4 + I,P~ ; 

(D) Two ignorable variables with one essential variable 
of each type: [It can be shown that (D2r}is a special case of 
(D1).] 

(D1) Q [pi + 2a2P2P3 + 2b2P2P4 + dtPi 

+ 2(/1 + /z)P3P4 + etP~] = 0, (2.11) 

.!L'I = P3'.!L' 2 = P4'.!L' 3 = 2a2P2P3 + 2b2P2P4 
+ 2/zP3P4' 

(D2) Q [pi +2P2P4 + (d, + d2)p~ 
+2/1P3P4 + eIP~] = 0, 

.!L'I = P3'.!L' 2 = P4'.!L' 3 = 2 P2P4 + d2p~ ; (2.12) 

(E) Two ignorable variables with two essential variables 
of type 1: 

(E1) Q(2a IPIP3 +2PIP4 +2a2P2P3 +2P2P4 

+ (c I - C2)P~) = 0 , 

.!L'I = P3,.!L'2 = P4,.!L'3 = 2a2P2P3 +2P2P4 + C2 p~ , 

(E2) Q(2PIP4 +2P2P3 +2b2P2P4 
(2.13) 

+ (d, + d2)pD = 0, b2 =f0, 

.!L'I = P3'.!L' z = P4'.!L' 3 = 2 PZP3 + 2bzP2P4 + c2Pi , 
(2.14) 

(E3) Q(2PIP4+2p2P3+CIP~ +d2p~)=0, 

(2.15) 

(F) One ignorable variable with three essential variables 
of type 2: 

(F) Q((q2 - q3)pi + (q3 - qtl + p~+ (ql - q2)P; 

+ [rl(q2 - q3) + r2(q3 - qtl + r3(ql - q2)] p~) 
=0, 

.!L'I = P~,.!L'2= 22[(q~ -qi)&i (2.16) 

+(qi -q~)&~ +(q~ -qi)&~), 

.!L' 3 = 22 [q2q3(q2 - q3)&i + qlq3(q3 - q,)&i 
+ qlq2(ql - q2)&~ ] , 
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where 

f?2 = [(ql - q2)(ql - Q3)(qZ - Q3)] -1,9; = p; + r i p~, 

i = 1,2,3; 
(H) No ignorable variables 

(H) QctIMj.IP})=O, 

4 

ifi = I M j •i + I p}, i = 1,2,3, 
j=1 

where MjI is the (j,l) minor of a 4 X 4 Stiickel matrix 
[ePkm (x

k
)] . 

(2.17) 

Just as noted in the case of three dimensions, there are 
no strictly R-separable solutions of the Hamilton-Jacobi 
equation which are not equivalent to one of the separable 
types listed above. 6 [An R -separable solution would have the 
form W = WO(xl, XZ, x\ x 4

) + L~= I W(})(x').] 

3. R-SEPARABLE SYSTEMS FOR THE LAPLACE 
EQUATION .14 1[/ = 0 

Here we classify the systems for which the Laplace 
equation (l.la) admits R separation of variables. Again the 
separable systems can be characterized by a triplet of com­
muting symmetry operators. Recall that 

4 

L = I s j(x)axi + sIx) (3.1) 
j= I 

is ajirst order symmetry operator for Eq. (1.1a) if [L, .14 ] 

= pIx) .1 4 for some analytic function p. The set of all first 
order symmetries L forms a Lie algebra G under the commu­
tator bracket [A,B] = AB - BA, called the symmetry algebra 
of Eq. (1.1a). The S j satisfy the Killing equations for a con­
formal Killing vector relative to the metric gij and (factoring 
out the ideal generated by the trivial symmetry L = 1) G is a 
subalgebra of the infinitesimal conformal group of the met­
ric. Whengij corresponds to flat space then ~ g,:O(6,q, a 
IS-dimensional complex Lie algebra. 

Similarly, 
4 4 

L' = i.k I 7Jjk(x)axix' + /~I7J/(x)ax' + 7J(x) (3.2) 

is a second order symmetry operator for .1 4 if[L ',.1 4 ] = K .1 4 , 

whereK is a first order differential operator of the form (3.1) 
(but K is not necessarily a symmetry). If every L ' acting on 
the solution space ofEq. (1.la) agrees with a linear combina­
tion of first and second order operators in the enveloping 
algebra of ~, then Eq. (1.1a) is said to be of class I; otherwise 
it is of class II. 

We now proceed to classify all systems for which Eq. 
(Lla) is R separable, i.e., for which Eq. (1.1a) admits solu­
tions of the form 1[/ = eR IIi ~ I 1[/ (i)(Xi) , where each 1[/ (')(x') 

satisfies an ordinary differential equation and R is some 
specified function of the xj. Substituting If/ = eReP into 
Li 4 1f/ = ° we obtain the equation 

4 4 

I b'lJx,x'eP+ I b'Jx,eP+boeP=O, 
i,j= 1 i= I 

where 
4 

44 

b ij =ij
, b i = Igijaxiln [g1/2gijM2] , 

i= , 
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(3.3) 

bo = M-I(.14M), M = eR 
• 

Clearly, an R -separable solution ofEq. (1.1 a) corresponds to 
a purely separable solution ofEq. (3.3). In proceeding to 
classify R-separable systems we do not distinguish between 
purely separable and strictly R-separable systems for Eq. 
(1.1 a) because the conditions for pure separation can be ob­
tained from those for R separation by setting M = 1. 

The classification of R-separable types proceeds along 
the lines of the systems treated for the Hamilton-Jacobi 
equation. A variable Xi in a separable system is ignorable if 
for some analytic functionp, L = ax' + pIx) is a symmetry 
operator for Eq. (l.la); otherwise Xi is essential. If the sepa­
rated equation in the essential variable Xi is first order, then Xi 

is of type 1; if second order, then Xi is of type 2. It is readily 
seen that for a given metric the separation of Eq. (LIb) is 
necessary for the R separation of Eq. (l.1a). Thus, the only 
possible systems permitting R separation ofEq. (l.1a) are 
those listed in Sec. 2. However, there are additional condi­
tions that must be satisfied by the multiplier M in order for 
variables to R separate. 

To explain our method we treat one example, me anal­
ogy of the type G equation for Sec. 2, in detail. Here there are 
two essential variables of type 2 (Xl ,x2

), one essential variable 
of type 1 (x3

), and one ignorable variable (x4
). With 

1[/ = M II~ = , If/(j}(x') we can write the separated ordinary 
differential equations as 

If/W + hllf/\" + (fIA ~ + AlaI + A2bl + KIlIf/I') 

=eP,If/(I) = ° , 
If/ ~2d + h2 1[/ ~21 + (f:0 ~ + A ,az + A2b2 + K

2
) If/ (21 

=eP2 1f/ (2) = ° , (3.4) 

1f/~)A3 + (A l a3 + A2b3 + K3)1f/131=eP31[/13) = 0, 

1f/~41 = A31f/(4) , 

where I[/VJ = ajj I[/(h . To relate Eqs. (3.3) with (3.4) one 
looks for functions 8 j (x l

, ... ,X
4

) such that 
3 4 4 

eP I 8 jeP j - I bijaijeP+ IbiaieP+boeP=O, 
j = 1 j,j = 1 i = 1 

(3.5) 

where eP = II~ ~ I 1[/ (J)(x j
) • Comparison of the coefficients 

of the second derivative terms and theA i terms on both sides 
of Eq. (3.5) leads to the same solutions for 8 j and gil as 
found in Eq. (2.6). Comparison of the coefficients of the first 
derivative and constant terms yields the R-separation 
conditions 

M2 = [IT Ai(X
i
)] 

Q i=' 

xexp(ax4)(1 - a2b l )[(a2b3 -1)(b l - b3) ]'12, 

Li4M = MQ [K I(a 2b3 -1) + K 2(b, - b3) + K 3(1 - a2b,) ] , 

aEC. (3.6) 

The symmetry operators if~ for Eq. (3.S) such that 
if j eP = A j eP,j = 1,2,3 can easily be obtained by solving for 
AI' ..12, and ..13 in Eqs. (3.4). The simplest of these is if~ = a4; 
the other two operators while straightforward to compute 
have rather lengthy expressions which we will not bother to 
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put down. Finally, the symmetry operators!£' j for Eq. 
(l.la) such that!£' j tJI = A j tJI are given by !£' j 
= M!£' jM - I . The simplest of these is 

!£' -a ~ik_ ~a. 
3- 4- 2 Q 2 

In the following we list the R -separable coordinates for 
Eq. (1.la) in each of the cases (A)-(H), excluding (G) al­
ready listed. In each case we give the form of the metric dsz 

and the necessary and sufficient conditions to ensure R sepa­
ration. The Hamilton-Jacobi equations and the defining tri­
plet of commuting symmetry operators can be obtained in a 
straightforward manner from these results: 

(A) All variables ignorable: 

ds
z 

= Q ( itl (dX')Z) , 

MZQ = exp( ± aixi) ,..::1 4M = ~o, 
i=1 Q 

(B) Three ignorable variables: 

ds
z 

= Q ( i.~ 1 gij(XI)dxidx
j
) , 

MZQ = I(x ' ) exp Ctl aix) , 

..::1 4M= M h(X'), ajEC; 
Q 

(3.7) 

(3.8) 

(C) Two ignorable variables and two essential variables 
of type 2: 

dsz = Q ((dx1f + (dxZ)Z + 1 
(el _hz) 

X I l(dx3)Z + e(dx4)Z - 2hdx3dx4J) , 

MZQ =Al(XI)AZ(XZ) exp(a3x3 + a4x4)[el _ h Z]I12, (3.9) 

M 
..::1 4M = -(KI + Kz) , 

Q 
e = el + ez, h = hI + hz,J = II + Iz; 

(0) Two ignorable variables with one essential variable 
of each type: 

(01) dxz = Q [(dxl)Z + (2bd - el - b ~dJl-II (eld l 
- 12)(dxZf - (bzdx3 - dx4)z 

+ 2(bd - etldxZdx 3 

+ 2(1 - bzdJldx2dx4J],J = II + Iz, (3.10) 

M2Q =AI(X')AZ(xZ) exp(a3x
3 + a4x4) 

X [2bd - el - b ~dtll/2, 

M 
..::1 4M= -(K, +Kz), 

Q 

(02) dsz 
= Q [(dXI)2 + ~ I (Ii - e,d )(dxZf 

+ (dx 3 )Z - 2/1dxzdx3 + 2d dxzdx4J] , 
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(3.11) 

(E) Two ignorable variables with two essential variables 
of type 1: For systems ofthis type we supply some of the 
details of the R-separation conditions: 

(El) dsz = Q [ _ ( C
I = Cz ) (dx ' _ dxZ? 

a l a2 

+2 dx\dx' - dxZ) +2dx4(a ldxz - aldxl) ] . 
(3.12) 

The (first derivative conditions for R separation of ..::1 4 tJI = 0 
are equivalent to 

(a l + az)ln(MzQ) = a l + al , 

(alaI + azaz)ln(MzQ) = bl + bl , 

a}n(MzQ) =ajEC,j= 3,4. 

(3.13) 

The solutions of these conditions fall into two classes: 

Class (i): (a) a I = cosh Xl, az = cosh Xl or (b) a I = ee', 
az=ex

'; (3.14) 

then 

MZQ = [sinh ~ (Xl - XZ)rAI(XI)Az(XZ) 

Xexp(a3x3 + a4x4), (3.15) 

M 
..::1 4M = -(KI + Kl)' a, a jEC; 

Q 
Class (ii): aI' az are not of the form (3.14). (3.16) 

The the R-separation conditions are of the form (3.15) wih 
a=O: 

(E2) dsz = Q [ - (d l + dz)(bl dx l - dXZ)l 

+ 2dx3(dxZ - bz dx l) + 2dx l dx4]. (3.17) 

The (first derivative) conditions for R separation of..::1 4 tJI = 0 
are equivalent to 

(a l + bzal)ln(MzQ) = al + az , 

azln(MlQ) = bl + bz,ajln(M 2Q) = a jEC, j = 3,4. 
(3.18) 

There are two solutions to these conditions: 

Class (i): bz #-X2, 

MlQ = A I(XI)AZ(Xl ) exp(a3x
3 + a4x4) , 

M 
..::1 4M= -(KI +Kz), 

Q 
Class (ii): b2 = x 2 

• 

Conditions (3.20) hold, except that now 

MZQ =AIAl exp(xZe- X
' + a 3x

3 + a4x4), 

(E3) dsz = Q [ - dz(dxl)Z - c.(dxl)Z + 2dx l dx4 

+ 2dxldx3
]. 

The first derivative R-separation conditions are 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

a l In(MlQ) = a l + a2, a z ln(M 2Q) = bl + b2 , 

a j ln(M 2Q)=a j,j=3,4. (3.24) 

These conditions have the general solution 

M2Q =AIA2 exp(Ex lx 2 + a 3x
3 + a4x

4), E = 0,1, 
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M 
A4M = - (KI + K 2) • (3.25) 

Q 
(F) One ignorable variable with three essential variables 

of type 2: 

2 _ [(dXI)2 (dX2)2. (dX3)2 
ds-Q --+--+--

q2 - q3 q3 - ql ql - q2 
(dX4)2 ] 

+ [rt!q2 - q3) + r2(q3 - qtl + r3(ql - q2)] , 
M2Q = AIA~3S exp(a4x4), 

S = [(q2 - q3)(q3 - ql)(ql - q2)!rt(q2 - q3) 
+ r2(q3 - ql) + r3(ql - q2))] 1/2, (3.26) 

M 
A4M = "Q[Kt!q2 - q3) + K2(q3 - qtl 

+ K3(ql - q2)] ; 

(H) No ignorable variables: 

ds2 =Q( ± ~), S=detct> #0, 
i=1 Mil 

ct> = (ct> . (Xi)), QM 2 = AIA~y44 I, S 

M( 4 BMI ) A4M = - L -' -'-+a . 
Q j=1 S 

(3.27) 

Here Mjl is the (j, 1) cofactor of the 4 X 4 Stiickel matrix ct>. 

4. CONFORMALL Y FLAT NONORTHOGONAL R· 
SEPARABLE SYSTEMS 

Here we specialize the results of Sec. 2 and 3 to flat 
space, limiting ourselves to nonorthogonal coordinates. (The 
orthogonal case has already been treated in Ref. 1.) In princi­
ple, the classification is straightforward: One need only com­
pute the Riemann curvature tensor for each of the separable 
nonorthogonal metrics (A)-(G), require that it vanish identi­
cally, and classify all possibilities. In practice, however, the 
computations are hopelessly complicated. The problem be­
comes tractible only if detailed use is made of the conformal 
symmetry algebra O(6,q of the flat space Laplace equation. 

A basis for O(6,q is given by 

P j = aZl! j = 1,2,3,4, 

Ikl =zkaz' -zlaz' = -Ilk' l<k<I<4, 

(4.1) 

K j = 2zj + (2(zY - zoz)az1 + 2zjz1azl 

+ 2z jzmaz_ + 2zjznaz" , 

wherej,l,m,n = 1,2,3,4 and no two are equal. Now every 
nonorthogonal R -separable system for the flat space Laplace 
equation 

4 L a;j IJI = ° , (4.2) 
j=1 

or any other Laplace equation, contains at least one ignora­
ble variable Xl. Clearly there must exist an analytic function 
p such that ax' + p = LEO(6,q. In general, a system with m 
ignorable variables is associated with an m dimensional Abe-
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lian subalgebra ofO(6,q. Since we identify two systems if 
one can be obtained from the other by an action of the con­
formal symmetry group, to classify all possibilities for ignor­
able variables associated with Eq. (4.2) it is necessary and 
sufficient to determine all equivalence classes of Abelian 
O(6,q subalgebras under the adjoint action ofO(6,q. 

We first list the classes of one dimensional subalgebras 
ofO(6,q. To obtain most easily the results of Table I we have 
made use ofthe well known isomorphism O(6,q~sl(4,q 
and the Jordan canonical forms for 4 X 4 matrices. We have 
also identified in this and the higher dimensional cases those 
subalgebras which can be mapped into one another under 
the outer automorphisms of spatial reflection and inversion. 
For each equivalence class we exhibit a representative 
element. 

Suppose that t is an ignorable variable belonging to the 
R -separable system [t ,x2 ,x3 ,x4). Then we can assume the 
corresponding symmetry operator L = at + p is identical 
with one of the five operators listed in Table I. From this 
relationship we can determine how the "standard" coordi-

I 4 • nates z , ... z are associated to t and the general form of the 
metric ds2 in terms of dt. The ignorable variable t is orthogo­
nal if the corresponding metric can be written 

Otherwise, tis nonorthogonal. In Table II we list the metrics 
and coordinates corresponding to the operators in Table I. 

It follows from Table II that the only operators associ­
ated with orthogonal ignorable variables are 114,/23, D, and 
P3• Among nonorthogonal ignorable variables the only one 
for which the (dt f term doesn't occur in the metric ds2 is 
associated with the operator P3 + iP4• (Note that in each case 
t is not unique; it can be replaced by t I = t + ffor arbitrary 
f For nonorthogonal variables the assertation is that, no 
matter what the choice off, the metric contains cross terms 
of the formdt I da.) This last possibility is of great interest, for 
it leads to "heat type" variables (slightly renormalized): 

Zl = a, Z2 = b, ~ - iZ4 = 2t, Z3 + iz4 = C . (4.4) 

If in these coordinates we assume a solution of Eq. (1.1 a) of 
the form IJI = ct> (a,b,c)e/3t , the resulting equation becomes 

(a~ +anct> = eaect>. (4.5) 

Note that here the ignorable variable t is characterized by its 
nonorthogonality and the fact that there is no (dt )2 term in 
the metric. 

TABLE I. One-dimensional subalgebras of 0(6,q. 

I. aI,. + PI" + yD, a, P,YEC 

2. a( - I,. + 123 - iD) + P, + iP3 - I,. - iI,. + iI13 - I", i = v=! 
3. aI,. + P, 

4. aI" + P(I3• - iD) + P3 + iP. 

5. !(Pz + iP3 ) - iI,. - 13• 
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TABLE II. Metrics and coordinates associated with ignorable variables. 

I.Z' = a e - yt cos(at + el, I? = b e - yt cos Pt 
r = b e - yt sin Pt, :t = a e - yt sin(at + el 
dr = e- 'yt [da' + db' - 2ydt(ada + bdb I 

+ (r(a' + b 'I + b' P'ldt 2+ a2(adt + del'] 

Nonorthogonal unless two of a, P,y are zero. 

2.Z' - iz' = a e>lat, Zl + iz' = b + 2t' 
I? + ir = ( - 2at + ele"at, I? - iz3 = 2t 
ds' = e'lat [da db + 2dt (de + iaa db 1+ 4(iae - aldt']. 

Nonorthogonal. 

3.z' = a cos at, I? = b, r = t + e, z· = a sin at 
di = da' + a'a'dt' + db' + (dt + del' 

Nonorthogonal unless a = O. 

4.r + iZ' = a e"3+ al/,I? - iZ' = b el1fJ- alt 
z-' - iz' = 2t + e,z' + iz' = le'lfJl 

di = e>ifJ l [dadb + i(P + ala dt db + i(P- albdtda + dlde 

+ 2dt(dl+ iPldel + (ab(a'- P'l+4iP/ldt'] 

Nonorthogonal. No dt' term only if a = P = O. 

5.z' =a,z' + ir = i~2Ji!eJ2I _e~-i2l) 
I? - ir = t,z' = b e,"t + e e - ,'t . 

N onorthogonal. 

A representative basis for each equivalence class of two­
dimensional abelian subalgebras ofO(6,q is listed in Table 
III. 

The corresponding results for three dimensional abe­
lian subalgebras are listed in Table IV. 

Finally, there is only one equivalence class of four di­
mensional abelian subalgebras ofO(6,q. A representative 

TABLE III. Two-dimensional abelian subalgebras ofO(6,q. 

I. P3 + iP. + 8M", 13• - iD 

2. P3 + iP., P, + iP, 

3. P3 + iP., I,. + iI" 

4. P3 + iP., P, - iP, - iI,. + I3l + I,. + iI" 

5. P3 + iP4,P, - iP, - 13• + iD + I" 

6. P, + iP., P3 - iP4 - 12• - il3, - iI'4 + I3l 

7.1" + 123 - iD, P, + iP3 - 134 - iI,. + iI" - I" 

S. 1'3 + il2• + I" + iI", i(P3 + K31 + P, + K, + 2iI,. - 21" 

9. I,. + P3, I,. - iP2 

10. D, 12• + iI34 

II. P3, P2 + iP3 + 2i1,• 

12. iI'4 + 143, iI" + 112 

13. iI,. + 1,3' i(P, - K,) - P, + K2 + 1'3 - iI., + I" + iI" 

14. P3 + I,. + iI". P, + 13• + iI" 

IS. I" - iD, P, + iP3 + 2iI,• 

16. 1" + I" + a(I" - iDl, I,. + iD + P(I'3 - iD I 
17. al" + P(I23 - iD I, P, + iP3 + 8(123 - iD I 
IS,P3 - iP. + P (D - iI3• - iI2l1, D + P, + iP, 

- iI3• - iI" - I,. + 132 + iI2 • + il3l 
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has basis PI' P2 , P3, P4 • 

The above results apply with only slight modification to 
the flat space Hamilton-Jacobi equation 

4 L (azj W)2 = O. (4.6) 
1=1 

The symmetry algebra of this equation is again O(6,q with 
basis 

P j = Pj' j = 1,2,3,4, 

Ikl = Zk PI - Zl Pk = - Ilk' 1 <k < 1<4, 
4 

D= - L ipi> 
;=1 

(4.7) 

K j = (2(zj)2 - z.z) P j + 2zjzl PI + 2z jzm Pm + 2zjzn Pn , 

wherej,l,m,n = 1,2,3,4 and no two are equal. To find all 
nonorthogonal metrics for Eq. (4.6) it is clearly sufficient to 
examine each of the general nonorthogonal separable me­
trics from the list (AHH) of Sec. 2 and determine which of 
these is conformally flat. All orthogonal separable metrics 
for Eq. (4.6) were already computed in Ref. 1, so here we 
omit the systems of type (A), (F), and (H). Note that every R­
separable system for the Laplace equation (4.2) must corre­
spond to one of these conformally flat metrics. We will show 
later that this correspondence is one to one. 

The necessary and sufficient condition that a metric 
ds2 = Q (~gijdXi dx j

) = Q d§2 be conformally flat is that the 
conformal tensor Ci jkl of the metric d§2 be identically zero. \0 

Here, 

Cijkl = R ijkl + !(gikR jl - gi/R jk + gjlRik 

- gjkRi/) + j;R (gi/gjk - gikgjl) , (4.8) 

where R ijkl is .the Riemann curvature tensor, R jl is the Ricci 
tensor and R 1S the scalar curvature. We will use this condi­
tion to determine the number of non orthogonal conformally 
flat metrics of each type. 

TABLE IV. Three-dimensional abelian subalgebras ofO(6,q. 

I. P, + iP4, 1'3 + iD - 112, P, - iP, - iI,. + 131 + I,. + iI32 

2. P3 + iP., 1'3 + iD - I", iI,. - 132 + I,. + il3l 

3. P3 + iP., 1'3 + iD - I", P, + iP2 

4. P3 + iP., P, + 12• + iI32' P2 + 1'4 + iI3l 

5. P3 + iP., P, - iP, + il,. - I3l + 12• + il32, P, + iP, 

6,P3 + iP., P, - iP, + I,. + iI3l + iI24 - 132, 
I,. + iI3l - iI,. + 132 

7. P3 + iP4, 1'4 + iI32' 1'4 + iI3l 

S. P3 + iP., P" P, + iI'4 - 132 

9. P3 + iP., P, - iP2, I,. + iI3l - iI'4 + 132 

10. D, 1,4' 123 

II. D, 123 + 1", 14, + iI2l + iI.3 - 131 

12. P" P3 , 1" 

13. P" P2, P3 
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(B) Three ignorable variables: For forms of type (B) the 
conformal flatness conditions prove too complicated to solve 
explicitly. Fortunately, group theory comes to our rescue: 
The possible separable systems of this type correspond to the 
three dimensional Abelian subalgebras listed in Table IV. 
Subalgebras 10, 12, 13 correspond to orthogonal coordi­
nates. The subalgebra 4 does not give a separable system 
because the three Lie derivatives are functionally dependent. 
(In order to define a separable coordinate system the three 
Lie derivatives must be functionally independent.) The re­
maining subalgebras yield nonorthogonal coordinates all of 
heat type except 11 which, once a radial variable is separat­
ed, corresponds to the single nonorthogonal separable sys­
tem for the Helmholtz equation on the complex sphere S3' 7 

[However, this system also arises in E4 where the diagonali­
zation of D is accomplished by the diagonalization of the 
Casimir operator for the subalgebra O(4,q generated by the 
I jk . ] 

The coordinates and their relationship to the standard 
coordinates zj can be obtained from Tables I and II. For 
example, a suitable choice of coordinates for the operators of 
type 3 is 

Zl + iz:. = e - 2iS, Zl - iz2 = t , 

(4.9) 

where as - i = 143 - 112 + iD, at = !(PI + iP2 ), and 
au = ! (P3 + iP4 ). The corresponding differential form is 

ds2 = e - 2iS[du dw - 2i ds(w du + dt)] . (4.10) 

We note that this metric also provides a separation of varia­
bles for the flat space Helmholtz equation .J4 1J1 = EIJI. In­
deed, if we setx l = e - 2is ,xz = t /2, x 3 = w/2, X4 = u (these 
are equivalent coordinates), we obtain 

dsz = 2 dx l dxz + 2 dx4 (X3 dx l + Xl dx3) (4.11) 

and the Helmholtz equation is 

2[a12 + :1 (-x3aZ3+a34)]IJI=EIJI (4.12) 

with separation equations 

azlJlz = IllJIz, a 41J14 = 121J14, 

( - 2/1x
3a3 + 2/za3)1JI3 = 13 1J13, 

(2/1a l + 2/3/xl)1JI1 = EIJII , 

(4.13) 

where IJI = n~~ I IJIj(X j) . The operators::t' j which describe 
this separation are ::t'l = !(PI + iPz), ::t' z = !(P3 + iP4), 
::t' 3 = H P3 - iP4, 113 + ilz3 + ill4 - 124 J. The operators 
which characterize separation in this case are not all first 
order and would also suffice to describe the separation in the 
case of the Laplace equation E = O. (The significance of two 
separate operator characterizations of the same coordinate 
system will be the topic of a separate paper.) Similar com­
ments hold for subalgebras 1 and 2 on Table IV. Sub algebras 
5 to 9 clearly directly define separation of the flat space 
Helmholtz equation. Thus, nonorthogonal coordinates of 
type (B) all correspond to coordinates that separate the 
Helmholtz equation on E4 • 

(C) Two ignorable variables and two essential variables 
of type 2: It would be possible but extremely complicated to 
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derive these metrics by directly requiring the metric (3.9) to 
be conform ally flat. An easier method follows from the ob­
servation that for a conformally flat space the two Lie sym­
metries corresponding to the ignorable variables x3

, X4 are 
taken from the list of commuting pairs of symmetries in Ta­
ble III. For each pair of symmetries from this list there are 
constraints on the form ds2 and the way in which the differ­
entials dx3 and dx4 appear in it. For sub algebras 1-9 the 
corresponding metric is such that e = 0, i.e., the ignorable 
variable X4 is non orthogonal and there is no (dX4)2 term ap­
pearing in dsz. Thus, to compute all coordinates correspond­
ing to subalgebras 1-9 we can simply require that the metric 

d§2 = (II -12)[(dxl)2 + (dX2)2] +2dx3 dx4 

(4.14) 

be conformally flat. 
Subalgebras 10-13 each contain an orthogonal ignora­

ble variable so they do not correspond to type (C) metrics. 
Subalgebras 14-18 are somewhat more awkward to treat but 
in each case one can show that the metrics associated with 
these subalgebras are not of the form (3.9). Thus, none of 
these subalgebras correspond to type (C) coordinates. 

Now suppose the conformally flat metric is of the form 
(4.14). The conditions of conformal flatness are 

CIZ21 = * R1221 = 0 ,C1442 = RI442 = 0, 

(
ml - m2)2 

C1332 = R1332 + 1 II -/2 RI442 = 0, 

CI33I = !(R 133I -R2332)+ (l1~/z)2 (4.15) 

X(1 - !(m l - m2))R 1221 = 0, 

C2332 = !(R 2332 - R 133 .) + (II ~ 12)2 

X(1 - ! (ml - mz))R 1221 = O. 

These conditions imply Rijkl = 0 so the metrics d§2 are 
flat. We then obtain the following distinct solutions: 

d§2=(X I _X2) [(dXI)2 _ (dX2)2] 
Xl x 2 

+ 2 dx3dx4 + (Xl + x2)(dx4 )2 , (4.16) 

d§2 = (Xl _ x2)[(dx1)2 - (dX2)2] + 2 dx3dx4 

+ (x I + x2)(dx4)2 , (4.17) 

d§2 = (dXI)2 + (dX2)2 + 2 dx3dx4 

+ (ax I + bx2)(dx4)2 . (4.18) 

The remaining conformally flat metrics of this type are 
of the form 

(4.19) 

where de? is a separable metric in Euclidean two-space (see 
Ref. 11). Thus, all conformally flat metrics of type (C) corre­
spond to coordinates that separate the flat space Helmholtz 
equation. 

(D) Two ignorable variables and one essential variable 
of each type: We look for conformally flat metrics of type 
(Dl) for which the Lie symmetries corresponding to the ig­
norable variables x 3

, X4 are taken from the list of commuting 
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pairs on Table III. Proceeding through the list we find that 
there can be no conformally flat metrics of this type, which 
are not already of type (D2). 

For forms oftype (D2) two of the conditions of confor­
mal flatness are 

C I331 = !R3113 = 0 ,C1223 = R I223 - !!IRI332 = O. 
(4.20) 

These two conditions imply d; = 0 and!1 = O. The remain­
ing conformal flatness condition is then CI221 =! 
X (R 1221 - d R 3223) = 0, which is equivalent to d '{ - ~ 

X (d ;)2/ d2 - d2e;' = O. This equation can be solved to give 
the forms 

d§2 = (dX 3)2 + [1 + (x2f](dx l )2 +2 dx2dx4 

1 + (x ldx2f, 
1 + (X2)2 

(4.21) 

(4.22) 

(4.23) 

(For these forms we have redefined x 2 and multiplied by a 
suitable function of x 2

.) The forms (4.21)-(4.23) all define 
separation for the flat space Helmholtz equation. 8 

(E) Two ignorable variables and two essential variables 
of type 1: For metrics of type (El) the conditions of confor­
mal flatness imply that the metric d§2 is flat where 
ds2 = Qd§2 is given by Eq. (3.12). Thus, from Ref. 8 we ob­
tain the possibilities 

d§2 = 2dx3(dx l - dx2) +2 dx4 [(X I)2dx2 - (X2)2dx l ] , 
(4.24) 

d§2 = [A (Xl + x 2) + B (Xl + x
2

) + C] (dx l _ dX2)2 
X I _X2 

+2dx3(dx l - dx2) +2 dx4(x ldx2 - x 2dx l
) , (4.25) 

ds = -+ --+ -+ --A2 [A BCD] (x2dx l _xldx2)2 
Xi (XI)2 x 2 (X2)2 Xl _ x 2 

+2dx3(x 2dx l - x ldx2) +2 dx\dx2 
- dx l) . (4.26) 

For metrics of type (E2), (i) the conformal flatness con­
ditions are 

1 
C I223 = b

2 

C2113 = !RI223 = 0, 

Cml = RI22I + (d l + d2)(R2113 - b2R lm) = 0 .(4.27) 

Solving these equations we obtain the conform ally flat 
metric 

d§2 = (~+ ~ + ~ + D)(X2dx l _ dx2f 
e2x ' eX' (x 2f x 2 

+2dx\dxl - xldxl) +2dxldx4 . (4.28) 

This form is conformal to the type (E2), (i) metric of Ref. 8 
which defines separation of the flat space Helmholtz equa­
tion. A similar computation shows that there are no type 
(E2), (ii) conform ally flat metrics. 

For metrics of type (E3) the relevant conformal flatness 
conditions are C illi = RI221 = 0 and we obtain the metrics 

d§2 = (X2X~XI)2 _ (dX2)2 +2 dx ldx4 +2(XI)2dx2dx3 , 
(4.29) 
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(4.30) 

d§2 = X2( ~I r + X I (dX2)2 +2 dx ldx4 +2(XI)2dx2dx3 
, 

(4.31) 

d§2 = x 2(dx l
)2 + Xl (dX2

)2 +2 dx ldx4 +2 dx2dx3 
, 

d§2 = x2(~lr +2 dx ldx4 +2(X I)ldx2dx3 
• 

(4.32) 

(4.33) 

As shown in Ref. 8 these metrics define variable separation 
for the flat space Helmholtz equation. 

(G) One ignorable variable, two essential variables of 
type 2 and one of type 1: Comparing the type (G) metric with 
the metrics on Table II we see that the symmetry operator 
P3 + iP4 must correspond to the ignorable variable X4. With 
this restriction only the nontrivial conformal flatness condi­
tions are CI331 = C2332 = 0 and we obtain two groups of 
metrics: 

2ix' (dX3)2 
l:d§2 = (dXI)2 + e dw~ __ ':""---'---,:-

(x3 + a) 4(x3 + a)2 

II:d§2 = (dXI)2 + dW"k + Ax l(dx3)2 , 

where 

dwi = x 3(dx2f + 2 dx3dx4 + (x
2

dx
3

)2 , 
4x3 

dw2 = (1 + (X3)2)(dx2)2 + 2 dx3dx4 _ (x
2
dx

3
)2 

2 1 + (X3)2 ' 

dw~ = (x3dx2)2 + 2 dx3dx
4 

- BX2( ~:r ' 
dw~ = (dX2)2 + 2 dx3dx4 + Ax2(dx3)2 . 

(4.34) 

(4.35) 

(4.36) 

The metrics of type I determine separation for the Helm­
holtz equation on the four sphere S4 and those of type II 
determine separation for the flat space Helmholtz equation. 

This completes our classification of conformally flat 
nonorthogonal separable forms. 

5. R-SEPARABLE COORDINATES FOR..14 tp = 0 

In our treatment of conformally flat metrics in Sec. 4 
the original flat space metric was chosen in the form 
ds2 = Q ("Lgijdxidx) = Q d§2. In addition to the condition of 
conformal flatness for the metric d§2 the function Q = eU is 
determined by solving the equations 

Aij =! Q$ijR - R, j ) - ! gi j ( ± gkIA.kA./) ' (5.1) 
k.l ~~ I 

whereA jj =A.ij -A.,A,) = Jx,A andA.ij is the second co­
variant derivative of A with respect to gij (see Ref. 10). 

As we have shown, the metrics d§2 correspond to only 
two manifolds: E4 and S4' The possible functions Q relating 
flat space and these two manifolds are independent of co­
ordinates and were already computed in Ref. 1. Further­
more, it was shown in that reference that always 

.:14Q 1/2 + ~ Q 1/2 = 0 , (5.2) 

where R is the (constant) scalar curvature, and j'4 is the 
Laplace-Beltrami operator on the manifold with metric d§2. 
When we studied orthogonal separation for ..1 4 tft = 0 in Ref. 
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I we showed that we could always choose the multiplier 
M = Q -1/2. Using this result as a guide we consider one ofthe 
nonorthogonal metrics ds2 = Qd§2 listed in Sec. 4 and set 
If! = Q -1/2cP. Substituting this expression into L141f! = 0 and 
making use ofEq. (5.2) we obtain 

~ R 
L1 4 cP + -cP = 0 (5.3) 

6 

so that cP satisfies a Helmholtz equation on the manifold 
corresponding to d§2. Since the Helmholtz equation sepa­
rates in the coordinates x j corresponding to d§2, we can find 
separable solutions cP = (rr~= IA j(x) for Eq. (5.3) and R­
separable solutions If! = Q -1/2rr~ = I A /x) for the flat space 
Laplace equation. This proves that all nonorthogonal co­
ordinate systems which separate Eq. (4.6) also R-separate 
Eq. (4.2). Combining these results with those of Ref. I we 
obtain the following: 

Theorem: Let !xjJ be a coordinate system (orthogonal 
or not) for which the equation 

4 L (Jz,W)2=O (5.4) 
1= I 

is separable. Then 

dx 2 
= It I (dZ I )2 = Q ( i.~ /jdxidx

j
) = Q d§2 , 

where d§2 is a metric on one of the spaces JI = E4 , S3XSI' 
S2XS2' S4 and the coordinates !xjJ are separable for the 
Helmholtz equation on JI. If! xjJ is nonorthogonal, then 
we can assume that JI is one of E4 or S4' The function Q 
satisfies Eq. (5.3), where R is the (constant) scalar curvature 
of JI. Furthermore, the Laplace equation 
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4 L a~1[I = 0 (5.5) 
j=1 

is R separable in the coordinates (xjl: 

1[1= Q -112AI(XI)A2(X2)A3(X3)A4(X4). 

All separable systems for the Helmholtz equation on JI 
yield R-separable systems for the flat space Laplace 
equation. . 

Corollary: Equations (5.4) and (5.5) separate In exactly 
the same coordinate systems (orthogonal or not). 

Corollary: If {xjl is a separable coordinate system for 
the Laplace equation on a conformally flat space, then these 
coordinates permit separation of the Helmholtz equation on 
one of the manifolds E4 , S3 XSI , S2 XS2, or S4' 
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Oscillatory motions at constant amplitude admit of an especially simple description of their 
stability in phase space: orbital stability is equivalent to stability of the amplitudes alone, 
regardless of phase behavior, while Liapunov stability can subsequently be inferred from the 
phases alone. Stability arguments simplify further in slow-fluctuation approximation because of 
the availability of explicit quadratures for the amplitudes and phases depending ultimately on a 
single polynomial. Thus, all orbital stability information about near-resonant constant-amplitude 
motions in conservative, autonomous systems can be extracted solely from that one polynomial. 
Explicit analytic criteria for orbital stability are derived, and auxiliary methods for the 
construction of stability charts are developed. Liapunov stability is shown to be a rare exception, 
but Liapunov instability is encountered in distinctly varying degrees; a fairly wide class of motions 
in a fairly wide class of systems is shown to be Liapunov-unstable only in the third order of a 
certain approximation. Five examples are given at some length; they differ starkly in detail. 
Owing to their tractable stability properties the abundant constant-amplitude motions play in 
slow-fluctuation approximation the role of the often nonexistent, purely periodic solutions of the 
traditional theories. 

PACS numbers: 03.20. + i,46.1O. + z 

I. INTRODUCTION 

Autonomous, conservative, nonlinear oscillatory sys­
tems of many degrees offreedom (d.f.) with an internal near­
resonance ~gJJJi = E can be completely integrated in "slow­
fluctuation" approximation, as we have described recently.l 
Referring to that paperl as SF and keeping its notation, we 
continue our study of the method. 

We now turn to stability. Since this term appears even 
more protean in science than in politics, we hasten to explain 
that we follow Liapunov and Poincare and define stability of 
motion in 2n-dimensional phase space, not in the n-dimen­
sional configuration space of the given dJ. This is often not 
done. 2 Among writers of practical texts known to us, Cun­
ningham3 and Leipholz4 are distinguished for meticulous 
argument in phase space whenever it helps. Indeed, attempts 
at finding universal definitions of stability by the exercise of 
intuitive commonsense in configuration space have always 
ended with some disappointment. We quote Klein and Som­
merfeld5 as an outstanding example; the lucidity of these 
eminent authors commands admiration but does not point 
the way toward satisfactory, general concepts. Our method 
being extremely flexible and general, we naturally do not 
wish to be hampered by inadequate definitions of stability. 

Let CtJ be a system path in phase space and draw a 
(hyper) sphere of radius 1] about each of its points. The enve­
lope of this succession of spheres along CtJ we call the "1]-tube 
about CtJ". CtJ is called "orbitally stable" iff for any preas­
signed 1] there exists ap with 0 <P<1] such that any phase 
orbit CtJ * which passes somewhere within p of CtJ lies in its 
entirety within the 1]-tube about CtJ. 

"'This paper is based on a dissertation which will be submitted to Ohio 
University by M. F. A. in partial fulfillment of the requirements for the 
Ph.D. degree. 

In the classic applications to celestial mechanics,6 CtJ is 
a closed curve corresponding to strictly periodic motion. 
This is not necessary. CtJ can also represent a quasiperiodic 
motion for which CtJ does "not quite" close while an 1]-tube 
may eventually penetrate itself. The stability definition still 
applies, at least in principle; in fact, it requires not periodic­
ity but only boundedness of CtJ (in the unbounded case it 
dissatifies inasmuch as even force-free uniform motion 
would be unstable). The quasi-periodic case is important to 
us because, as we were at pains to emphasize in SF, in near­
resonant systems strictly periodic motions occur only under 
special circumstances. Thus our applications will be made to 
constant-amplitude (c-a) motions whose phase orbits nor­
mally do not close. In a sense, then, the abundant c-a mo­
tions take in slow-fluctuation theory the place of the elusive 
purely periodic solutions of the classical theories. 

A motion will be orbitally unstable if for any 1] there 
exists at least one orbit CtJ * which eventually leaves the 1]­
tube, however small p is chosen. Roughly speaking, in the 
unstable case certain arbitrarily small perturbations cause 
finite orbit changes. Still, possibly there are many CtJ * which 
remain safely within the 1]-tube even for a finite p. If so, one 
may speak of "conditional"? stability: roughly, perturba­
tions of one type leave the orbit stable while the others 
change it materially. Phase space topologies of this kind are 
well known in the theory of differential equations; for in­
stance, they playa prominent role in the study of generic 
properties of linear operators. 8 They are certainly not con­
fined to recondite systems. With coupled oscillators they oc­
cur easily, as we show in Sec. 1I1.e. 

Sometimes orbital instability (whether conditional or 
absolute) results in monotonic amplitUde growth, the disrup­
tive event9 called an "explosive instability" in plasma phys­
ics. Again, this is not infrequent, and we meet examples in 
Sec. V. 
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It does not matter to the orbital stability of C(j how the 
distance between a phase point P on Ctff and the perturbed 
phase point P * on C(j * evolves as the motion proceeds down 
the 7]-tube. At perturbation time to the gap must have been 
less than p. Later it may grow indefinitely; usually it does, 
but sometimes not at all. C(j is called "Liapunov-stable" iff 
II P *(to) - P (to) II <p implies II P *(t) - P (t)1I < 7] at 
all times t> to' (If P can be chosen independently of to the 
stability is furthermore called "uniform".) Liapunov-stable 
oscillators are perfect timepieces. 10 They are rare because 
nonlinear oscillators rarely have constant frequencies. How­
ever, if Liapunov instability is the rule, it can come in varying 
degrees, according to the actual rate of change of 
II P *(t) - P (t )11. Since the subject may be of practical use, we 
discuss it in some detail in Sec. IV. We find, in particular, 
that there exist classes of c-a motions and systems for which 
Liapunov instability appears only in a higher 
approximation. 

Stability arguments are fairly simple in slow-fluctu­
ation approximation owing to the availability of explicit qua­
dratures for amplitudes and phases. Central to our presenta­
tion is the simple fact, demonstrated in Sec. II, that orbital 
stability of c-a motions can be determined from the ampli­
tudes alone, without regard to phases. Since in our approxi­
mation the amplitudes all arise from a single quadrature in­
volving a polynomial, all orbital stability information about 
the various classes of c-a motions can be extracted merely 
from that one polynomial, as we show from several points of 
view in Sec. III. Liapunov stability of c-a motions can then 
be studied from the phase equations alone; see Sec. IV. 

Throughout the paper our aim is not completeness. 
Rather, we want to show how the new slow-fluctuation 
method allows one to cut pathways of classification and un­
derstanding through the veritable jungle of detail rooted in 
the vast variety of nonlinear processes. Our list of examples 
in Sec. V is therefore purely illustrative, even sporadic, just a 
small hint of how much there is to be found. 

Likewise, we again confine ourselves to systems with 
coupling Hamiltonians HM) dependent on coordinates 
alone, except for several asides. With momentum-dependent 
coupling, the separation of amplitudes and phases still holds 
good, and a single quadrature again furnishes all amplitudes. 
Using these facts, which were established in SF, stability 
arguments may be fashioned along the lines of the present 
paper in cases given explicitly. 

We add a word of caution which could already have 
been said in SF but carries more weight in the context of 
stability arguments: an internal resonance occasionally is 
not quite what it purports to be. Consider a coupling 
Hdq) = rqlq2q~ in three d.f. This is not at all unrealistic, cf. 
Sec. V.E, but ifml = m 2 and a resonance WI = W 2 is assumed 
it becomes tantamount to a degeneracy of the d.f. ql and q2 
which can be removed in standard fashion by a linear trans­
formation, leading to a new Hamiltonian with a coupling of 
the type rlq~q~ + r2q~qL and now there is no more reso­
nance in the customary sense. II In order not to overburden 
our statements with exception clauses, we tacitly assume 
that such trompe-l 'oeil degeneracies have been straightened 
out. 
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II. GENERAL CONSIDERATIONS 

The argument of this section is most conveniently 
couched in terms of amplitudes and phases. They are con­
nected with the canonical variables by 

qi(t) = Ai cos(WJ + /3;), 

(2.1) 

according to the transformations SF (2.1) and (2.2). It de­
serves mention that the simplicity and symmetry of these 
formulas is the result of a particular gauge. When a Lagran­
gian L is replaced by an equivalent L + dgldt, with some 
g(q), then the generalized momentapi = JL I Jqi are replaced 
by Pi + JgIJqi' The canonical transformation SF (2.1) im­
plies that a choice of a particular g has been made, a fact 
easily overlooked. The almost trivial simplicity of the follow­
ing argument, too, results from this gauge; it would be lost 
underahomeomorphismpi-Pi + JgIJqi of the phase space 
which is still allowed in principle. 

Consider a motion at constant amplitudes, say Ai(t) 
= Aio . Its phase orbit C(j has projections onto thepi> qi phase 

planes which are ellipses given by Eqs. (2.1) in terms of t as 
parameter. C(j itselflies on the (n-dimensional) hypersurface 
defined by the intersection of the hypercylinders erected 
over the n phase ellipses (2.1); it is not necessarily a closed 
curve. 

One sees easily enough that orbital instability of ct; can­
not be caused by the phases Pi (t). Let us first assume that the 
amplitudes of C(j are stable in the following, obvious sense: 
for any preassigned 7]' there exists a p' with ° <p' <,7]' such 
that on any perturbed phase orbit ct; * which passes some­
where within p' of ct; , 

* 7]' IA i (t) -Aio 1< , i = 1, ... ,n (2.2) 
max( l,m i w i ) 

holds uniformly in t for the perturbed amplitUdes A r(t ). 
Now preassign an 7] > 0, take 7]' = 7]lv n, note the pertain­
ingp' > 0, draw an 7]' -tube about ct; and project it onto thepu 
qi phase planes, resulting in bands of width 27]' about the 
phase ellipses described above. Take any phase orbit 'fJ * 
which comes somewhere withinp' of 'fJ: because of the rela­
tions (2.2) and (2.1) its projections must lie within the elliptic 
7]' -bands. However, it does not follow that 'fJ * lies within the 
7]' -tube about 'fJ, because of possible foreshortening in the 
projection. The longest line segment which can have projec­
tions of length <,a onto all coordinate axes is the diagonal 
d = av2n of a hypercube of edges a parallel to the axes; it 
will have equal projections av2 onto the phase planes. Con­
versely, any point farther away from ct; than 7]' V n = 7] will 
project outside the elliptical 7]' -band in at least one phase 
plane. At all events, Ctff * lies safely within the 7]-tube about 
'fJ, and hence the assumption (2.2) implies the orbital stabil­
ity of 'fJ. 

Since the converse is obvious, we have the 
Theorem: A motion at constant amplitudes is orbitally 

stable iff the neighboring amplitUdes fulfill the conditions 
(2.2). 

This holds regardless of the behavior of the perturbed 
phases P r(t ); indeed, the projections of the perturbed phase 
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point may move within the elliptic rl' -bands at any speeds. 
On the other hand, if in an orbitally stable case we subse­
quently look for Liapunov stability, we certainly need to 
prove no more than that l/:1r(t) - /:1i(t)1 < 17'holds uniformly 
for all i. 

This very convenient approach to stability of c-a mo­
tions results solely from the description in terms of ampli­
tudes and phases, and depends in no way on the techniques 
used for solving the equations of motion. It becomes espe­
cially profitable in the slow-fluctuation approximation, for 
through the conservation laws SF (3.5) the n conditions (2.2) 
are all fulfilled if the one for A I is fulfilled (or an equivalent 
one for pd. A study of solely the underlying polynomialf( PI) 
thus yields all there is to know about orbital stability in any 
of the three classes of c-a motion, Case (I) and Case (II) with r 
even or odd. 

Motions at varying amplitudes present an altogether 
more difficult picture. Suppose for the sake of a quick orien­
tation that we have found a phase path C(J in the neighbor­
hood of which the amplitudes are stable in the sense of 
IA r(t) - Ai(t)1 < 17', analogous to condition (2.2). If the 
phases also remain stable, C(J is evidently Liapunov-stable, 
but if the phases are affected by the perturbations, C(J need 
not even be orbitally stable, for unless the phase changes /:1 r 
(t) - /:1i(t) are limited injust the right way, the perturbed 
phase point will gain distance not merely from the unper­
turbed phase point but from the unperturbed phase curve as 
well, since the amplitudes are now varying in time. Thus an 
orbital stability decision can no longer be based on a study of 
the amplitudes alone. 

The general case also differs in its ergodic aspects. It 
suffices to consider a single phase plane. 12 The projection of 
C(J is no longer an ellipse, but a spiral which densely fills an 
annulus the edges of which are determined by the amplitude 
modulation range. The spiral will degenerate into a closed 
curve if and only if the modulation and oscillation periods 
are commensurate, a rare and exceptional case as empha­
sized in SF. 13 In general, then, a perturbed phase point P *(t) 
will continually lie arbitrarily close to points of C(J which the 
unperturbed pointP (t ') reaches at certain other times. It may 
seem that in such a situation the usual concepts of stability 
lose meaning, but this is only a Wiederkehreinwand and we 
submit that it fails for the same reason as in statistical me­
chanics: the Wiederkehr times are fantastically long. 14 Com­
monsense suggests accordingly that stability be referred to a 
time scale. It is certainly legitimate to ask after what time 
interval7{17,p) a perturbed C(J * will leave the 17-tube about C(J. 

When in some sense this l' can be shown to have a uniform, 
positive lower bound 1'0 as 17--0, then C(J may be deemed 
"orbitally stable during 1'0'" and if 1'0 is adequately long in 
relation to some given purpose, although in no way compa­
rable to a Poincare recurrence time, then the finding may be 
worth while. 

Thus the general case represents an ample subject in its 
own right. We shall not pursue it here but it may well be 
mentioned because the surmise is a fair one that the reduc­
tion to quadratures inherent in our method can be exploited 
for general motions to yield useful results in practical cases 
where the existing, general theory of stability, 15 despite all 
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the brilliant advances made in the last two or three decades, 
remains unmanageable. 

III. ORBITAL STABILITY 

The developments of this section do not necessarily ap­
ply in full detail to the (possibly rare) exceptional cases de­
fined in subsection A. Otherwise they are entirely general. 
They can also be adapted without substantial complications 
to the case of a momentum-dependent coupling. 

A. Some properties of the polynomial f 

Recall the definition SF (3.9): 

f(pd=F2- [E- tUJiai -€PI-Dr (3.1) 

Polynomial D( PHa) arises from the terms in the coupling 
HM) which contain only even powers of the coordinates, 
while F( PI,a) arises from the resonant terms after the substi­
tutions SF (3.3) and (3.4), and has the general form 

(3.2) 

as follows from the discussion in SF at the end of Sec. II. 
Here C 1= 0 is a system constant and the Ii are integers ;;;.0, 
with 111=0 because of our numbering of the dJ., and with 
PI;;;'O because of the conventiong l > 0 (see SF Sec. III); Qis a 
polynomial which can be nonconstant only if there are sever­
al resonant terms in HI' 

From Eq. (3.2) it follows that F(O,a) = 0 and therefore 

f(O).;;;O, (3.3) 

an inconspicuous but important fact. 
Squaring Eq. (3.2) yields 

(3.4) 

The highest non vanishing coefficient aj sometimes depends 
only on system parameters, but if one or more d.f. with gi 
= 0 are present, aj will also contain the amplitude constants 

a i and then depends on initial conditions as well. The lower 
coefficients always contain the a i • Likewise, if 

(3.5) 

the highest coefficient bm may be independent of initial con­
ditions but it does not have to be, and the lower ones normal­
ly are not, as is immediately clear from the origins of B to­
gether with the transformation formulas SF (3.3). 

From the definition (3.1), we now obtain 

fWd =Is PIS + Is-I Pis-I + ... 

+ [a2 + 2b2(E - I UJiai - bo) - (b l + €)2] PI2 

+ [a l +2(b l +€l(E- IUJiai -bo)]PI 

- (E - I UJiai - boy, (3.6) 
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with the last coefficients written out in detail for later use. 
The highest nonvanishing coefficient!. may depend on sys­
tem parameters only, but often enough it will depend on 
initial conditions as well. Consequently it may also go 
through zero for certain initial conditions. This is not obnox­
ious in itself, but if a zero occurs precisely for those initial 
conditions which also determine the c-a motion under con­
sideration, various arguments will be in jeopardy. We have 
not found such cases, and possibly they are rare coinci­
dences, but they are conceivable and must be treated on their 
own terms if and when they occur. 

Thus we assume explicitly that!. has no zero within the 
range of values of a2, ... ,an ,E under consideration. As a con­
sequence, the number of roots off(PI) will be invariant 
throughout this range. Furthermore, from the structure of 
the polynomial (3.6) it is clear that the roots will be continu­
ous functions of a 2, ••• ,an ,E and that their product cannot 
change sign. 

B. Use of roots in special cases 

The (nonnegative) roots of/( pI! are the turning points of 
PI(t), hence their behavior under perturbations determines 
the orbital stability of the motion. Unfortunately, simple for­
mulas for the roots often do not exist. Some general stability 
criteria based on roots can nonetheless be obtained for re­
stricted classes of c-a motions. We choose as example the 
fairly common Case (I) motions in which one single dJ. re­
mains at rest [see SF Sec. V]. If the dJ. which does not move 
hasgi = 0, its amplitude is always constant [see SF Eq. (3.5)] 
and orbital stability depends on the other d.f.; thus we take it 
to be a resonant one with gi #0, and assume without loss of 
generality that it is ql' 

A glance at the exact equation of motion 

. aH 2 aHI PI = --= -mIUltql---
aql aql 

shows that ql_O is possible (nontrivially) only if HI contains 
no terms linear in ql' Then in Eqs. (3.2) and (3.4) we must 
have /1>2, and therefore a 1 = 0 in Eq. (3.6). Under these 
circumstances it is seen that/( PI) cannot have a simple root 
at the origin, but will have a root of at least the second order 
there iff 

(3.7) 

Motion atpl-==O requires such a higher-order root. Let 
us assume for brevity of exposition that it is exactly double, 
i.e. that the condition (3.7) holds together with 

a2 - (h t + €)2#0, (3.8) 

and apply small perturbations to the motion. The condition 
(3.7) which had to be fulfilled to set up the c-a motion will 
now be violated and therefore the double root at the origin 
disappears. In its place there must still be two roots close by, 
because of continuity. The graph of/( pI! now passes below 
the origin, because of the general condition (3.3); also, phys­
ical motion can only occur to the right and requires/( PI!>O. 
It follows that at least one of the new roots must be (real and) 
positive. 
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Both roots may have moved towards the right. They 
may still coincide, or else they have separated and then/( PI) 
must be positive in between. Thus the motion occurs at or 
between the displaced roots, and is orbitally stable because 
the displacement can be made arbitrarily small if the pertur­
bations are taken small enough, satisfying the criterion (2.2). 

The two roots may also have split with the origin be­
tween them. In this situationpt must increase from the posi­
tive displaced root up to the next root, which will be at a 
finite distance from the origin, owing to condition (3.8), or 
may not even exist, in which case PI must grow without 
bound. Inequality (2.2) can not be satisfied and the motion is 
orbitally unstable. 

A formal stability criterion can be constructed from the 
sign of the product of the two displaced roots. Since all other 
roots are much larger, we can find the two small ones from 
the last three terms in the polynomial (3.6); their product has 
its sign opposite to the coefficient of pi and therefore we find 
stability iff 

a2 -(h l +€)2<0 (3.9) 

(which can in an explicit case be transformed back into a 
relation between the amplitudes). 

c. Use of derivatives in general 

Multiple roots of/(pI! as needed for c-a motion can 
occur in the four configurations sketched in Fig. 1. The order 
O"oftherootRiseveninFigs.laand Ib,odd(butnotO"= I) 
in Figs. lc and ld. Now apply small perturbations to 
a 2, ... ,an ,E; how willpI(t) change in the four cases? 

It is important to recognize at the outset that PI is in 
general subject to restrictions resulting from the values of the 

R 

a b 

c d 

FIG. I. The four possible configurations of multiple roots of the polynomial 

f(PI)' 
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constants a 2 , ••• ,a n regardless of the nature of the polynomial 
f By virtue of the conservation laws SF (3.~), toget?er with 
Eqs. SF (3.3) and the requirement Pi ;;>0, an mequality 

-giP.<ai 

must hold for every i = 2, ... ,n. For a near-resonant d.f. with 
gi = 0 this is trivial. For a negative go however, an upper 
bound to P. is implied; an example of some interest occurs 
after Eq. (5.40) below. Likewise, a positivegi implies a lower 
bound - a i <giP.; there is the bound O<P. at all events, but 
it may be exceeded by one or more of the former. The closed 
interval from the largest lower bound (including zero) to the 
smallest upper bound we shall call the "domain of P." result­
ing from the given a 2 , ••• ,an ; it may be finite or right-infinite, 
and P. can never lie outside at any time. 

It can happen that the domain contracts into a single 
point. A simple example in three d.f. occurs after Eq. (5.60) 
below. In such a situation no amplitude variation is possible, 
and if we perturb a 2 , ••• , an a little, the perturbed domain will 
still be small. Hence any motion with a point domain is orbi­
tally stable, irrespective of other considerations. 

We may now turn to Fig. I under the assumption that 
the domain is a finite or right-infinite interval. 

Consider Fig. la, the local maximum: regardless of 
where under small perturbations new zeros appear near R, 
the preconditionf( P');;>O necessary for physical motion can 
only be met in the neighborhood of R, by continuity, and any 
c-a motion at R is therefore orbitally stable. 

Figure I b, the local minimum: the opposite conclusion 
results, for extended regions withf( P.) > 0 always exist adja­
cent to R, so that certain perturbations will cause the ampli­
tude to evolve away from R. Of course, the evolution can 
proceed only towards one side in case R lies at an endpoint of 
the domain of P •. The instability can be conditional, though. 
For example, if R is fourfold and splits into a quartet of 
distinct, real roots, then motion with a very small amplitude 
modulation, between the two inner roots, may occur after 
some perturbations. 

Figure lc: if R lies at an inner point of the domain, 
instability follows as for Fig. 1 b and is possibly conditional. 
However, if R is a right domain endpoint, no finite evolution 
of P. towards the right is allowed and orbital stability ensues. 

Figure Id: analogous to Fig. lc. If R is an inner point, 
there is instability, possibly conditional. If R is a left domain 
endpoint, there is stability. 

A summary of these results, expressed in terms of high­
er derivatives, is the 

Theorem: With a point domain of PI' every motion has 
constant amplitudes and is orbitally stable. When the do­
main is an interval, a c-a motion PI = R at a rootR of multi­
plicity q;;>2 is orbitally stable iff 
given q even: 

givenqodd: 

55 

(d "f I dPllat R ~ 0 and R upper endpoint. 
lower 
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(3.10) 

In the principal case q = 2, a local minimum as in Fig. 
1 b could accordingly be stable if the domain is an isolated 
point. Actually, if q = 2 it is just for a point domain that this 
configuration cannot occur in physical systems. For the 
proof, assume the contrary, apply small perturbations and 
note that in each of the alternative developments a contra­
diction follows. (a) If the real double root becomes complex, 
thenf( P.) > 0 holds afterwards in some finite inte~al enclo~­
ing R and the motion PI(t ) must become progressive, butthlS 
cannot happen because the domain of PI can be held as small 
as we please. (b) If the root splits into two real ones, the~ 
f( PI) < 0 holds in between, the motion must be ~r~gre~slve 
from one of the roots outwards and the contradiction IS the 
same. (c) If the double root never splits under any perturba­
tion, c-a motion would always result. Now for any c-a mo­
tion in our nonlinear system, R is determined by a 2,···,an 

from one equation, either F(R,a) = 0 or SF (5.5), and E then 
follows from another equation, either SF (5.2) or (5.6). How­
ever, E is free for us to perturb independentl~ of a2,····,an , 

hence we may at will violate the latter equation, hence the 
amplitUdes are not necessarily constant, hence the root can­
not permanently stay double. 

For a second-order root there is no further alternative 
similar to the above-mentioned splitting of a fourth-order 
root into a quartet withf( p.) having a tiny bulge in the mid­
dle under which stable motion can continue. Odd-order 
roots, too, can develop such bulges and indeed these are nec­
essary for continued stable motion in the vicinity of a point 
domain, or of a domain endpoint. Having thus characterized 
the special nature of the case q = 2, we can state the simple 

Theorem: C-a motion PI = R at a double root is orbital­
ly stable iff 

(d 2fldPI2)at R <0. 
A simple example is the criterion (3.9); it effectively puts 

the second derivative of the polynomial (3.6) in a very practi­
cal form which could be attained because we had some ex­
plicit knowledge of the nature of the case. Such knowledge 
may not always be available, but it is still possible to develop 
more detailed, yet general, criteria if the distinction between 
Case (I) and Case (II) motions is introduced as in SF Sec. V. 
We do so in the remainder of this subsection, but confine 
ourselves to q = 2, as the treatment of higher multiplicities 
will follow an analogous route. The required second deriva­
tive is obtained from the general formula (3.1) 

f" = d 2f Idpf = 2(aFlaplf + 2Fa2Flapf 

- 2(E + an lap.f 

(3.11) 

Case (I) is defined by F(R,a)=O. Thus the second term 
on the right of Eq. (3.11) will vanish at R except possibly if 
the second derivative of Fis not bounded there. It could 
become unbounded, see Eq. (3.2), only if Ii = 1 or Ii = 3 for 
somei, togetherwithgiPI + a i = Oforpi = R, which means 
in terms of amplitudes that Pi = 0 and in fact, Pi =0 because 
the motion is such thatPI R. But qi ==0 is possible (indepen-
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dently of the other d.f.) only if l; ;;:. 2, as we showed in Subsec. 
B for i = 1; hence we may discard the possibility Ii = 1. With 
Ii = 3, on the other hand, each term in the product 
F(a2F lapT )stillcontainsgiPI + a i to some positive power so 
that when this factor vanishes the product also does. Now 
from Eq. SF (5.2) it follows that the bracket in Eq. (3.11) 
vanishes at R, and hence we have the 

Theorem: A case (I) c-a motion at a root R of 
multiplicity 0' = 2 is orbitally stable iff 

laFlaPllat R < IE + aBlap\lat R. (3.12) 

For the opposite sign there is instability, while equality can 
not arise for 0' = 2. 

Case (II) means sinql 0 and implies the relation SF 
(5.5): 

odd 
r 
even 

(3.13) 

So now the first and third terms on the right ofEq. (3.11) 
cancel. In the bracket we set PI = R and then substitute 

- - even 
E - I (JJiai - ER - B (R,a) = ± F(R,a), r odd 

from Eq. SF (5.6). Hence we have the 
Theorem: A Case (II) c-a motion at a root R of multi­

plicity 0' = 2 is orbitally stable iff 

= 2= =2 2= =2 even 
F(R,a)(a F lapl ± a B lapl )at R <0, r odd. (3.14) 

Again, equality is impossible for 0' = 2, and > means 
instability. In practice, the sign of Fis often constant, e.g., 
when Hdq) contains only one resonant term; then an obvious 
further simplification is possible. 

The two formulas (3.12) and (3.14) are remarkably dif­
ferent: first derivatives in one, second derivatives in the oth­
er. Also, E occurs explicitly in the former, while in the latter 
it remains concealed in the relation between the amplitudes 
R,a2, •• ,an of the c-a motion; cf. SF Eqs. (5.5) and (7.13) for 
detail. 

D. Existence surfaces and stability boundaries 

We now introduce geometrical language 16 in order to 
interpret the analytical stability criteria of the preceding sub­
section. We represent every c-a motions as a point in an n­
dimensional space having the amplitudes as rectangular car­
tesian coordinates. Actually, coordinates Pi will be more 
convenient than the Ai themselves. In this p-space all c-a 
motions of a particular class will be represented by a geomet­
rical object which we call the "existence surface" of the class, 
for brevity; it will be a union of locally continuous sets of 
(generally) n - 1 dimensions, or bordered sheets of hyper­
surfaces, but we shall gloss over such details unless they mat­
ter to the purpose. 

Case (I) motions are defined by F( PI,a) = 0, a condition 
which by means of the substitutions SF (3.3) and (3.4) trans­
lates back from Eq. (3.2) into 

F(ji) = C PI/,/2 ... P';,'12Q(ji) = O. (3.15) 

Thus the Case (I) existence surface is not complicated. It 
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consists mostly of planes Pi = 0 (or rather, of hyperplane 
wedges, because of the physical restrictionpi;;:'O for all i) with 
li;;:.2 (for Ii = 1 a zero amplitude is usually ruled out as dis­
cussed in SF Sec. II); only the sheet Q = 0 can become 
curved, but only if there are several resonant terms in HI (q), 
and of sufficiently high degree, too. 

If we now apply the criterion (3.10) at each point, this 
existence surface will divide into subsets of different stability 
type which are disjoint but still locally continuous because 
f( pt! as a polynomial has continuous derivatives. There is no 
need to deal with the points individually, of course; rather 
ask first, where doesf" vanish? In any connected region of 
the existence surface where the second derivative does not 
vanish, it must have the same sign throughout, by continu­
ity; therefore it suffices to calculate this sign at one interior 
point in order to find the stability label for the entire region. 
All stable or unstable regions with 0' = 2 can thus be recog­
nized, and this disposes of a good deal of the stability 
problem. 

The expression (3.11) for the second derivative can not 
be employed for the present purpose as it stands because it 
contains the energy constant E which is not an independent 
one for c-a motions, see SF Sec. Y, and must be eliminated, 
but this is precisely what we have done already to arrive at 
the criterion (3.12). In fact, 

± (aF laPI)at R = E + (aJf lapt!at R (3.16) 

is seen to be the condition to ensure thatf" = 0 for a Case (I) 
motion (atpI=R and with 0'> 2). 

Consider more generally the equation 

E+aBlapl = ±aFlapl (3.17) 

and translate it back into p-space. The set of all points in P­
space satisfying Eq. (3.17) will be called, for brevity, the "2-
stability boundary" of the Case (I) motion. It is in general a 
curved hypersurface, somewhat reminiscent of a hyperbolic 
paraboloid in three dimensions, as will be clear from a glance 
at Eq. (3.2), and it usually has two distinct sheets because of 
the ± sign. The points on the existence surface (3.15) which 
havef" = 0 are now obtained by finding the intersection 
with the boundary (3.17). Note that the intersection may 
sometimes be only a contact. 

Case (II) motions are defined by the condition (3.13) 
quoted above. This is seen to be identical with Eq. (3.17); 
only the ± sign needs to be interpreted as expressing the 
two possible values of r. Thus in p-space the existence surface 
for Case (II) coincides with the 2-stability boundary for Case 
(I). 

There is more such reciprocity. If on the Case (II) exis­
tence surface we again seek the points havingf" = 0, we 
must again eliminate E from Eq. (3.11), but by the second 
route which led to the criterion (3.14), and recognize that 

= 2= =2 2= -2 even 
F(R,a)(a Flap I ± a B lap I )at R = 0, r odd (3.18) 

will makef" = 0 for a Case (II) motion (at PI=R and with 
0'> 2). Obviously we can deal with this result much as with 
Eq. (3.16): we d~fine a 2-stability boundary whose equation 
factorizes into F = 0 and the supplementary 
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even 
r 

odd 
(3.19) 

which happens to be thept-derivative ofEq. (3.17). The sec­
ond factor could have singularities or become a constant 
(including zero), in which case we must not factor but consid­
er the product (3.18) on its own merits; exceptions apart, 
however, the first factor F = 0 is merely the Case (I) exis­
tence condition (3.15). 

It is this unexpected reciprocity which lends appeal to 
the geometrical approach. Roughly speaking, a study of only 
the two existence surfaces and their intersection, where the 
motions which are simultaneously Case (I) and (II) are 
found, will settle a major part of the stability question for 
both Cases (I) and (II). Of course, there are possible complica­
tions from Eq. (3.18); then the 3-stability boundaries still 
remain to be found in the intersection; and so forth. For 
reasons of space, we shall not attempt to do any of this in full 
generality, but refer instead to the specific examples in Sec. 
V. Here we only append one more discussion of a general 
nature. 

The close connection between the stability problems for 
Cases (I) and (II) suggests exploitations of geometrical trans­
formations. One example will suffice. Consider a system for 
which P(P) is homogeneous while Bis zero, and apply a 
dilatation A-X Pi to p-space. Since P will simply multiply 
with some power of X, the existence surface (3.15) remains 
invariant. Now go from p to p. The pertinent transformation 
SF (3.3) is linear-homogeneous, henceFwill again be homo­
geneous, and its pt-derivatives must also be homogeneous. 
Then in Eq. (3.19) the derivative will under the dilatation 
multiply with some power of X, and the supplementary 2-
stability boundary is seen to be invariant. In Eq. (3.13) or 
(3.17) for the Case (II) existence surface the dilatation will 
also bring a power of X to the derivative, but we cannot can­
cel it out, we can only put it as a denominator under the E. 

These last two arguments would obviously continue to hold 
if i!....were not zero, but homo~neou!,and of the same degree 
as F, so that under dilatation F and B multiply with the same 
power of X, and their derivatives likewise. The result can be 
paraphrased thus: in a system with P and Bhomogeneous 
and of the same degree, or with Phomogeneous and B =0, a 
change of E is tantamount to a dilatation of p-space. This can 
be helpful in drawing stability diagrams. At the very least it 
follows that for E = 0 all u = 2 stability regions are invariant 
under dilatation. 

E. Use of curvature boundaries in many cases 

When the intersection of existence surfaces and 2-sta­
bility boundaries has been determined, the resultant 2-stabil­
ity regions must still be labelled, using Eqs. (3.11) or (3.12) 
and (3.14), according as/<i!!.O. In many cases the mechanical 
task of the calculation of the sign off" can be profitably 
linked to a more general, geometrical construction. 

Suppose the polynomial if( Pt,a) is constant, or at most 
linear in Pt; then the fourth term on the right of formula 
(3.11) vanishes. In this case we call the set of all points in p­
space satisfying 

(JFIJpt)2 + PJ2PIJpi - (E + a'BIJptf = 0 (3.20) 
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the "curvature boundary" of/(pt!. It will in general be a 
connected hypersurface of n - 1 dimensions which divides 
p-space into a "right" and a "left" part corresponding to 
/"z.0. Calculation of the sign off" at a single point thus fixes 
the sign everywhere else, including the stability regions. 

The benefit of this approach is that the curvature 
boundary often helps in the classification of the system mo­
tions which are possible in some more extended vicinity of a 
c-a motion under scrutiny. The projection of an arbitrary 
phase curve from p,ii-space into p-subspace is in slow-fluctu­
ation approximation a straight line segment given by the n 
linear equations (see SF Sec. III) 

Pt=g~t' 

(3.21) 

in terms of the parameter Pt (withgt > 0 but the other gi and 
the a i possibly.s;;;O). The turning points of the amplitude 
modulation, the segment end points, are determined by roots 
of/(pt) = 0, which are often enough awkward to calculate. 
The equation/"(pt) = 0 is of order 2 less and will usually be 
more manageable. For instance, a segment may cross the 
curvature boundary ifand only if/(Pt) has a point ofinflec­
tion between the turning points; if now we find for some 
reason that this can not happen in a certain region, then we 
already know a good deal about the roots of/(Pt) in the 
vicinity. Such perspectives can be developed ad hoc; we refer 
to a few hints in Sec. V. 

If jjis of the second or higher order, then there is a 
separate/" = 0 surface for every value of E. The family of 
these surfaces is linear in the parameter E; thus it does not 
have an envelope, but it follows from Eq. (3.11) that each 
member passes through the intersection of the surface (3.20) 
with thesurfaceJ 2jj IJpi = O. Evidently the structure ofthe 
family may be complicated. Useful geometrical arguments 
are still not ruled out for particular cases, but we have not 
perceived useful generalities worthy of elaboration. 

IV. LlAPUNOV STABILITY 

We now seek c-a motions for which II' r(t ) - Pi (t ) I 
< 1]' holds (uniformly in t ) in addition to the orbital stability 
condition (2.2) (under all perturbations which at time to pro­
duce II P *(to) - P (toll I <p'). A c-a motion is purely harmonic 
with constant periods, say OJ i + PiO' The phase variationsp r 
(t ) of the perturbed motion will consist of constant parts close 
tothep,o, plus (small) parts having the same period T* as the 
amplitude modulations; see SF Sec. IV. Thus a phase vari­
ation change 

(4.1) 

will in general consist of a small constant part plus a small 
part of period T * . 

Perfect, uniform Liapunov stability would result from 
.t1Pi==O. This would require that all motions in an entire n­
dimensional neighborhood in p-space have the same, con­
stant period, including those off the c-a existence surface 
which are (faintly) amplitude modulated. Physically speak­
ing, throughout this n-dimensional range of amplitude val­
ues the system would be required to exhibit an essentially 
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harmonic character with some faint, essentially harmonic 
coupling to account for faint, constant-frequency amplitude 
modulation. Such conditions are hard to conceive in a sys­
tem with a polynomial coupling Hamiltonian. 

The frequencies generally are not even constant inside 
the existence surfaces because the frequencies of c-a motions 
generally depend on the amplitudes. Only for Case (I) mo­
tions can they become constant, provided also B =0. They 
are then identical with the normal frequencies Wi> and the 
system behaves as if it were exactly harmonic; see SF Sec. V. 
This class of motions (and systems) may have properties 
close to Liapunov stability. 

Consider therefore a system with jj = 0. The Case (I) 
existence surface consists mostly of coordinate planes. 
Choose one of those, and without loss of generality call itpl' 
Thus the c-a motions to be considered have p\ =0 at a multi­
ple root off(PI)' which for brevity we assume to be exactly 
double; according to Eq. (3.6) this means that we must have 
both E - };wjaj = ° and 

(4.2) 

a restriction on the system which happens to be included in 
the orbital stability problem discussed in Sec. III.B. From 
there we recall that after a perturbationf( pII has in the orbi­
tally stable case two roots at, or close to the right of, the 
origin. To calculate them, we may exploit their smallness. 
Neglect p\ 3 and higher powers in Eq. (3.6) so that 

f*(PI) = (a! - e)p/ + 2E( E* - LWjar)PI 

- (E* - L wjar r (4.3) 

where the star means "after perturbation". A short calcula­
tion shows that two real roots require a!>O and the roots 
follow at once. The differential equation SF (3.10) can be 
integrated with the quadratic polynomial (4.3) and yields the 
elementary solution 

E * - };wa* 
P,(t) = I I 

e-a! 

x ! E + ~a! sin [(e - a!)1I2(t + const)] I, (4.4) 

where the argument of the sine is real on account of the 
orbital stability condition (3.9). 

We now take the general equation SF (4.2) for the phase 
variations, setB -0, recall that.8iO = ° for the given c-a mo­
tions, and write Eq. (4.1) as 

. E* - };wjar - EP, ap* 
J1[3j = F* aar 

i= 2, ... ,n. 
(4.5) 

Upon insertion of the explicit expression (4.4) into Eq. (4.5), 
J1 .8i is seen to be in general a more or less complicated func­
tion of time, depending on the given F. Hence there is in 
general no Liapunov stability; the best one could hope for is a 
kind of "stability over one modulation period" which would 
result ifby happenstance the time average of J1.8i vanishes 
for all i so that the perturbed phase point oscillates hence and 
forth about the unperturbed one. 
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However, it is also possible for PI to be time-indepen­
dent, namely if a! = 0, according to Eq. (4.4); indeed the 
polynomial (4.3) becomes a perfect square for a! = 0. More­
over, the constant value is 

(4.6) 

provided E~O, and if we substitute this into Eq.l4.5) the 
result is J1 [3j=O for all i = 2, ... ,n, regardless of F; an analo­
gous result follows for i = I from Eq. SF (4.3). This, then, is 
the way for constant frequencies to become possible in entire 
neighborhoods off the c-a existence surfaces: under pertur­
bations the crucial multiple root off(PI) must not split but 
displace itself as one. A plausible result, perhaps, but it cer­
tainly was not obvious that systems of such nature are plenti­
ful. In fact, the two conditions (4.2) and a! = ° are readily 
met by 11>3 [see Eq. (3.4)]. The simplest example is a system 
in two d.f. with HI (q) = rqi q2' 

This argument rests upon the neglect of powers higher 
than the second in the polynomial (4.3). If in a system with 
coupling of type qi q2 (or similar) it is permissible to neglect 
qi, it will indeed behave in an essentially harmonic manner. 
Again a plausible result, but it no longer holds when the 
third power is admitted back intof( pII: the double root will 
then split under perturbations, ever so slishtly perhaps, but 
enough to bring some time dependence tOPI(t ), and with it, to 
J1 .8j' Still we may call the motion "Liapunov unstable in the 
third order only". 

Since the slow-fluctuation method is only an approxi­
mation one can hardly be disappointed at finding only ap­
proximate Liapunov stability. It astonishes one, on the other 
hand, to realize how frequently it arises, and as it may be 
relevant in many practical applications we believe that it is 
worth looking for routinely. Our arguments are easily modi­
fied to suit particular cases. 

V.EXAMPLES 

The five examples in this section are partly culled from 
the literature, partly invented, partly tangible, and partly 
abstract. The selection was governed by a desire to present a 
handful of graphs and a handful of ad hoc methods which 
could fairly be called typical. In the same spirit we stopped 
short of developing every item down to its ultimate subdivi­
sions, even though the results are mostly new. 

All manipulative details are elementary and have been 
omitted. However, we indicate enough intermediate steps to 
enable the reader to follow the argument closely wherever it 
becomes convoluted. As a safeguard against ambiguities we 
have rigidly adhered to our elaborate, general notation. 

A. Coupling of pure if, Q2-type 

We discuss first two d.f. coupled by 

HI(q) = rqiq2' (5.1) 

the simplest of all nonlinear systems of more than one d.f. 17 

Only one resonance is possible: 

2OJ, + g2W2 = E, g2 = ± 1. (5.2) 

With g2 = - 1 the oscillator masses are positive and the 
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curv. b. 

5 

even (cup)s ;;>:::.-.- - ___ supp, stab. b. 

P, 

FIG. 2. Stability diagram for coupling rq7 Q2' (I) and (II) denote the existence 
lines for the Case (I) and (II) motions; sand u mean orbitally stable and 
unstable; even and odd refer to the parity of r; "curv. b." is the boundary 
between regions of positive and negative curvature, marked + and - ; the 
supplementary stability boundary for Case (II) is also indicated. The two 
important intersections are at A (O¥' 2) and B(~B 2, foB 2). The drawing as­

sumes B = Ely> 0; for B < 0 interchange odd and even. At exact resonance 
the parabola contracts into the straight line marked E = O. The dot-dash line 
is representative of motions at varying amplitude. For cup and cap, see Ref. 
17. 

Hamiltonian is positive-definite; this case represents a basic 
approximation in the theory of the elastic pendulum and 
many other, real systems. 17 With g2 = + 1 both m2 and W 2 

are negative; this case is familiar in celestial mechanics. 18 We 
treat both in the same formulation so as to bring their differ­
ences to the fore. 

In either case, the equation of motion 

P2 = - JH IJq2 = - m2w~q2 - rq~ 

shows that q2=0 is not a solution unless also q 1 ==0. The 
slow-fluctuation approximation (i.e. the passagefromH toS) 
becomes unreliable when the amplitude of q2 tends towards 
zero, because it cannot reproduce the required fast phase 
variation; see SF Sec. VI. We accordingly crosshatch this 
sensitive strip on the stability graph, Fig. 2. For all other 
motions, as well as for the low-amplitude motions at times 
away from the minimum, the slow-fluctuation solutions are 
known to be extremely accurate, at least for values of r cor­
responding to an elastic pendulum. 17 

There is no polynomialB, while Ffollows from the cou­
pling (5.1) as 

F(PI,a) = r PI [2(g2 PI + a2)] 112, (5.3) 

where 

r = y(mi wi m2( 2) - 112, 

PI = !Pr, a 2 =P2 - ~g2PI' (5.4) 

The Case (I) existence line follows from Eq. (5.3) to be 
simply 

PI=O. (5.5) 

(P2 = 0 is equivalent to the q2=0 ruled out above). The Case 
(II) existence lines are found from Eq. (3.13) after transfor­
mation to P by means of Eqs. (5.4): 
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g2Pl = -4P2+(}~8p2' 
even. -

for r wIth () = dr. 
odd 

(5.6) 

With g2 = + 1 the equation can be satisfied for only one of 
the two signs, given the sign of (). On the other hand, at exact 
resonance € = () = 0 the parabola (5.6) degenerates into the 
straight line 

g2Pl + 4P2 = 0, (5.7) 

which can hold only for g2 = - 1, and then r may be either 
even or odd. 

The supplementary stability boundary Eq. (3.19) 
becomes 

(5.8) 

this can hold only for g2 = + 1. The curvature boundary 
Eq. (3.20) is found after some reduction to be the straight line 

g2PI+P2=!8
2 (5.9) 

for both values of g2' 
Equations (5.5)-(5.9) are best studied and applied by 

means of graphs. Note that they are all invariant under si­
multaneous change of sign of g2 and PI' Hence we may in the 
first quadrant draw the curves for g2 = + 1, say, and contin­
ue them into the second to obtain a mirror image (or left­
handed rendition) of the graph for g2 = - 1. 

The equations contain € and r only in the combination 
() = d Y. This is an obvious consequence of r being an overall 
factor in HI (q), and here as well as in other such cases reduces 
the number of net;ded graphs by one half. The given HI (q) has 
an additional property which entails a further symmetry: it 
contains one of the variables, here q2' only in form of an odd 
power as an overall factor. Thus a change of sign of r, or (), 
can be absorbed into this variable where it means a change of 
phase by an odd multiple of 11'; the sign of () is therefore linked 
with the sign of r, again halving the number of graphs. Last­
ly, we conclude from Sec. I1I.D that a change of € (or ()) is 
equivalent to a dilatation; it follows, amongst other things, 
that the axis of the parabola (5.6) is always parallel to its 
limiting form (5.7). 

We have drawn Fig. 2 for 8 positive. The pertaining 
parity of r follows from Eq. (5.6). For negative 8 merely inter­
change r odd and even (together with the descriptions "cup" 
and "cap" which are reminders of the appearance of these c­
a motions in the type case, the elastic pendulum 17). 

The sign of!" can be determined from Eq. (3.11) at a 
single point, say the origin. The stability labels follow as 
indicated. They are not affected by a change of sign of (). 

Motions at varying amplitudes are represented by 
straight-line segments which according to Eqs. (3.21) and 
(5.4) all have the slope g2/g1 = ±!, like the dot-dash line 
drawn. 

The polynomial/( p.) itself is finally calculated from 
Eqs. (3.1) and (5.3) as 

/(p.) = 2g2y 2pi + (2y 2a2 - ~lPi 

+ 2€(E - W 2a 2)PI - (E - w2a 2f. (5.10) 

Note the sign of its leading coefficient. It follows that of the 
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c-a motions with a = 3, point A in Fig. 2 is unstable for 
g2 = + 1 but stable for g2 = - 1, while point B is always 
unstable; cf. Figs. lc and Id. It also follows that for g2 = + I 
unbounded motion is possible, since there is no upper bound 
on PI. In fact, all unstable Case (I) and Case (II) motions are 
then in the neighborhood of unbounded motion. 

It is a rewarding exercise to sketch quickly and qualita­
tively the appearance of the graph off(PI) for the various 
regions and dividing lines of Fig. 2. 

B. Coupling of pure ~ ~ -type 

We now tum to the coupling 

HI(q) = yqiq~ (5.11) 

which seems not to have received much attention in the lit­
erature. 19 We present it here for contrast with the previous 
example. There is still only one resonance: 

2m1 + g2W2 = E, g2 = ± 2, (5.12) 

but almost everything else has been altered by going from q2 
toq~ inHI . 

First we calculate 

B(PI,a) = 2YPI(g~1 + a2), 

F(PI,a) = YPI(g2PI + a2), 

where 

Y = ylm l w l m2w2, 

(5.13) 

(5.14) 

PI = ~PI' a2 = P2 - ~2PI· (5.15) 

From formula (5.14) we read off the Case (I) existence lines: 

PI = ° and P2 = 0. (5.16) 

The Case (II) existence lines are, from Eq. (3.13), 

~2PI + P2 + 18 = 0, r even, 

~2PI +P2+ 8 =0, r odd, 

where 8 = ElY. 

2w l -2w2 = ~ P, 2011 +2w2 =. 
(lliodd 

u 
(I I 
S 

b· , / 
~"/ 

(II I even 
~'l" 

A o/, 
s 

/ 

s 

(II S S 

P, 
A' 

(5.17) 

II IS 

FIG. 3. Stability diagram for coupling rqi q;. Abbreviations as for Fig. 2, 
but here there is neither a curvature boundary nor a supplementary stability 
line. The intersections are A (0, - e) and B (0, - ~e). The drawing assumes 

e = Ely < 0; for e> 0 the intercepts at A and B are below the PI-axis. 
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There is no supplementary stability boundary because the 
parenthesis in Eq. (3.18) reduces to a constant. 

Equations (5.16) and (5.17) are again invariant under 
simultaneous sign change of g2 and PI. Thus we again draw 
the two stability diagrams in one graph, Fig. 3, with 
g2 = + 2 on the right and the g2 = - 2 diagram being the 
mirror image of the left side. Since the polynomial (5.13) is 
quadratic there exists no energy-independent curvature 
boundary. The stability labels must therefore be ascertained 
one by one. AtPI = 0, the sign off" is quickly obtained from 
Eq. (3.11) or from the second-power coefficient in Eq. (5.18) 
below, but in the other cases we preferred to use Eqs. (3.12) 
and (3.14). 

Fig. 3 is drawn for 8 negative. For positive 8, according 
to Eqs. (5.17) the two straight lines must shift downwards so 
as to make negative intercepts on the P2-axis; there are then 
no Case (II) motions possible for g2 = + 2. At exact reso­
nance these lines coincide and pass through the origin; the 
stability of the Case (II) motions for g2 = - 2 then depends 
solely on the parity of r. Note also the alternation of the 
stability of the Case (I) motions, and in particular, how in­
creasing the amplitude leads from instability back to stabil­
ity (this still holds at positive 8 ). 

The dot-dash line again indicates the slope of the 
straight line segments (3.21) representing motion at varying 
amplitudes. 

For reference we also quote the full polynomial 

f( PI) = - 12y 2Pi - 2g2y 2(28 + 3a2) p~ 

- [3y 2a~ + 4y 28a2 + ~ - 4g2y(E - WP2)] pi 
+ 2(E + 2ya2)(E - WP2) PI - (E - W2a2f 

(5.18) 

Its leading coefficient is negative regardless of g2' hence there 
can be no unbounded motion for g2 = + 2 despite the nega­
tive m 2 and the appearance of the dot-dash line! 

C. Coupling of ~ qz-type, with and without nonresonant 
addition 

We now pass from qi in HI(q) to qi. We also insert a 
second and nonresonant term; this could depend on the same 
two d.f. but for clarity we let it be introduced by a third d.f. 
Thus we take the coupling to be 

(5.19) 

as in the detailed example of SF Sec. VII. There are several 
resonances possible, but all interesting features will become 
clear if we consider only 

3wI - W3 = E (5.20) 

as in SF. The results will be similar whether m2, W2 are posi­
tive or negative; only WI ± W 2 must be significantly different 
from zero, otherwise there will be a second near-resonance 
due to the first term in HI (cf. SF, end of Sec. III). 

First we take YI = 0, i.e., q2 remains decoupled from ql' 
q3. From SF Eq. (7.7) we read off 

F-( = ) 1- (3 = )3/2( = + )112 PI,a = 2Y2 PI -PI a 3 , 

where 
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Yz = Yz(m~ U)~ m 3U)3) - lIZ, 

PI = 1PI' a3 = P3 + 1PI' 

The Case (I) existence line is 

PI = 0 

(S.22) 

(S.23) 

(withp3 = o ruled out because q3=Ois impossible unless also 
q I -0). The Case (II) existence line is found from SF Eq. 
(7.13) after some remodeling: 

402(P3)112 ± (pd l /2(9P3 - PI) = 0, 

even . -
for r wIth Oz = €/Y2' 

odd 
(S.24) 

This is not a conic section. Take Oz positive, for the sake of 
discussion: with reven, the parenthesis must be negative and 
hence we obtain a branch approaching the origin at low val­
ues of P3' while with r odd the parenthesis is positive, so that 
P3 must sharply increase as PI-+O. At exact resonance the 
two branches degenerate into the straight lines 

PI = 0 and 9P3 = PI' (S.2S) 

The curvature boundary is best obtained from the polynomi­
al SF (7.9); it is the hyperbola 

pi - 3pJi3 + ~O ~ = 0, 

which at exact resonance degenerates into 

PI = 0 and 3P3 = PI' 

(S.26) 

(S.27) 

The supplementary stability boundary is found from Eq. 
(3.19) after some algebra to be a degenerate conic section of 
which only the branch 

(S.28) 

I IS. 

Ull odd s. 

lUI even s. 

FIG. 4. Stability diagram for coupling Y2Q; Q3 in the resonance 
3111, -1ll3 = E. Abbreviations as for Fig. 2. The coordinates of point A are 
both proportional to 102 1. The drawing assumes °2 = EIY2 > 0; for O2 < 0 
interchange odd and even. 
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(I)+(lI) 

+ curv.b 
u 

FIG. 5. The diagram of Fig. 4 degenerates into these straight lines at exact 
resonance E = O2 = o. 

is admissible. 
Existence lines, curvature, and stability boundaries are 

drawn in Fig. 4 for O2 > O. The dot-dash line indicates the 
slope of the straight-line segments (3.21) representing mo­
tion at varying amplitudes. For O2 < 0, interchange r even 
and odd. 

We have drawn the case of exact resonance Oz = 0 sepa­
rately in Fig. S because it is starkly different. The upper part 
of the curvature boundary (in addition to the unstable part of 
the Case (II) existence line) has moved into the ordinate axis. 
Hence c-a motion at PI = 0 now takes place at a third-order 
root of/( PI)' A glance at the formula SF (7.9) will show that 
the fourth root of/(PI) is in this case R4 = a 3, and since 
a 3 > 0 whereas!(PI) eventually turns downwards it follows 
that the PI = 0 motion is now orbitally unstable (cf. Fig. 1c) 
although for €#O it is stable. In fact, at €#O this motion is 
nearly Liapunov-stable as shown in Sec. IV! This abrupt, 
discontinuous change from a high degree of stability to orbit­
al instability carries a lesson: system behavior at exact reso­
nance is no unfailing guide to behavior off resonance, be the 
detuning ever so small. Right at the origin, of course, all four 
roots of!( PI) coincide; the upper bound a 3 also retreats into 
the origin and therefore the rest position of the system is 
orbitally stable, as one should expect. 

A harbinger of this remarkable change of stability prop­
erties as €-+O is the close proximity in Fig. 4 of the curvature 
boundary to the two existence lines flanking it. Quite gener­
ally, such closeness foreshadows pronounced effects offinite 
perturbations on c-a motions. Figure 2 contains another ex­
ample. The cap motion at small PI is so close to the curvature 
boundary that a clumsy attempt at setting it up in an actual 
system may turn it into a motion in the vicinity of the unsta­
ble Case (I) motion nearby. Graphing/Wd roughly will help 
one to understand such p-space topographies better. 

Finally let YI #0; qz then moves at constant amplitude, 
although exchanging some energy with ql and q3 via its 
phase (cf. SF Sees. III and IV). The offshoot is a B­
polynomial 

B(PI,a) = 3Yla~I' 
where 

(S.29) 

For the detailed derivation, see SF Eq. (7.2). This is quite 
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different from the quadratic polynomial (5.13); the reason is 
that in the present system q2 does not resonate, hence 
P2 = const = a2 according to SF Eq. (7.5), while P2 is vari­
able according to Eq. (5.15) if liJl and liJ2 resonate according 
to Eq. (5.12.1 In the slow-fluctuation Hamiltonian SF (3.6) 
this linear B adds to the term EPI' The effect is merely a 
replacement in all formulas of E by E + 3y l a 2, i.e. a numeri­
cal change of E which is equivalent to a dilatation of the 
stability diagram Fig. 4. The three-dimensional stability 
graph of the system of three d.f. can therefore be constructed 
simply by stacking cross sections similar to Fig. 4 from a 
bottom which is Fig. 5 and describes E + 3y1a 2 = 0. 

If we had added a term rlqiq~ to r2qiq3 instead of 
r Iqi qL it would still not resonate; however, since P3 is not 
constant but varies according to Eq. (5.22), we then obtain a 
quadratic polynomial B after all and the stability diagram 
would differ markedly from Fig. 4. 

D. Three interacting waves 

The coupling in three d.f. 

HM) = rqlq2q3 (5.30) 

has a diverse literature. In plasma physics, optics, and fluid 
dynamics it serves as a basic nonlinear approximation under 
the name of "the case of the three interacting waves." Some 
authors have attempted Hamiltonian formulations2o,21 with­
out, however, exploiting them fully; other studies eschew the 
benefits of the Hamiltonian approach.22 We consider only 
the Case (II) motions because their existence has generally 
been overlooked?1 

The exact equations of motion are 

pj = - m jliJ7qj - rqjqk and cyclic 

Evidently qj=O is not possible unless also qj=O or qk=O, 
and then the remaining q varies harmonically. Each single 
d.f. is therefore a possible motion of Case (I) type, but this 
cannot be safely investigated in our approximation because 
of the fast phase changes accompanying amplitude zeros 
when the coupling contains only the first power, cf. SF Sec. 
VI. 

Two different resonating systems are possible. One has 

liJl + liJ2 + liJ3 = E, (5.31) 

so that one or two frequencies must be negative, and corre­
spondingly one or two masses negative. The three ampli­
tudes vary in the same sense; explosive instability is possible. 

The other system resonates at 

(5.32) 

with all masses and frequencies positive. The amplitUdes of 
q2 and q3 (the two "partial waves") vary in the same sense but 
in opposition to the amplitUde of ql (the "sum wave"), ac­
cording to 

P2 +PI =a2, P3 +PI =a3· 

It follows that 

(5.33) 

(5.34) 

(a2 = ° or a 3 = ° is possible only for the Case (I) type mo­
tions, which we cannot safely investigate anyway). Next we 
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calculate 

F= Y[LDI(a2 - PI)(a3 - pIl] 112, 

Y = y(mlliJlm2liJ2m3liJ3) - 1/2, PI = PI' (5.35) 

Simple as this Fappears to be, Eq. (3.13) leads to the Case (II) 
existence surface 

3pi - 2(a2 + a3)PI + a2a3 

= + B [8PI(a2 - PI)(a3 _ PI)] 1/2 

even . 
for r With B = €Iy, 

odd 
(5.36) 

which is not easy to describe geometrically. We outline in­
stead how to calculate it point by point. 

First, at exact resonance B = 0, Eq. (5.36) is quadratic 
with roots 

SI,2 = *(a2 + a3) ± *(a~ - ap3 + a~ )1/2. (5.37) 

Under the two numbering conventions SI < S2 and a2<a3, it 
is readily verified that 

° <SI <a2<S2<a3. (5.38) 

From the conservation laws (5.33) it follows that for Case (II) 
motions always 

PI = PI = const <a2 (5.39) 

(PI =a2 implies P2=0 which is only possible if also P3=0, 
and we are back at a Case (I) type, also a 2 = a 3 follows). Thus 
PI S2 is not admissible, but PI =SI is and represents a 
unique amplitUde of ql for any given pair of constants 
0< a2<a3; the amplitudes of q2 and q3 then follow from Eqs. 
(5.33). 

When B #0, Eq. (5.36) can be solved graphically 
through the intersections of the left- and right-hand sides, set 
separately equal to zero. The left always yields a parabola 
intercepting the PI-axis at S I and S2; the right intercepts at 0, 
a 2 and a 3• Qualitative graphing in accordance with the mag­
nitude relations (5.38) quickly shows that for any pair ° <a2 <a3 there are two distinct solutions ofEq. (5.36), 
calledR' andR "in Fig. 6a, with ° <R' <SI <R " <a2; one 

o b 

FIG. 6. Three interacting waves; coupling rQ,Q2Q, in the resonance 
lU, -lU2 -lU, = E. Graphical determination of the constant amplitudes of 
Case (II) motions if a 2 < a, and if a 2 = a, = a, resp. For symbols, see text, 
Eq. (5.37) et seq. 
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occurs for r odd, the other for r even. In the degenerate case 
a2 = a 3, R " could slide up into S2 or even beyond, (see Fig. 
6b) and then Case (II) motion is possible only atPI = R'. 

The polynomial/( PI) is ofthe third degree, and one 
easily sees from Eq. (S.3S) that its highest coefficient isposi­
tive. Unbounded motion is nonetheless impossible. The 
product of the three roots is positive; they can easily be found 
with the aid ofEqs. (3.1) and (S.3S) from 

E - (i)2a2 - (i)3a3 - EPI = ± r[~p\(a2 - pil(a3 - PI)] 112. 

(S.40) 

Solve graphically: the left side yields a straight line, the right 
a curve like the one in Fig. 6, except for a scale factor. If 
a 2 = a 3 there can be a double root at PI = a 2 , but this is 
again the Case (I) type motion referred to above. Under all 
other circumstances the largest root of/(PI) is seen to be 
necessarily real and larger than a2' which is an upper bound 
on PI in any case. Thus there exist no initial conditions re­
sulting in motion beyond the largest root in any case. By 
extension, physical motion can only take place between the 
two smallest roots. Case (II) motions therefore arise only 
from the configuration of Fig. la, and are always orbitally 
stable. 

Regarding the system with the resonance (S.31), argu­
ments can be fashioned along similar lines. However, a 2 and 
a 3 are now not necessarily positive, nor is there an upper 
bound on PI' Under these less favorable circumstances it no 
longer follows that a unique Case (II) motion exists for any 
pair a 2,a3, nor can any quick conclusion be drawn about 
stability. 

E. An elastic double pendulum 

Our last example is an idealized but not unrealistic sys­
tem from technical mechanics, a double pendulum with the 
lower bob constrained to move in the vertical, the upper bob 
constrained to move in a vertical plane, and the inextensible 
threads replaced by linear springs. Mettler took it up in an 
important study;23 he allowed the bob masses and spring 
constants to be different and investigated the 1:2 resonances 
between suspension and pendulum modes typical for any 
elastic pendulum. 17 On the other hand, we want to look for 
resonances involving all three d.f. For brevity of presenta­
tion, we take the masses and spring constants to be equal, see 
Fig. 7. Even so, the problem soon looks formidable because 
we have to develop the Hamiltonian to terms of order four, 
instead of three as Mettler did; however, physical and math­
ematical circumstances conspire to lead to a fairly simple, 
final result which we think interesting enough to describe. 

Let the springs have lengths II (upper) and 12 (lower) 
under the static load of the two bobs, each of mass m; with 
equal unextended lengths 10 we therefore have k (II -10) 
= 2 mg, k (/2 - lol = mg 

(S.41) 

This determines the equilibrium position of Fig. 7 at 
x = YI = Y2 = O. The exact expression for the potential ener­
gy is 

V(X'YI,y2) = mg(Y1 + Y2) 
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FIG. 7. The constrained elastic double pendulum with equal masses, equal 
unstretched lengths, and equal spring constants. The stretched lengths are 
I, and 12 at rest; y" Y2 are measured positive upwards from rest. 

+ ~k { [X2 + (II - Ylf] 1/2 -Iof 

+ ~k {[X2 + (/2 - Y2 + Ylf]l12 -1012. 
(S.42) 

At small amplitudes,24 binomial expansion and dropping of 
irrelevant constants leads in the fourth order to the 
Hamiltonian 

H(X'YI,y2) = !m(i2 + yi + y~) 

where 

+ ~d1X2 + kyi + ~k~ - kYJY2 

- !dzX2Y1 - !d~2Y2 

+ id4X4 - !d4x2yi 

(S.43) 

(S.44) 

If the upper bob where also constrained to move in the 
vertical, x=O, we would have a strictly harmonic system 
whose normal modes are therefore the proper coordinates to 
introduce for the following. The appropriate transformation 
is 

x=ql' 

YI = - q2 sin¢ + q3 cog¢, 

Y2 = q2 cog¢ + q3 sin¢, 
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and with tan 2t/J = - 2, or t/J::::; 58.28°, the Hamiltonian takes 
the desired form 

where 

lU~ = dl/m, 

z k -
lUz 3 = 7--(3 + /5), indexz3' . 2m - 'J 

d6 = - ~dz coS¢ - ~d3 sint/J, 

YI = d4 /8, 

Yz = - !d4 sin2t/J - d3 (! cos2t/J + sint/J coS¢ ), 
12 

Y3 = - ~d4 cos2t/J - d3(~ sin2t/J - sint/J coS¢ ), 
12 

Y4 = ~d4 sin2t/J + d3 (cos2¢ - ! sin2t/J ). 
12 (5.47) 

The normal modes q2' q3 are evidently antiphase and in­
phase motions, respectively, with the former having much 
the higher frequency according to Eqs. (5.47). 

The terms with coefficients d5 and d6 can have the re­
sonances considered by Mettler. 23 Using Eqs. (5.41) and 
(5.47), it is easily calculated that 

2w1 - lU2 = 0 requires 12/10 = 1.337, (5.48) 

2w1 - lU3 = 0 requires Iz/Io = 1.034, (5.49) 

with 11/10 determined by Eq. (5.41). For comparison, in the 
simple spring pendulum the resonant extensionz5 is 
1/10 = 1.333. For completeness we also note that 

lUI -lU3 = 0 requires 12/10 = 1.161, (5.50) 

whereas lUI - lU2 = 0 is physically impossible. 
Now consider the last term in the Hamiltonian (5.46), 

the only one coupling all three d.f.; can it resonate at an 
extension safely different from those producing the other 
resonances? As above, we calculate that the obvious 

2w1 -lU2 + lU3 = 0 requires Iz/Io = 1.097, (5.51) 

while the equally obvious 

2w1 - lU2 - lU3 = 0 requires 12/10::::;2.2, 

which we discard at once as being physically too implausible. 
Since lUI is not vastly different from lU3 for plausible exten­
sions [see Eqs. (5.49) and (5.50)] the other combination fre­
quencies in qi q2q3 cannot resonate either. Thus we adopt 

(5.52) 

as the only realistic possibility. As the extension required at 
the exact resonance (5.51) is bracketed by the extensions in 
Eqs. (5.49) and (5.50), € should remain fairly small-not an 
unreasonable restriction for a higher-order resonance. 

64 J. Math. Phys .• Vol. 22, No.1, January 1981 

For the near-resonance (5.52) we find in the usual way 

B = 2(3YI - Yz + Y3)P~ + 2(fpz + Y3a 3) PI' (5.53) 

F = Y4PI [(a2 - p.)(a3 + p')l 112, (5.54) 

where 

YI = y';m2lU~, Y2 = Y2/m2lUllU2' Y3 = Y3/mzlUllU3' 

Y4 = Y4/m2lUl~ lUZlU3, PI = ~ PI' 

a z = P2 + !PI' a3 = P3 - !PI' (5.55) 

Note that the two third-order terms in the Hamiltonian 
(5.46) (coefficients dS,6) are not represented in the slow-fluc­
tuation approximation because under the condition (5.52) 
they fluctuate much faster than the resonant term represent­
ed by the polynomial (5.54); on the other hand, the three 
nonresonant fourth-order terms (coefficients Y1,2.3) all con­
tribute to the polynomial (5.53). 

The equations of motion show that q I =0 is a possible 
solution, but q2=0 or Q3=0 is not possible unless also q I =0. 
Hence the Case (I) existence surface is the plane 

PI = 0 (5.56) 

(i.e., the first quadrant of the P2,P3-plane with both axes in­
cluded). The Case (II) existence surface is 

€ + (6YI - Y2 + Y3)PI + 2Y2P2 + 2Y3P3 

= + Y4[(P2P3)1I2 -lPI(P3/P2)1/2 + lPI(P2/P3)112] , 
even 

r odd' (5.57) 

A study of the latter is beyond the scope of an illustrative 
example. Instead, we ask only the practically relevant ques­
tion, is pure suspension motion stable? 

The intersection of the existence surface (5.56) with its 
2-stability boundary (5.57) is the conic 

even 
€ + 2Y2 pz + 2Y3 P3 = + Y4( P2 P3)1I2, r odd' (5.58) 

which can lie only in the first and/or third quadrant. Equa­
tions (5.47) quickly show that Y2' Y3' and Y4 are all negative, 
with Y4 being the smallest and Y2 the largest in amount (in 
fact, Y2/Y4::::;7.5 near resonance). It follows that the curve 
touches the coordinate axes at their intersections with the 
straight line 

(5.59) 

and lies rather narrowly along that line; hence it is an ellipse. 
For € = 0 it contracts into the origin (which is clearly stable 
in any case). For € < 0, it lies in the third quadrant; every 
suspension motion is then stable. 

For € > 0, the ellipse lies in the first quadrant, and, since 
it does not enclose the origin, which is stable, its interior is 
orbitally unstable. We know of no intuitively simple reason 
why this instability should be there. The ellipse itself repre­
sents motion at a third-order root of/( PI) at PI = O. In order 
to apply the criterion (3.10) to it, we calculate the coefficient 
ofpi inland find, using Eqs. (3.1), (5.53), and (5.54): 

13 = y~(a2 - a3) - 4(3YI - Y2 + Y3)(€ + 2Y2a2 + 2YP3)' 
(5.60) 

Since Y4 is fairly small, it is clear that/3 = 0 happens to hold 
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approximately for all points ofthe straight line (5.59) which 
therefore represents approximately the 3-stability boundary. 
This line also divides the ellipse exactly into an r-even (left) 
and r-odd (right) half, see Fig. 8; calculation of the sign off3 
in one half then shows that r even (left) is stable, except per­
haps near the points of contact where the argument is not 
safe. 

This last detail is easily clarified. The domain of PI has 
an upper bound determined by a 2 , hence it reduces to the 
isolated point PI = 0 when a2 = O. All points on the iJ-axis, 
where P2 = 0, are therefore stable regardless of derivatives; 
in particular, the (upper) point of contact of the ellipse. Not 
so the (lower) point of contact with the P2-axis, where a 3 = 0 
which merely duplicates the lower bound at PI = 0; the do­
main is then finite, and the contact must be unstable because 
f3 > 0 there (see Fig. lc). It now follows that the exact 3-
stability boundary f3 = 0 is slightly rotated clockwise 
against the line of contact (5.59). 

For graphical display, we describe the system by the 
single parameter 

K=(IJI2), I<K<2, (5.61) 

with the range restriction inferred from Eq. (5.41). A conve­
nient detuning measure is the dimensionless 

E' = (E/mIl = 2 - (K + I - (2/K)) - 112; (5.62) 

thus at exact resonance we have K = 1.088, and if E' is in­
creased from zero to 0.05, the concomitant increase of K is 
only ~%. Using also instead ofp2 andp3 the dimensionless 
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FIG. 8. Orbital stability of the suspension motions of the elastic pendulum; 
coupling Y4i. q2q3 in the resonance 2wI - W 2 + W3 = E. Dimensionless am­
plitude squares v,w as defined in Eq. (5.63); dimensionless detuning param­
eter E' = Elw i • The insides of the ellipses are orbitally unstable. For 
E' = 0.005 the ellipse is too narrow to be printed; only the line joining its 
points of contact with the coordinate axes has been drawn as for the other 
ellipses. For E' < 0 there is no instability. The drawing has been cropped at 
the top because larger amplitudes would vitiate the approximation (5.43). 
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v=AVI~, w=AVI~ (5.63) 

(withA 2•3 the amplitudes of the normal modes) the ellipse 
(5.58) becomes 

E'(K + 1 - 2K - 1)(2 - K) - 3 - (0.362K - 3 + 0.947)v 

-(0.138K- 3 +O.053)w= ±0.224(1-K-3)~vw, 

even 
r . 

odd 
(5.64) 

We plot this in Fig. 8 for two realistic values of E'. The differ­
ence between the exact 3-stability boundary points and the 
points of contact is too small to be visible on the graph. 

Since F and if are in this example homogeneous and of 
the same degree, the two ellipses in Fig. 8 should be related 
by dilatation, but this is only approximately true because the 
y-coefficients in F and Ii themselves depend on E, i.e., one 
can not vary E independently. As a result, the coefficients in 
the ellipse (5.64) depend slightly on E via the parameter K, 

and the two ellipses in Fig. 8 are slightly rotated against each 
other. However, the tilt is too small to be seen, and for most 
practical purposes the dilatation property still holds good. 
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It is conjectured that the particle states of quantum mechanics are represented by functions of 
independent variables. These functions obey a linear differential equation which has an invariance 
group homomorphic to the inhomogeneous Lorentz group, thus giving a linear, Lorentz­
invariant theory. Simple one-particle examples of equations which lead to a discrete particle 
spectrum are given, using both space-time variable, x

ft
' and sets of spinlike variables (pairs of 

complex numbers). Some of the examples have internal symmetry. No examples of realistic 
"many-body" particle theories are given, but we can deduce general characteristics. The 
differential equation must be of second or higher order to give an interaction. Products of single­
particle states will be solutions of the equation and will form a complete set for widely separated 
particles. But products of one-particle states are not solutions of the equation for strongly 
interacting particles, and this permits the creation of particles. The origin of antisymmetry in such 
a theory is not clear. 

P ACS numbers: 03.65.Bz 

1. INTRODUCTION 

The problems to which the theory of quantum mechan­
ics is applied can be ranked according to how much informa­
tion is put in, a priori about the properties of the particles 
involved. The least fundamental ones, in which the mass, 
spin, and basic particle interactions are assumed known, 
would include the calculation of energy levels of the (Dirac) 
hydrogen atom and of electrons in crystals. At the other 
extreme, the most fundamental level, we have the "elemen­
tary particle" problem in which the goal is to derive the 
properties of the particles and their interactions from as few 
principles and/or equations as possible. 

The less fundamental problems can be set up in two 
ways. One is the "first quantized" formulation in which the 
Hamiltonian is expressed in terms of functions of, and differ­
ential operators in, the "independent variables" -the posi­
tion coordinates of the individual particles. The other is the 
"second quantized" formulation in which the Hamiltonian 
is expressed in terms of creation and annihilation operators 
for "particles". The first formulation is the primary one, 
from our point of view, while the second one is derived from 
the first and is used because it provides a compressed elegant 
notation which makes computations much easier. 

The more fundamental problem is normally expressed 
only in the second quantized langauge offield theory. It is 
our purpose in this paper to explore the possibility that there 
is a first quantized formulation of the elementary particle 
problem which underlies quantum field theory. 

There have been a number of first quantized theories of 
quantum mechanics proposed. Some of these deal only with 
single-particle equations! which may be second quantized to 
deal with many-particle systems. Others, like those of Baka­
mijian and Thomas,2 can deal with many particles (or, at 
least variables) but either have difficulty with the separabil­
ity of the interaction, or are only approximately relativistic. 3 

None of these however is intended to be a theory underlying 
quantum field theory. 

And, in fact, the many successes of QFf require that 

some justification be given for looking for such a theory. A 
partial justification can be given by observing that successful 
results are not always an indication that a theory is the "most 
fundamental" one, as the hydrogen atom attests. In addi­
tion: (1) There are those4 who believe that the infinities en­
countered in S-matrix theory are an indication that a differ­
ent formulation of the problem is needed. (2) According to 
the ideas ofWeinberg5 and Salam,6 the vacuum state sponta­
neously breaks the internal symmetry of the original prob­
lem and thus contains a good deal of physical information. 
But there is no handle on 10) in field theory, i.e., no equation 
exists from which we can solve for its properties. Thus, if we 
believe these properties are subject to derivation, the Wein­
berg-Salam conjecture implies a deeper theory. (3) Even 
though QCD has made great strides in unifying the various 
forces of nature,7 it is not clear that all the quantities we 
would like to calculate can be obtained from field theory. (4) 
Finally, the analogy between the less fundamental and more 
fundamental problems is suggestive. Suppose we are able to 
carry out our theory and that antisymmetrized spin! parti­
cles emerged from it. Then, just as in the less fundamental 
problems, we would undoubtedly switch to field operators in 
order to do calculations efficiently. These creation operators 
would be labeled by space-time variables and spin indices, 
¢,!(xft),just as the usual creation operators are, because that 
is how particle states are (or can be) labeled. Thus, the opera­
tors of field theory are labeled as if they came from a deeper 
theory, which makes one suspect that that indeed might be 
the case. These reasons, we feel, are sufficient to justify the 
search for an underlying theory. 

Such a theory must be able to take into account the 
three fundamental principles of the elementary particle 
problem-particleness, linear vector spaces, and Lorentz in­
variance. That is, there should be some mathematical princi­
ple which explains why we can describe nature in terms of 
particles, and the mathematical representative ofthese parti­
cles must be vectors in a linear vector space. The set of all 
vectors associated with a particle of mass m, spin S, are to 
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form a basis for the (m, S) irreducible representation of the 
inhomogeneous Lorentz group, ISL(2). In addition, a theory 
of elementary particles must be able to take into account the 
creation and annihilation of particles, and the antisymmetry 
of multifermion states. 

The vectors assiciated with particle states in our formu­
lation of quantum mechanics will be functions of a set, U of 
independent variables. We must not confuse these functions 
with wavefunctions, nor labels with independent variables, 
so we explicitly make the distinction here. If 1/1 (p, a: U) repre­
sents a particle with momentum p and z-component of spin, 
a, then a general state of the particle can be written as a linear 
combination, .laSa3p t,b(p, a) I/I(p, a:U); t,b(p, a) is the wave 
function and the p, a, are the labels. 

Neither these labels p, a (or x, a, if we make a Fourier 
transform) nor the states themselves, tell us anything direct­
ly about the nature of the independent variables, so our first 
task is to examine possible choices. This is done in Sec. 2, 
where we start by examining the construction of basis vec­
tors using sets of space-time variables, xI' (used here as inde­
pendent variables, not labels). Two sets of xI' are found to be 
sufficient for the construction of basis functions for integer 
spin representations, 6ut three sets are required for spin! 
representations. The "intuitive" xI' are not the only possible 
choice for independent variables, however. To illustrate this, 
we use a hybrid set in which the momentum part is a function 
of one set of XI' while the spin part is a function of "spinlike" 
variables, which are pairs of complex variables. A relativisti­
cally invariant scalar product is given for these functions. 
The possibility of using only spinlike variables is tentatively 
explored by giving momentum operators constructed from 
first order differential operators in the spinlike variables. 

The ability developed in Sec. 2 to construct basis func­
tions for any positive mass does not give us A physical theory. 
What we need is some way to "pick out" the physical states. 
This is accomplished in our theory by assuming that (1) 
there exists an equation 

tJI/I = 0, (1) 

in which tJ is a linear differential operator in some set of 
independent variables, and 1/1 is a function of the indepen­
dent variables; (2) there exists a continuous group of trans­
formations, homomorphic to ISL(2), which leave tJ invar­
iant; and (3) the mathematical entities representing physical 
states are to be solutions of the equation. This formulation 
assures us of a linear, Lorentz-invariant theory. We will call 
Eq. (1) the A equation, and its solutions will be called A 
functions. 

Examples of A equations are given in Sec. 3. These have 
relatively few independent variables and can be considered 
as single-particle theories. The first example is the relativis­
tic harmonic oscillator of Feynman et.al.,8 in which two sets 
of xI' are used as the independent variables. All representa­
tions (m, S) ofISL(2) are allowed by the A equation for 
which Sis a wholeintegerandm2 = 2,4,6, .... There are also 
imaginary mass solutions which cause unitarity trouble in 
the many-body problem. The second example used one set of 
xI' for the translational part of the basis functions, and two 
sets of spin variables for the spin part. The A equation is 
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Klein-Gordon-like in the xI' and harmonic-oscillatorlike in 
the spin variables. The masses allowed by the A equation are 
2,6, 10 ... for odd half integer spin, and 4,8, 12, ... for whole 
integer spin. The third example uses one set of xI' and four of 
spin variables, and is Dirac-like. There is an internal symme­
try group isomorphic to SU(2) so that the representatives 
allowed by the A equation can be grouped into isospin 
multiplets. 

The many-body problem will be much more difficult 
than the examples in Sec. 3, because there will be a very large 
number of independent variables, and so we do not consider 
specific examples here. Instead, in Sec. 4, we relate general 
particle properties to the form of the operator in, and solu­
tions of, the A equation. We first find a large class of Lo­
rentz-invariant operators. Then we consider physical states. 
There will presumably be a no-particle state, the vacuum 
state, represented by a function, 1/10' A single particle state 
will be represented by a function times l/Io,flJlo, and multi­
particle states by products offunctions (i.e.,!! 12 1/10 for two 
particles) when the represented particles are widely separat­
ed. The infinitesimal generators of the in variance group are 
first-order differential operators and therefore cause no in­
teraction. But tJ itself can cause interactions, if it contains 
second-order differential operators, because a product is no 
longer, in general, an exact solution. 

The "particleness" of the elementary particle problem 
is put in by saying the products of one-particle functions are 
complete when particles are widely separated and therefore 
not interacting. Or, perhaps better, products of one-particle 
functions are complete in the far distant past and future. 
When the interaction is nonzero, the one-particle functions 
are presumably not complete, because products are no long­
er solutions. This incompleteness during scattering allows 
for the possibility of creation and annihilation of particles. 

The last general property we consider is that of anti­
symmetry. We speculate that it arises in an independent vari­
able theory because of the need to exclude negative mass 
solutions of the A equation from arising during scattering. 

Finally we note in Sec. 5 that a connection between the 
Lagrangian equations of quantum field theory and our A 
equation needs to be established in order to obtain guidelines 
for choosing a physically relevant tJ, and to show that our 
theory leads to the same results as QFT. 

2. INDEPENDENT VARIABLES AND BASIS FUNCTIONS 

We will explore possible types of independent variables 
in this section, and show how to construct basis functions 
from them. The physical states yield no clues on the nature of 
the independent variables, so the procedure we follow is to 
lay down general criteria and then find independent varia­
bles satisfying them. A suitable set of independent variables 
is one from which we can construct basis funcitons for irre­
ducible representations of ISL(2). In order to solve for the 
basis functions, we need ten infinitesimal generators which 
obey the commutation relations 

[Ju ~] = i€ijJk' 

[Ju K j ] = i€ijkKk' 
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[J;.Jj ] = iEijkJk' 

[JO Kj ] = iEijkKk' 

[K;, Kj ] = - iEijkJk' 

[Jo ~] = iEijkPk' 

[Po Kj ] = - iOijPo , 

[Pi' Pj ] = 0, 

[PO.J;] = 0, 

[PO,P;] = 0, 

[Po, K;] = - iP;, 

(2) 

ofISL(2). The construction of a basis for the (m, S) represen­
tation (m > 0) then proceeds by the method of the little 
group; 2S + 1 zero momentum functions (0- = -S, ... ,S) must 
be found which satisfy 

PotPa = mtPa' 

PtPa = 0, 

(3) 

(4) 

and which serve as a basis for the spin S representation ofthe 
"little group" SU(2). 

We will examine the use of two different types of inde­
pendent variables here-space-time variables and spinlike 
variables. There may be other suitable kinds, but it seems 
most efficient to exhaust the possibilities of these two before 
looking elsewhere. 

The most obvious choice, based on our familiarity with 
"wave" functions of x, y, Z, t is a single set of space-time 
variables, with the associated infinitesimal generators 

Po = iar, (5) 

P= -iV, (6) 

J=rxP, (7) 

K = rPo + tP. (8) 

This set of variables is not suitable, however, because PtP = ° 
implies J tP = r X PtP = 0, and hence, only spin zero basis 
functions can be constructed. The reason for the failure is 
that there are no "internal" coordinates from which to con­
struct the spin part of the functions. If we try two sets of x" , 
then it is not difficult to construct representations for any 
integer spin-we could use exp[im(t l + tz)](rl - rz), for ex­
ample as the three zero momentum basis functions for a spin 
I representation of the little group. But we run into trouble 
again, because it is not possible to construct spin! represen­
tations-which we will surely need for a theory which de­
scribes electrons, etc.-from two sets of space-time varia­
bles. If we go to three sets, however, then spin! 
representations can be constructed, although somewhat 
awkwardly. Thus we could conceivably build our theory us­
ing only space-time variables. 

On the other hand, there is no particular reason why the 
independent variables must be space-timelike; it is only the 
group structure and ability to construct basis functions that 
counts. To illustrate this, and at the same time, avoid the 
complications of spin! space-time basis functions, we will 
show how to build basis functions from a combination of 
space-time and spinlike variables. 
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The spinlike complex variables, u, v, are associated with 
the group SL(2) which is the set of all homogeneous, linear 
transformations 

u' = allu + al2v, 

v' = a2l u + azzv, 

alla22 -a12a2l = I, 

(9) 

with the aij complex. The infinitesimal generators of this 
group are 

J x = ~(uav + vau - iiav - iiau), 

Jy = !i(vau - uav + iiau - iiav)' 

Jz = !(uau - vav - iiau + vav), 

(10) 

Kx = !i(uav + vau + iiav + iiau)' 

Ky = - ~(vau - uav - vau + iiaii ), 

K z = !i(uau - vav + iiaii - iiavl· 

Functions of u, v, ii, ii, can be used as basis functions for 
representations ofSL(2). For example, a basis for the (!, 0) 
representation is u, v; for the (0, D representation, ii, ii; for 
the (I, 0) representation, uZ, uv, vZ; and for the G, D 
representation, 

Zo = uii + vii, 

ZI = uii + iiv, 

Z2 = i(iiv - uii), 

Z3 = uii - vu. 

(11) 

We can now use a hybrid system of independent varia­
bles-one set of(u, v) for the spin part of the wave function, 
and one set of xI' for the translation part-for the construc­
tion of basis functions. The PI' remain the same as in Eqs. (5) 
and (6) while the J, K are the sum of a space-time part [Eqs. 
(7) and (8)], and a spin part [Eq. (10)]. Zero momentum basis 
functions for a spin! mass m representation can then be 
chosen as 

or as 

tPl/2 = iJe imt
, 

Spin I basis functions are constructed similarly, 

tPl = u2eimr
, 

tPo = uveimr
, 

tP-1 = v2eimr
• 

(12) 

(13) 

(14) 

A general requirement for a theory of quantum me­
chanics is that there must be a Lorentz-invariant scalar 
product defined for the vectors. In the case of the hybrid 
variables, the scalar product breaks into two parts, and we 
consider the spin part first. If we write u = U r + iuo v = Vr 

+ iVi (u r , Uo Vr' Vi real), and ifJ, gare two functions ofu, v, 
ii, ii, then 
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00 

(J, g) spin = J J J J dU r dU i dVr dvJg = J d 4u.fg (15) 

satisfies all the requirements of a scalar product. Further, if 
we switch to new variables by means of Eq. (9), then the 
Jacobian of the transformation is det(A *A); and since 
det(A ) = 1 for SL(2), the scalar product is Lorentz invariant. 

This scalar product poses a problem for the basis func­
tions ofEq. (12), because they have an undefined spin norm. 
This problem can be circumvented by mutliplying the basis 
functions by a function invariant under the little group, 
SU(2). Such an example appears in the next section and is 

(16) 
¢ _ 1/2 == ve - lUll -+ I'Vleimt. 

These are still good spin ~ represnetations ofSU(2), and now 
have a well defined, finite spin form. 

The space-time part of the scalar product may vary, 
depending on the problem at hand. But if the basis functions 
satisfy a Klein-Gordon equation, then we can use the usual 
one9 

<fg) =Jw" d
3
x(lrg-gJ), (17) 

or more generally 

<fg) = if da"(lJ1g - g,J), (18) 

where a is any spacelike surface, andJ, g are positive energy 
solutions of the Klein-Gordon equation with the same mass. 
It is proved in Ref. 9 that this scalar product is Lorentz 
invariant and independent of a. 

We have thus been able, by using hybrid variables to 
construct basis functions from independent variables for any 
spin mass> O. And we have constructed a Lorentz invariant 
scalar product under which the basis functions can be prop­
erly normalized. 

We can also construct basis functions in the zero mass 
case. In order to demonstrate this, we will use the little group 
method again, this time for the energy-momentum vector 
Po = P3 = P, P I = P2 = O. The equations to be satisfied by the 
single little group basis function, of spin S, are then 

(Jx - Ky)¢ = { - ilyaz - zay + yar + tay) + va" - Vail} 

x¢=o, 

(Jy + K,)¢ = {- i(zax - xaz - xar - tax! + iva" 

+ + iva il }¢ = 0, 

J z ¢ = {- i(xav - yax ) + !(ua" - va, - iiail + vav)}¢ 
= S¢. (19) 

These are solved by ¢ = v· 2j'(vV)exp[i(pt - pz)] or = v2s 

f(vV)exp[i(pt - pz)], where/isanyfunctionofv. Now,howev­
er, since ¢ does not depend on u, ii, the spin part of the scalar 
product gives infinity. We do not see how to escape this 
difficulty. 

So far, we have used both space-time variables alone, 
and a hybrid system, to construct basis functions. Another 
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possibility is to use sets of spinlike variables alone. The con­
struction of normalizable basis functions looks quite difficult 
in this case, because of the large number of variables in­
volved, so we will be satisfied here to take only the first step 
and find 10 infinitesimal generators for ISL(2). The J, K are 
simple enough-they are sums of operators like those ofEqs. 
(10). The PJ1 , which are not "natural" in the spin variables, 
must be Hermitian first-order differential operators which 
transform like 4-vectors. They are therefore of the form 

N N _ 

PJ1 = I I (bijPJ1 ij + bijPZ+), (20) 
;~ Ij~ I 

where there are N sets of (u, v), 

pij - a a o - - Vi il + UJ. v' 
J J 

(21) 

and the bij are SL(2) invariants. If the bij are constants, then 
the condition that [PJ1 ' Pv ] = 0 implies 

N _ 

I bijbjk = 0, i, k = 1,oo.,N. 
j~ I 

(22) 

One solution to this set of equations is bij = /;gj with I.g); 
= O. This turns out to be an unsatisfactory solution because 

the resulting P J1 are not independent. That is, there exist four 
functions,Jo,J,,J2,J3' of the (u;, v;) such that 
loPo + I,P, + 12P2 + hP3 = O. This condition implies there 
is no solution to the little group equations and hence these 
infintesimal generators would yield no massive representa­
tions of ISL(2). A better choice is to make a PJ1 out of each 
pair of sets of(u i , v;) and then add then together. If we have 
four sets of (u, v), for example, we could construct 

PJ1 = p;1 + P2 + h.a. (23) 

These PJ1 then commute and form an independent set. 
One consequence of the commutativity and indepen­

dence of the PJ1 is that there exist variables xJ1 conjugate to 
them, i.e., they satisfy 

[PJ1 ,xv ]=iDJ1v ' (24) 

The x" can be chosen to be 

Xo = !i{ii4u I + V4VI - (ii2u3 + V2V3)}/(U4V2 - V4U 2) + C.c., 

XI = !i{V4U4 + ii4v I - (V2 U 3 + ii2v3 )}/(U4V2 - V4U2 ) + C.c., 

X 2 = !i{ii4vI - v4u I - (ii2V3 - V2U 3)}/(u4vZ - v4U Z) + C.c., 

X3 = F{ii4 u I - V4V1 - (ii2u3 - V2V3 )}/(U4V2 - V4 U 2 ) + C.c., 

(25) 
but they are not unique, because there are 16 real variables in 
the four sets of (u, v), rather than just 4. With these x J1 ' we 
suspect that we could construct basis functions for irreduci­
ble representations of ISL(2) in a manner not too different 
from that used with one set of x," and one set of (u, v). But it 
is not our purpose here to develop the spin-variable-only 
approach in detail. It has been pursued to the point of finding 
suitable P J1 simply to show the feasibility of a theory with not 
space-time variables. We will consider it not further at this 
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point and tum instead to a consideration of independent 
variable theories with A equations. 

3. SIMPLE A EQUATIONS 

As we indicated in the Introduction, the method we will 
use to formulate quantum mechanics for elementary parti­
cles is to construct an operator tl from differential operators 
in the independent variables and then to require that the 
mathematical functions associated with physical states of 
particles satisfy the "A equation", tl4/1 = 0. The theory is 
made Lorentz invariant by requiring that there exist ten in­
finitesimal generators (first-order differential operators) of 
ISL(2) which commute with tl, 

[tl,J] = [tl,K] = [tl, PJl 1 =0. (26) 

A complete physical theory will have many, perhaps an infi­
nite number of, independent variables in order to be able to 
describe systems of many interacting particles. Such a theory 
will be extremely complicated, however, and so before con­
sidering it, we will give relatively simple illustrations of the 
method in which only a small number of independent varia­
bles are used. 

Our first example is one already in the literature (al­
though it is doubtful that the various authors viewed it as an 
example of the method of independent variables), namely, 
the relativistic harmonic oscillator proposed by Feynman, 
Kislinger, and Ravndal,8 and pursued by Kim and Noz, 10 

and Blaha,l1 among others. We will review the problem 
here, because it illustrates several points. 

In the simplest version, two sets of space-time variables 
xJl I and XJl 2, are used, with an A equation 

& 4/1 (Xl, X2) = {aJl laJl I + a~a;. + V(xt, X2)}4/I (Xl, X2) = 0. 
(27) 

The "potential", V, chosen for the harmonic oscillator prob­
lem is 

V(x l, X2) = - k(x I
Jl - X2

Jl )(X
I
Jl - x2

Jl ). (28) 

If we switch to center of mass and internal coordinates, 

XJl = (xJl I + XJl 2)/2, (29) 

xJl = (xJl I - xJl 2)/2, 

then the equation becomes 

{-PJlPJl +ax"ax" -XJlXJl}4/I(X,X) =0, (30) 

where the momenta, P
Jl

, are 

Po = i(a6 + ~), (31) 

P = i('\I1 + '\12). 

The above P
Jl

, plus a J, K which are sums of two sets of J, K, 
like those ofEqs. (7) and (8), give us a set often infinitesimal 
generators which obey the commutation relations ISL(2) 
and commute with tl, so theA equation is Lorentz invariant. 

Because of the Lorentz invariance, we expect to be able 
to catalog solutions of the equation by the representation of 
ISL(2) to which they belong. We will use the little group 
method in order to determine which irreducible representa­
tions (m, S) are "allowed" by the equation. The zero momen­
tum, m > 0, solutions must satisfy Eqs. (3) and (4), which 
implies they can be written as 
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4/1 (m, S; p = 0, (T: XJl ' XJl) = eimX1(m, S; p = 0, (T: xJl ), (32) 

where the 2S + l!,s form a basis for the spin S representa­
tion ofSU(2). Ifwe put this form into theA equation, then we 
obtain an eigenvalue equation for the allowed values of m 2

, 

(a2
x• -J

2
x , -J2x• -J

2
x, _x02+XI2+x/+x/V=m'i 

(33) 

The solutions ofEq. (33) will be the product offour harmon­
ic oscillator functions in the variables XO, XI' X2, X3' 

3 

I(no, n I' n2, n3) = IT 4/ln" (XJl ), (34) 
Jl~O 

with associated eigenvalues 

m2 = 2(n I + n2 + n3 - no) + 2. (35) 

The functions I/!n are harmonic oscillator functions, i.e., 
I/!o(x) = exp( - x212), I/! I (x) = X exp( - x212), etc. 

The scalar product in this problem will consist of two 
parts: S a4x on the internal variables, and a part like that of 
Eq. (17) for the external variables. 

There seems to be some confusion in the literature 
about the form of the eigenfunctions. The tendency is to 
assume that the "ground state" 4/10 =/(0, 0, 0, 0), must be 
SL(2) invariant, i.e., 4/10 = exp[(xo 2 

- X 12 - X2
2 - X32)12]. If 

this is assumed, then severe difficulties with the norm result, 
and much maneuvering lO must be done to salvage the the­
ory. But the ground state does not-when we are dealing 
with a one-body problem rather than the many-body prob­
lem-have to be SL(2) invariant in the little group method, 
only SU(2) invariant. Thus the ground state we have implic­
itly used above, = exp[ - (xo 2 + X 12 + X2

2 + X32 )12], is per­
fectly acceptable. 

If m 2 > 0, the internal norm will be finite, because of the 
exponential 1/10' and states with different nJl (and therefore 
different m2) will be orthogonal. If m2 < 0, however, then m 
is pure imaginary and the center of mass norm gives infinity. 
Because of this difficulty, states with m2 < ° are excluded 
from consideration here. The negative m2 states could not be 
dismissed as easily by Feynman et al.8 because they were 
implicitly working on a many-body problem. There was no 
way to exclude the possibility that the scattering of an m 2 > ° 
particle would produce an m 2 < ° state, because all solutions 
of theA equation, including those with m 2 < 0, might be part 
of the complete set of functions necessary to describe the 
outcome. Thus the negative m2 states are worrisome in the 
many-body problem. 

Ifm2 = 0, i.e., n l + n2 + n3 - no = -1, we must 
change the little group method, as mentioned in Sec. 2. It 
turns out that the A equation has no m 2 = ° solutions which 
also satisfy the little group equations, so no massless repre­
sentations are allowed by (30). 

Linear combinations of the m 2 > ° solutions to Eq. (33) 
can be used to obtain solutions of definite spin as well as 
mass. For example./(O, 1,0,0)./(0,0,1,0), and/(O, 0, 0, 1) 
form a spin 1 representation, with a mass squared of 4, and 
linear combinations of/(O, nl' n2, n3) with n l + n2 + n3 = 2 
can be taken to obtain a spin 2 representation of m2 = 6. A 
more complete treatment of the mass spectrum is given in 
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the references, so we will not pursue it here. We only remark 
that all representations have integer spin. 

Our next example uses one set of xft and two sets of (u, 
v) as the independent variables and will allow spin! solu­
tions. TheA equation for this example is chosen to be like the 
Klein-Gordon equation. 

(j lJI = (aft aft + rnZ)lJI = ° (36) 

except that rn z will be a differential operator in the spin var­
iables rather than just a number. If we suppose that our Pft 
are those ofEqs. (5) and (6) and the J, K are like those ofEq. 
(10) except that two sets of(u, v) are used, then (j commutes 
with them and will be Lorentz invariant provided rnz is an 
SL(2)-invariant. 

The number of candidates to be considered for rn z can 
be cut down, and an additional quantum number intro­
duced, if we assume that (j, and thus rn z, is to be invariant 
under a space inversion operation, Is. The Is we choose is 

Is(xo) = X o Is(x) = - x (37) 

Is(u l) = Vz Is(iil) = Vz Is(u z) = - VI Is(iiz) = - VI' 

Is(v l) = - iiz Is(vl) = - Uz Is(vz) = iii Is(vz) = ul, 
(38) 

and it takes (Po, P, J, K) into (Po, - P, J, - K), as it should. 
We now choose an rn Z which is harmonic-oscillatorlike 

in the sense that it has second-order derivatives and quadrat­
ic terms in the (u, v), 

rn z = (uIVZ - vIUZ + iilvz - vliiz)/4 

- (au, av, - av, au, + au, au, - au, au). (39) 

It is not difficult to show that this operator is invariant under 
SL(2) and Is. 

Equation (36) can be solved by separation of variables. 
This is done by using linear combinations of variables which 
are eigenfunctions of Is 

u+ = (u l + vz)M, 

v+ = (VI - iiz)N2. 
u_ = (u I - vz)N2. 
v_ = (VI + iiz)N2. 

A bit of algebra shows that 

rn z = - (au. au. + av.au. - u+ii+ - v+v+) 
+(auafj +a"Jv -v_v_-u_ii_) 

- a2 
u . , + UZ 

+ r - a
z 

u , , + UZ 
+ i - a

z
" , , 

+ v + r - az 
v , , + VZ 

+ i 

+ az
u ,- u2 

_ r 

(40) 

(41) 

+ aZ 
u ,- UZ _ i + az v ,- VZ 

_ r + az v - v
2 

_ i' 

where U r indicates the real part of u, etc. Not surprisingly, 
rn z splits up into eight harmonic oscillator operators. 

To find the allowed values of (m, S), we follow the same 
procedure as in the first example, where we considered only 
zero momentum basis functions and separated out the time 
dependence, 
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lJI(m, S;p = 0, 0'; x, U) = eimx'/(m, S;p = 0, O';U). 
(42) 

The A equation then becomes 

rn 2J= m 2f (43) 

Its solutions will be products of eight harmonic-oscillator 
functions in the variables u + r' U + i' etc. Ifwe relabel (u + r' 

U +;. v + r' V + i' U _ r' U _ i' V _" v _,.) by (YI'YZ' ... , Yg), then 
the eigenfunctions areJ(n I' ... ,ng) = m~ I tPn (y,.) with eigen-

I z ' 
va ues m = 2(nl + ... - ng). We see that there are an infi-
nite number of different eigenfunctions associated with each 
value of m Z

, The trick is to organize them into states with 
definite spin and parity, and determine which Sand Pare 
allowed for a given mass. The method is tedious, but the 
results are fairly simple. A basis can be constructed for any 
whole integer representation of either parity if m Z 

=0 mod (4), and for any odd half-integer representation of 
either parity provided m Z=2 mod (4). 

It is interesting to examine the structure of the basis 
functions for the m = 112, S = !, P = 1 representation. We 
note that u+, v+ form a basis for a spin! representation of 
SU(2), with lzu+ = ~u+, lzv+ = - !v+. And since 
u+ = YI + iyz, v+ = Y3 + iY4' we have 

lJI (V2. !, 1; p = 0, 0' = D 
8 

= [tPI(YI)tPO(YZ) + ilJlo(Yl)tPl(Yz)] II tPo(y,.)eimt, (44) 
i= 3 

lJI(V2.!, I;p = 0,0' = - D 
= tPO(Y1 )tPo(Yz)[ tPl (Y3)tPO(Y 4) + itPO(Y3)tPO(Y 4)]' 

8 

X II tPo(y,.)eimt. 
;=5 

Or, if we convert back to u, v notation and let 
8 

lJIo = II tPO(Yi) = exp[ - (ulii l + VIVI + uziiz + vzvz)/2], 

then 

i= 1 

(45) 

(46) 

lJI(V2.!, I; p = 0, - D = (VI - iiz)lJIoeimt. 

The p =f. ° basis functions will be Lorentz transforms of 
the above p = ° basis functions. Hence the general form for 
an m = y/2 S = !, P = 1 function is 

lJI(v2.!,I) 

= f d 3p [f1(P)U I + Jz(p)v I + J3(p)iiz + h(P)V2] 

xexp[ip/,xft - Pft(z~ + z!)];Po = V 2 + pZ, (47) 

with zft defined as in Eq. (11). The/;(p) constitute the four 
components of the Dirac wave function in the momentum 
representation. Only two of the four can be specified inde­
pendently, for each p, corresponding to spin up and spin 
down. Thus there is a dependence among thef's which can 

be expressed by the Dirac equation (YftPft - V2)J(P) = 0, 
whereJis a column vector with componentsJI(p),f2(P), 
!;(p),fip), and 

F. A. Blood 72 



                                                                                                                                    

r,= [~ 
0 0 

~l r,= [! 
0 -1 

~] 0 -1 0 0 

-1 0 0 0 

0 0 -1 ° 
r,= [! 0 0] [ 0 

0 ° ~l 0 0 i 0 0 

0 0 o ,r3= ° -1 ° 
(48) 

0 o -1 ° 0 

The scalar product for the solutions of Eq. (36) is like 
that for the hybrid functions of Sec. 2, except that 
Sd4UlSd4U2 replaces Sd 4u. 

If m2 > 0, the spin norm will be finite, because of the 
exponential tJlo, and states with different n i (and therefore 
different m2

) will be orthogonal. If mZ < 0, however, the spin 
norm is still finite, but m is pure imaginary and the space­
time norm is infinite. Because of this difficulty, states with 
m 2 < ° are excluded from consideration here. If m Z = 0, then 
we must change the little group method as mentioned in Sec. 
2. It turns out that there are mZ = ° solutions, but their spin 
norm is not well defined, so we must also exclude m2 = 0 
solutions as not being physical. 

Our second example still had imaginary mass solutions 
because the eigenfunction equation was quadratic in m. Our 
third example, which uses one set of xI' and four of (u, v), 
avoids this problem by employing a Diraclike equation 
which is linear in the eigenvalue m. The A equation is 

&tJI=(iDt-<at-< -ffl)tJI=O, (49) 

where 

ffl = (U IV3 - VIU3 - UZV4 - vzu4 )f4 + C.c. 

- (au. au, - au. au, + au, au. - au,auJ + h.a., 
(50) 

and the differential operators 

Do = ulav, - vlaii3 + uzav• - vza;;. + h.a., 

D, = - ula;;, + vlaV, - u2a;;. + h.a., (51) 

D2 = + i(ula;;, + vlav, + u2a;;. + vzav) + h.a., 

D3 = ulav, + Via;;, + uzav• + vza;;. + h.a. 

have replaced the Dirac matrices r t-<' 

To find the allowed values of(m, S), we again look only 
at the zero momentum solutions and write tJI 
= exp( - imxoYto obtain the eigenfunction equation 

mDof = fflJ, (52) 

for m,1 The operators Do and ffl commute, so we can dia­
gonalize them separately. The diagonalization procedure for 
ffl is quite similar to that followed in example 2; we define 
two sets of ± variables 

U I+ = (u l + v3)/v'z. u l - = (UI - v3)Nz. 
vl+ = (VI - ii3)N2. v I - = (VI + ii3)Nz. (53) 

uz+ = (u2 + v4)Nz. uz- = (uz - v4)Nz. 
vz+ = (vz - ii4)Nz. vz- = (V2 + ii4)M, 
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which are eigenfunctions of the space inversion operator Is, 
i.e., 

Is(u±n)= ±u±n,ls(v±n)= ±v±n. (54) 

We then find that 
8 16 

ffl = - L (aZ
y , - Y/) + L (az

Yi - Y/), (55) 
;= 1 ;=9 

where 

The eigenfunctions aref(n l , ... , n16) = ntPn,(vi) with 
eigenvalues 

m = 2(nl + ". + ng - n9,,·nI6)' 

If we re-express Do in terms of the ± variables, we get 

Do = ut a " + vt au' - U au - v}- au u. 1 t I I 

This operator acting on the ground state, tJlo = f(O, --- 0,) 
gives zero, so Do essentially acts only on the spin part if ftJIo) 
of the basis functions. 

It is interesting to observe that the & of this example 
has an "internal" symmetry group, isomorphic to SU(2), 
which rotates sets of(u, v) into each other according to 

[

(U;' V;)] [a a12 ° (u~,vD = a:: aZ2 0 

(ui, vi) 0 0 all 
( ' ') 0 ° aZI u4 , V4 

(that is, u; = all UI + al2 Uz, v; = all VI + al2 vz, etc.), 
where the matrix is unitary with a determinant of one. The 
ISL(2) and Is -invariant infinitesimal generators of the inter­
nal symmetry group are 

2Ix = ulau, + uzau. - U3au. - U4au, 
+ vlaU, + vzau. - v3au• - v4au, + h.a., 

2Iy = i(uzau. - ulau, + u4au, - u3au• 
+ v2au, - vlav• + v4av, - v3au.) + h.a., (58) 

2Iz = ulau. - u2au, - u3au, + u4au• 

+ vlau, - v2au, - v3av, + v4au• + h.a., 

= ut a , - u2+ au' + vt au' - v2+ au' 
U I 2 I 2 

+ul-a -u2-a + VI-au -v;a . u. 142 I V2 

We will denote 2lz as the "charge" operator and can then 
label the representations by mass, isospin, charge, and par­
ity. As an example, there will be 8 representations with 
Iml = 2, IQ 1= 1,1 =!. They can be grouped into four pairs, 
with each pair being an isospin doublet. The basis functions 
if ftJIo) and their associated mass, charge, and parity are 
(ut, vt: 2, 1, 1), (u 2+, v/: 2, -1,1), (u l-, vl-: 2, 1, -1), 
(u 2- , v2-: 2, - 1, - 1); (iit, vt: - 2, - 1, 1); (ii/ , v2+ : 

- 2, 1, 1); (u}-, vl-: - 2, - 1, - 1), (u
2
- , v

2
-: - 2, 1, 

-1). 
We are not certain which representations should be 

considered the antiparticles of the first two. In the conven­
tional Dirac equation, the antiparticle has a negative energy. 
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But in reality, the physical antiparticle has a positive energy. 
So we would favor the fourth and third, as being the antipar­
ticles of the first and second, resp. But the question probably 
does not have a clear-cut answer except in the context of a 
many-body problem. 

This example is "flawed" as an illustration of an inter­
nal symmetry because the tJ separates, i.e., tJ = tJ 13 + tJ 24' 

One way to correct this is to introduce a term in the mass 
operator, m, proportional to the Ix ofEq. (58). This would 
couple the 13 and 24 variables and break the SU(2) symme­
try. The eigenfunctions of tJ would then be those linear com­
binations of eigenfunctions of I z which are eigenfunctions of 
Ix, and the mass would depend on the eigenvalue, i.e., there 
would be a mass splitting for the doublets. 

It is possible to use six sets of (u, v) instead offour and 
obtain an tJ with an internal symmetry isomorphic to SU(3). 
We could then add terms to tJ which break the symmetry in 
such a way that the physical spectrum can be imitated fairly 
well. But more representations ofSU(3) occur in the solution 
space than occur physically; states of all triality l2 occur, 
rather than the physical triality of zero. In addition, the simi­
larity of this spectrum to the physical one seems to be due 
solely to the group structure. Hence, we do not believe these 
results are significant. 

And in retrospect, we do not really expect physically 
significant results at the single-particle (i.e., few independent 
variables) level, because, although the mass spectrum is a 
kinematic quantity, it is evidentally tied to the many-body 
problem. We are therefore led to discuss this much more 
complicated problem in the next section. 

4. THE MANY-BODY PROBLEM 

We now tum from the relatively simple, but unphysical, 
single-particle theories of Sec. 3 to the more realistic many­
body problem. The A equation will be extremely difficult to 
solve in detail in this problem, because of the large number of 
independent variables-at least one set for every fermion in 
the universe. Because of this, we will not examine the content 
of a particular equation here. We will instead only "rough 
out" the problem by looking for those general properties of 
the A equation and its solutions which correspond to the 
physical properties of particles. 

A very general property of nature is its Lorentz-invar­
iant character. We can build this into our theory by requiring 
that the mathematical representative of a physical state sat­
isfy the A equation, tJ tJI = 0, where tJ is a linear differential 
operator with an invariance group of transformations of the 
independent variables, homorphic to ISL(2). The first step, 
then, is the construction of classes of Lorentz-invariant tJ's 
from which we will eventually, by the use of more powerful 
heuristic techniques than we have now, choose the "phys­
ically correct" operator. 

A related problem is the construction of the infinites­
imal generators of the invariance group. In some methods of 
setting up quantum mechanics, it is this construction which 
is all important, because the Hamiltonian is responsible for 
the interaction. But the fact that the group is a transforma­
tion group implies that the infinitesimal generators are first-
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order differential operators, which in tum implies that the 
infinitesimal generators are not directly responsible for the 
interaction in our theory. It is caused instead, as we shall see, 
by a suitable tJ. Because of this, our procedure will be to 
choose the infinitesimal generators and therefore the invari­
ance group to be as simple as possible. It is then a relatively 
easy job to construct classes of &'s which commute with the 
infinitesimal generators, thus obtaining relativistically in­
variant theories. 

We consider first the case where the independent varia­
bles are space-timelike. In this case, the infintesimal gener­
ators will simply be chosen as sums of operators like those of 
Eqs. (5)-(8), e.g., Po = f1.Jxo ' where we have assumed a finite 
number, N, of variables. Then a class of "Klein-Gordon­
like" operators which commute with these ten infinitesimal 
generators, and are therefore Lorentz invariant, is 

& = ~ J (m)J (m) + V. 
~"" ' 

(59) 
m= I 

with the "potential" Vbeing a function of the (x" (m) - x" (n» 

(x" (m) - x" (n». On the other hand, if the variables are spin­
like, the J, K will be sums of the spinlike J, K ofEq. (10), and 
the P" will be 

P = ~p (m) " ~", 
(60) 

m= t 

with thep" (m)being operators like those ofEq. (21). An 
example of Dirac-like ISL(2)-invariant operators in this case 
IS 

(61) 

where the d" (m) are Hermitian operators, analogous to the 
D" ofEq. (51), which must commute withpv (n), Xv (n) for all 
n, v. The potential could be constructed, as before, from 
functions of (x (m) - X (n» (x (m) - X (n» but could also 

" " " ", include ISL(2)-invariant functions ofthe spin variables. We 
note that the operator ofEq. (61) is also suitable when a 
hybrid system of variables is used. 

Since we are now able to construct a large class of A 
equations which are Lorentz invariant, we can begin an anal­
ysis of how other physical properties of particles bear on the 
form of the A equation and its solutions. A second general 
property is that physical states are catalogued according to 
the number and kind of particles present (if the interactions 
are not too strong). The lowest state will be one with no 
particles present. This ground or vacuum state tJlo will be a 
function which satisfied the A equation, and which is an 
ISL(2) invariant. According to the ideas ofWeinberg5 and 
Salam6 tJlo is not simply a "background" but contains a good 
deal of physical information. That is, they argue that the 
original problem (the A equation in our case, the Lagrangian 
in theirs) is invariant under the internal symmetries, with the 
broken symmetry arising from spontaneous symmetry 
breaking-a "crystallizing" -in the vacuum state, (in anal­
ogy to an asymmetric Ising model vacuum state arising from 
a symmetric Hamiltonian). Thus, our theory holds out the 
possibility of being able to show why the symmetry is broken 
as it is, because we have an equation for the vacuum state. 
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The next states of physical interest are the one-particle 
states. In many-body problems such as phonons in crystals, 
and 4He, functions representing "particles" are the product 
of the ground state and an "excitation function; we will as­
sume the same thing here. That is, the function representing 
a single particle of mass m, spin S, momentum p, and z­
component of spin u is 

1/1 (m, p, s, u) = f(m, p, s, u)l/Io· (62) 

where thef's form a basis for the (m, s) irreducible represen­
tation of ISL(2). 

There are two interesting points about the equation forf 
obtained by putting this 1/1 into the A equation. One is that 
the potential Vnever enters. If we write 1/10 = exp(cJ>o), then 
Eqs. (60) and (61) become the equations 

(63) 

2}dl-' (m)pl-' (m>j + d/1 (mlJp/1 (m)cJ>o + P/1 (mlJd/1 (m)cJ>o) = 0, 

(64) 

resp., for f Thus even though the vacuum problem may 
prove to be too difficult, we can still calculate with the theory 
by choosing 1/10 as a real normalizable, ISL(2)-invariant 
function and starting the problem from there. 

The other point is that the A equation can be made into 
an eigenvalue equation for the mass, or the mass squared. In 
order to see this, we write 

f(m, 0, s, u) = e - imX'/mt (m, 0, s, u), 

where 

fp Iml X ] = 0 / N 
1-1 '0 /-10 

(65) 

(66) 

for the zero momentum basis functions of an (m, S) represen­
tation of ISL(2). The "internal" functions must be transla­
tionally invariant, 

pJ;nt = 0, 

and satisfy 

(67) 

2r + ~(p (m) (m)r + 2 (m)r (m)cJ> ) - 0 m Jin' £., I-' 'PI-' Jint :P/1 Jin'P/1 0 - , 

or 

m(9 0 /;nt + /;nt g; ocJ>o) 

+ ~(d (mlr (m1cJ> + (mlr d (m1cJ> ) - ° L II JintP/L 0 Pit lint I-l 0 - , 

67; - ~d Iml 
c2'O - £., 0 

(68) 

(69) 

obtained from Eq. (63) or (64), resp., by the use ofEq. (65). 
The m 2 ofEq. (68) and the m ofEq. (69) must be real 

since all operators involved are Hermitian, but until we solve 
a particular equation, we do not know whether they will be 
positive or negative. We would like to avoid those tJ, 1/10 
which give negative m2 solutions to Eq. (68), if that is the 
form we choose for the A equation, because of the unitarity 
problem alluded to in Sec. 3. There will most surely be nega­
tive mass solutions to Eq. (68), and, we suspect from the 
examples of Sec. 3, there is a good chance of having negative 
mass solutions to Eq. (69). These negative mass solutions are 
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unphysical, because such particles are never observed, and 
must somehow be eliminated from the theory. There are two 
possibilities. One is to use Eq. (69) and search for a V (or a 
1/10) which gives no negative mass solutions. The other is to 
construct the many-particle solutions so that, even though 
negative mass solutions exist and are part of a complete set, 
they are not "activated" in a scattering process between posi­
tive mass solutions. Without further detailed investigation, 
there is no way of knowing which, if either, of these remedies 
will work. 

We now consider those solutions of the A equation 
which correspond to several particles, ignoring symmetriza­
tion properties for the time being. Our initial expectation is 
that a many-particle state is mathematically represented by 
something like a product, e.g., the solution of theA equation 
that corresponds to one particle with momentumpl> and 
another with momentum P2 is 

1/1 = 1",1", 1/10' (70) 

Now if tJ contained derivatives no higher than the first, then 
the 1/1 ofEq. (70) would be an exact solution oftheA equation 
provided 1/10'1", 1/10' and 1", 1/10 are. But such a theory would 
be one without interactions, because, since the time evolu­
tion operator is a first-order differential operator, 

exp(iPoXo'J/;"I",l/Io = exp[i(PIO + P20)xOJ!",J;" 1/10,(71) 

which says mathematically that there is no energy ofinterac­
tion-each particle evolves in time as if the others were not 
there. A similar analysis would show that tJ must not be a 
separable operator. The implications ofthis argument are 
that tJ must not be separable, and it must contain differen­
tial operators of at least second order. Conversely, we see 
that if tJ does have second-order derivative terms, then the 
cross terms-in our examples, these would be 

P (m)r P (m)r or d (m)r P (m)r -imply that the product 
I-l J PI JJ J PJ P J PI J-l J Pl 

is, in general, no longer an exact solution. 
Suppose, on the other hand, that we use "localized" 

states,Jx = fd 3p g(p)e'p,xJ;" with the precise form ofg(P) de­
pending on spin and the properties one wants forfx. Then for 
any reasonable theory of quantum mechanics, we expect the 
"interactions" between localized particles to go to zero as 
their separation goes to infinity. In our theory, this would 
imply that the cross terms go to zero. But then, the product 
of "distant" particle functions, 

(72) 

is a solution of the A equation. 
We can illuminate these ideas, and expand on them 

somewhat if we consider a scattering process. Suppose we 
start out with two widely separated electrons at a large nega­
tive time, say - to' Then the solution corresponding to the 
electrons will be a product like Eq. (72). As time progresses 
and the electrons get closer, the interaction cross terms will 
no longer be negligible, and so the solution will not be as 
simple as a product. If the interaction is weak, we would 
expect that the solution at time t might be something like 

I/Iout(t) = exp[i(t + to)Po] I/I( - to) 

= Jd3XIJd3X2¢(Xl,X2' t}fx./x, 1/10' (73) 
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i.e., a sum of products, with", being the conventional wave­
function of quantum mechanics. But the above would not be 
exactly correct; there will be an "extra" part to the solution, 
outside the vector space spanned by products of one-particle 
solutions, corresponding roughly to particles (photons, vir­
tual pairs, etc.) "off the mass shell." After the scattering is 
finished, and the constituents have widely separated from 
each other, we again expect the results to be describable as a 
sum of products of one particle states, even if there are pho­
tons and/or particle-antiparticle pairs present, i.e., 

IP (t ) = Id 3X, d 3X2 "', (x l' X2' t if: /: IPo 
out I 2 

+ I d 3X , d 3X2 d 3X3 "'2(X" X2 X3' t if:/:f~~IPo 
+ I d \, d 3X2 d 3X3 d 3X4 IP(X" x 2, X3, X4 , t) 

X/"/"/"f" If/. XI x_ X x" () 

+ ... , (74) 

wherej",Je,/Ph identify functions corresponding to single 
electrons, positrons, and photons, resp. So in this scheme, 
products of one-particle states are complete for systems of 
widely separated particles, but are not complete when the 
particles are interacting significantly. The incompleteness 
provides for the possibility of creation and annihilation of 
particles, while the "asymptotic completeness" is the math­
ematical principle corresponding to our description of na­
ture in terms of particles. 

Thus we have a theory which, in principle, is Lorentz­
invariant, is capable of describing nature in terms of parti­
cles, and which can account for the creation and annihilation 
of particles in a manner which does not seem overly con­
trived. The last principle, however, that of symmetriza­
tion-and antisymmetry in particular-is not a "natural" 
one in an independent variable theory. In fact, part of the 
motivation for using field theory is that antisymmetry is con­
sidered to be a "basic" principle which can be put in only by 
the use of antisymmetric operators as the building blocks of 
an elementary particle theory. 

On the other hand, there is no reason why antisymme­
trization should be impossible to include in an independent 
variable theory. One possible reason for its occurring might 
be that only antisymmetric solutions of the A equation are 
stable. That is, suppose our A equation has both positive and 
negative mass solutions for fermions, but only positive mass 
solutions (or else positive and negative solutions, but the 
negative solutions are never brought into play in a scattering 
process) for bosons. Then one could imagine that iffermion 
states were not antisymmetrized, the scattering of two posi­
tive mass fermions would produce a cascade of positive and 
negative mass pairs. The only way to obtain stable many­
particle states would be to antisymmetrize, thereby exclud­
ing the scattering to negative mass states. 

The actual form for symmetric and anti symmetric solu­
tions cannot be known until we solve a particular problem. 
But we can give examples, in order to have some idea of what 
sort of solutions to try. The symmetric case is very simple; we 
canjust use a product like that ofEq. (70), provided the two 
f's are functions of the same variables [not.!;, (u Ill;, (u 2), for 
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example]. The constructions are so simple, in fact, that one 
hardly feels compelled to "explain" why symmetric solu­
tions occur. 

The antisymmetric case requires a more complicated 
construction. Let us suppose that, as in the 4He example, a 
one-particle fermion state is of the form 

(75) 

where the U i represent different sets of independent varia­
bles. (Actually, the g's will depend on more than one set of 
variables, as in the Feynman wavefunctions that take back­
flow into account, 13 but the main dependence is on u i .) Then 
a function antisymmetric in the two sets oflabels (p" SI) and 
(P2' S2) is 

IPp"s"P,.s, = I2Jgp"s, (u;)gp,.s, (u) - gp"s, (u)gp"s, (u;)] IPo· 

(76) 
In a way, the function ofEq. (76) is interesting for what 

is left out; nothing is said about the symmetry properties of 
IPo. The reason is that the only thing we know about particle 
states is that they are antisymmetric in the labels, i.e., 
Ixz,x I ) = -lxI'xz)' We know nothing at all about symme­
try properties with respect to the independent variables. In 
particular, we do not know whether IPo must be antisymme­
trized in the independent variables in order to "exclude" 
negative mass states. We suspect that the picture of every 
negative mass state being occupied in IPo is naive, because 
there are a continuous infinity of states and that makes for an 
extremely messy theory. 

In summary, we see that the idea of spin ~ solutions of 
theA equation being anti symmetric in the labels can, in prin­
ciple, be fit into the independent variable approach. But it 
does not fit in naturally. We must await more detailed work 
on a specific example in order to see how, or whether, anti­
symmetry occurs. 

5. SUMMARY AND CONCLUSIONS 

We have proposed a theory of quantum mechanics in 
which physical states are mathematically represented by 
functions which are solutions of a Lorentz-invariant differ­
ential equation in some set of independent variables. In Sec. 
2, we explored different types of variables and concluded 
that either space-timelike or spinlike variables were suitable. 
We then used these variables in Sec. 3 to give examples of 
different types of simple one-particle A equations with dis­
crete mass spectra. 

Consideration of the many-body problem in Sec. 4 was 
initiated by showing how to construct large classes of Lo­
rentz-invariant differential equations in either type of vari­
able. Then we made several assumptions, based partly on 
analogy with many-body problems, about the form of solu­
tions of the A equation, in order to be able to explain particle­
ness, interactions, and creation and annihilation. (1) We as­
sume there exists an ISL(2)-invariant vacuum state. (2) We 
assume there exists one-particle solutions of the formfV'o 
where/is a function which has a definite mass and spin. (3) 
We assume multi particle states are "something like" pro­
ducts, i.e., IP = / J; IPo. Second-order differential operators 
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in the A equation will then cause an interaction. (4) We as­
sume that ifthe/'s corresponding to localized particles, then 
the "interaction" goes to zero as the separation goes to infin­
ity. Thus if the single particle functions,./V'o, are complete 
for one-particle states, the widely separated functions will be 
complete for widely separated many-particle states. (5) 
These states will presumably not be complete for interacting 
particles, however, and this appears to allow for the creation 
and annihilation of particles. (6) Finally, we assume that 
antisymmetry in the labels of the solutions is made necessary 
by the need to exclude negative mass solutions from the 
theory. 

It is obvious from the number of assumptions we have 
made that what we have here is not a physical theory, but 
only the suggestion for the form of a theory. Thus, although 
the theory has the possibility of satisfying all requirements, 
we cannot properly judge it until we choose a specific A equa­
tion and see if our assumptions about the form of the solu­
tions are valid. It is particularly crucial to investigate wheth­
er and how antisymmetry arises, since that concept seems 
"forced" here. 

One last remark. Since the Lagrangian equations of mo­
tion of quantum field theory yield so much correct informa­
tion, we would expect those equations, perhaps in some ap­
proximation, to follow from our theory. This essentially 
means there must be a connection between our A equation 
and the Lagrangian equations. Some inkling of such a con­
nection can be seen if we assume the general form of a solu-
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tion to the A equation is like that of Eq. (74), only the func­
tions for the various particles, in particular the phonon and 
electron-positron pair, are not necessarily the functions for 
physical particles, but rather may be "off the mass shell." 
This idea will not be pursued further here, but its develop­
ment is crucial both for choosing a physically relevant A 
equation, and for examining the physical content of the A 
equation. 
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The energy, position, and momentum eigenstates of a para-Bose oscillator system were 
considered in paper I. Here we consider the Bargmann or the analytic function description of the 
para-Bose system. This brings in, in a natural way, the coherent states Iz;a) defined as the 
eigenstates of the annihilation operator ii. The transformation functions relating this description 
to the energy, position, and momentum eigenstates are explicitly obtained. Possible resolution of 
the identity operator using coherent states is examined. A particular resolution contains two 
integrals, one containing the diagonal basis Iz;a) (z;a 1 and the other containing the 
pseudodiagonal basis Iz;a) ( - z;a I. We briefly consider the normal and antinormal ordering of 
the operators and their diagonal and discrete diagonal coherent state approximations. The 
problem of constructing states with a minimum value of the product of the position and 
momentum uncertainties and the possible a dependence of this minimum value is considered. 

PACS numbers: 03.65.Ca 

1. INTRODUCTION 

In paper! I of this work we have given a detailed study 
of the energy, position, and momentum eigenstates of a para­
Bose oscillator system characterized by the commutation 
relation 

(1.1) 

and by a parameter a denoting the minimum eigenvalue of 
the Hamiltonian !(ata + aat) (a = ~ being the normal Bose 
case). We had in particular considered the relationship be­
tween the matrix and the wave mechanical descriptions of 
the para-Bose operators. In the present paper we consider 
the Bargmann (or the entire function space) description, op­
erator ordering, and construction of states with minimum 
value of the product of uncertainties in position-momentum 
variables and related matters. We begin in Sec. 2 by con­
structing the Bargmann representation using a suitably de­
fined Hilbert space of entire analytic functions for the 
SL(2,R ) Lie algebra relevant to us, and then for the para­
Bose system. This brings in, in a natural way, the coherent 
states, i.e., the eigenstates of the para-Bose annihilation op­
erator. The transformations relating this description to the 
energy, coordinate, and momentum descriptions will be ex­
plicitly obtained. Possible resolution of the identity operator 
using coherent states is examined. As is well known, in the 
normal Bose case a diagonal resolution of the identity opera­
tor does exist, viz., 

A 1 f 1 = - Iz;!) (z;~ Id 2Z • 
17" -

(1.2) 

However, it turns out that for other values of a, no such 
diagonal resolution exists. This is because a certain moment 
problem has no solution in the general case. An alternative 
resolution of the identity valid for all a will be developed and 
its uniqueness discussed. This resolution contains two inte-

grals: one consisting of the diagonal basis Iz;a) (z;a 1 and the 
other consisting of the pseudodiagonal basis Iz;a) ( - z;a I. 
This second integral is of course absent in the normal Bose 
case a = !. In Sec. 3, we discuss the possibilities of various 
operator descriptions such as the normal ordered, the antin­
ormal ordered, and the diagonal and the discrete diagonal 
coherent state approximations. In Sec. 4, we consider the 
problem of constructing states with the minimum product of 
the uncertainties in position and momentum variables, and 
their a dependence. Section 5 comprises concluding remarks 
and some general questions. 

2. BARGMANN REPRESENTATION OF PARA-BOSE 
OPERATORS 

Para-Bose operators a,at, and iI = !(ata + aat) leave 
the representation space 9 a invariant. This space is 
spanned by the eigenstates In;a),n = 0,1,.·· of iI with the 
corresponding eigenvalues n + a. The parameter a denotes 
the minimum eigenvalue of iI. Using the representation of 
the operator a in space 9 a' one can construct its eigenstate 
Iz;a) with eigenvalue z, wherez is any complex number. 2 We 
call such a state the para-Bose coherent state in analogy with 
the normal Bose case. Instead of following this procedure for 
obtaining these states, we show that they appear in a natural 
way in the Bargmann description of 9 a' We begin in Sec. 
2A with the Bargmann3 type description of the representa­
tion Df3 of the SL(2,R) Lie algebra, using a Hilbert space of 
entire functions. This involves working with the eigenfunc­
tions of L This is used in Sec. 2B to construct a similar 
description of the para-Bose representation 9 a' We are 
then directly led to the coherent states Iz;a). One of the 
outcomes of this procedure is a particular resolution of the 
identity in terms of the coherent states. The possibility of 
having a diagonal expression for the identity operator is ex­
amined in Sec. 2C. 
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A. Bargmann description of SL(2,R) representation 0(3 

In Sec. 2 of part I, we introduced the para-Bose opera­
tors and the relations satisfied by them. The para-Bose oper­
ator algebra is determined in terms of the Hamiltonian (12.2): 

B = ~(aat + ata) 

and the commutation relation [Eq. (12.1)] 

[a,B] = a. 

(2.1) 

(2.2) 

We have seen that the operators i o, ii' and i2 defined as 

io =~, i l = 1(a2 + at2
), iz = (i/4)(aZ - atZ), (2.3) 

obey commutation relations which correspond to the 
SL(2,R ) Lie algebra [Eq. (12.8)]. The eigenvectors of i o, viz., 
In;l:1), form a complete orthonormal basis: 

ioln;l:1) = (n + {3)ln;l:1) , (2.4) 

(n';I:1ln;l:1) = on·.n . (2.5) 

We ask for a realization of the representation D /3 of the 
SL(2,R) Lie algebra in which the vector In;l:1) is realized as 
the nth power of a complex variable UI and i.==.il + ilz is 
realized as a simple multiplication by UI: 

(2.6) 

(2.7) 

A set of constants Pn are introduced since i. has definite 
nontrivial matrix elements. Equation (12.13) leads to a re­
cursion relation for Iln: 

Pn+1 = [(n+l)(n+2{3)]-1t2Pn ' (2.8) 

With the choice Po = 1, we are led to a solution 

[ 
r(2{3) ]1/2 

Iln = n!r(n+2{3) . (2.9) 

Equation (2.4) implies that io is realized according to 

(2.10) 

The form of l = i l - il2 in this realization is obtained using 
Eqs. (12.13) and (2.9): 

(2.11) 

A general vector Ig) in D/3 now determines the function g(UI) 
as follows: 

Ig) = ! gn In;l:1) 
n=O 

-g(UI) = ! gnllnUln. (2.12) 
n=Q 

If Ig) has a finite norm, Le., if (gn j is '2' the behavior of 
Il n for large n ensures that g(UI) is an entire analytic function 
of UI. Thus, D/3 has been realized in a Hilbert space of entire 
functions. The inner product in this realization can be exhib­
ited in the form 

(g'lg) = nto g~*gn = f d 2U1K(UI;I:1)g'*(UI)g(UI). (2.13) 

Here 
d 2U1=du dv (UI = u + iv) , (2.14) 
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and the integration extends over the entire complex UI plane. 
Taking Ig) to be the vector In;l:1) and using Eq. (2.7) along 
with the orthonormality of In;l:1 ), we find that K is a function 
of lUll only and that it obeys the relation 

f" d IUlIK(IUlI;I:1)IUlI2n+1 = (21TP~tl 
= n!r(n +2{3)[21Tr(2{3)]-I. 

(2.15) 

In writing the last line (2.15), we have substituted for Iln from 
Eq. (2.9). A solution for K(IUlI;I:1) exists in terms of the Bessel 
function Kv(x) [see Ref. 4, p. 684, formula (6.561. 16)]. 

K(IUlI;I:1) = 2(1Tr(2{3»-IIUlI 2(3-1 K 2/3-1 (21U11). (2.16) 

We show in Appendix A that this is a unique positive 
solution. 

Let us now view g(UI) as the inner product of the ket Ig) 
with a ket IUI*;I:1) labeled by UI*: 

g(UI) = N/3(IUlI)(UI*;I:1lg) , (2.17) 

where N/3(IUlI) is some real positive function of lUll to be 
adjusted later for proper normalization [cf. Eq. (2.20) be­
low]. The action of i. given in Eq. (2.7) implies that the bras 
(kets) are the eigenstates of i.(l) 

(UI*;I:1li. = UI(UI*;I:1I, llUl;l:1) = UlIUI;I:1) . (2.18) 

Taking Ig) to be InJJ ) and using Eqs. (2.12) and (2.17) we 
find that 

(UI*;I:11 n;l:1) = Iln Uln [N(3 (lUll) ] -I , 

which implies, on taking the Hermitian adjoint of this equa­
tion and substituting for Iln from Eq. (2.9), that (cf. Barut and 
Girardello, Ref. 3). 

IUI;I:1) = [N/3(IUlI)]-1 ! [ r(2{3) ]1I2U1nlnJJ). 
n ~ 0 n!r(n + 2{3) 

(2.19) 

The ket IUI;I:1) is obviously a finite norm vector, and in fact 
we may choose N(3(IUI I) such that IUI;I:1) is normalized. Using 
the orthonormality of In;l:1) we find from Eq. (2.19) that 

(UI;I:1IU1;1:1) = [N/3(IUlI)]-2 ! r(2{3)IUlI
2

n 
n~on!r(n +2{3) 

= [N/3(IUlI) ]-2r (2{3 )IUlI I -2/312/3 _ I (21U11) , 

where Iv (x) is the modified Bessel function. Hence, we take 

N(3(IUlI) = (r (2{3) lUI I I -2/312/3 _ I (21U11) }1/2 . (2.20) 

It may however be noted that the eigenvectors of l are 
not orthogonal. We find that 

(IUI';I:1IU1;1:1) = (N/3(IUI'I)N/3(IUlI)j- 1r(2{3)(UI'*UI)1/2-/3 

XI2fl _1 (2(UI'*UI)1t2). (2.21) 

The use of Eqs. (2.16), (2.17), and (2.20) in the inner 
product expression (2.13) leads to the resolution of the iden­
tity operator in the space of the representations D fl: 

ifl = ~ fd2U112fl_1 (21 U1 I)K2fl _1 (21U11)IUI;I:1)(UI;I:1I·(2.22) 

The SUbscript {3 on i indicates the space wherein this resolu­
tion holds. It is shown in Appendix A that a resolution of the 
identity in the form 
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(2.23) 

is unique as long as we restrict F (w) to be a positive definite 
function. 

B. Bargmann description of f/fl" 

There are two ways in which a similar description of the 
para-Bose representation iiJ a can be constructed. One is to 
use the representation just constructed for Dp and use the 
fact that iiJ a is the direct sum of Dp and Dp +112 [cf. Eq. 
(12.16)]. Alternatively, we may start afresh and require that 
at be realized as multiplication by a complex number z while 
In;a) is realized essentially as the nth power ofz. We follow 
here the first method. 

iiJ a is realized in a space which is the direct sum of two 
spaces carrying Dp and Dp +1/2 : 

iiJ a = Dp !f)Dp +112' a = 2{3. 

In each of the constituent spaces we can set up the eigenvec­
tors of L Equation (12.19) shows that a acts on these states 
as follows: 

alw;/3) = [Np + 112 (Iwl)! Np(lw I) ](2/ a)1/2w Iw;/3 + !) , 
(2.24a) 

alw;/3 + !> = [Np(lw 1)1 Np + 112 (Iw I) ] (2a) 1!2 Iw;/3 ) . 
(2. 24b) 

The state Iw;/3) is orthogonal to the state Iw';/3 + !): 
(w;/3lw';/3 +!> = 0 . (2.25) 

An eigenstate Iz,a) of a with an arbitrary complex number z 
as the eigenvalue 

alz;a) = zlz;a) (2.26) 

can now be constructed as a linear superposition of Iw;/3 ) 
and Iw;/3 + !). We find that the Iz;a) satisfying Eq. (2.26) is 
given by 

Iz;a) = ffa(lzl)[NpGlzI2)1!z2;/3) 

+ Np + I GlzI 2)(zN 2a)IVJ3 +!)] . (2.27) 

The overall real positive factor ffa (Izl) is to be so chosen 
that Iz;a) is properly normalized: 

(z;alz;a) = I . (2.28) 

We therefore write 

and from Eq. (2.20) we find that 

ffa(lzl) = [2a - 1r(a)Yu (lzI 2)]-lI2, (2.30) 

where Y u (z) is the function introduced in paper I [Eq. 
(13.16)], viz., 

Ya(z) =zl-a(Ia_l (z) + Ia(z». (2.31) 

On substituting from Eq. (2.19) into (2.27) we find that 

Iz;a) =ffu(lzl) ! { r(2{3) }112(!z2Y 
"~O n!r(n +2{3) 

X [ I n;/3) + (zI2 1/2)(n + 2{3 t1/21n;/3 + !)]. (2.32) 
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Recalling from paper I [Eq. (1(2.17)] that 

1/;/3) = 12/;a) and 11;/3 + !> = 12/ + I;a) , (2.33) 

we obtain the following expansion for the coherent state 
Iz;a) in terms of the eigenstates I n;a) of the Hamiltonian Ii 
(cf. Ref. 2): 

(2.34) 

Here [K] stands for the integral part of K i.e., the largest 
integer smaller than or equal to K. 

Equation (2.34) gives the coherent states of the para­
Bose representation iiJ a' Several important properties read­
ily follow from here. These states are not mutually orthogo­
nal. The inner product of Iz;a) with IZ';a) is given by 

(z';alz;a) = Ya(z'*z)/{ Ya(lzI2)Ya(lz'12)j 1/2. (2.35) I 

It is interesting to note that the entire function Y(x) also 
appears in the momentum eigenfunction (x;alk;a) Eq. 
(!B. 15)]. 

Finally, we derive the coordinate and momentum re­
presentations of the coherent state. From Eqs. (2.34) and 
(13.10) we find that 

(x;alz;a) = exp( - !X2)lxla -112 (2a -1 Y a (lzI2) j-1/2 

X ! (-1)" r" 
"~O 2nr(n+a) 

X (L ~ -1 (X2) + ;~2(n + a)] L ~(X2), (2.36) 

where L ~ is the associated Laguerre polynomial. On making 
use of the generating function relation [Ref. 4, p. 1038 for­
mula (8.975.3)] 

(xz)-(I12)a e"Ja(2(XZ)1!2) = i {r(n + a + l)j -IL ~(x)z", 
n=O 

(2.37) 

and on simplification, we may rewrite Eq. (2.36) as 

(x;alz;a) = 2(a-l)/2Ixl u -(1I2)exp[ - !(x2 +Z2)] 

X (Ya(lzI 2)j-1/2Yu (\l2xz). (2.38) 

Again, from Eqs. (2.34), (2.37), and (13.13) we obtain on 
simplification 

(k;alz;a) = 21k la-(l/2)exp[ - He +r)] 

X (Ya(lzI 2)j-1/2Y a(\l2ikz). (2.39) 

To set up the representation iiJ a in a Hilbert space of 
entire functions, we must associate with every vector If) an 
entire functionJ(z). This is achieved using coherent states in 
the following manner: 

If)-+f(z) = [2a-lr(a)Ya(lzI2)]1/2(z*;alf) . (2.40) 

In particular, from Eq. (2.34) we find that the vector In;a) is 
realized as 
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In;a)=lr(a»)1!2{[; ]!r([n;1 ]+a)rl/2 

X (zlv2Y . (2.41) 

Further, since the coherent states are the eigenstates of a, or 
equivalently 

(z*;alat = z(z*;al ' (2.42) 

it is evident that at is realized as multiplication by z. In fact, 
this requirement along with the relations [Eqs. (12.20 c,d)] 

at I2n;a) = (2n +2a)1/212n + I;a) , (2.43a) 

a t l2n +1 ;a) = (2n +2)1/212n + 2;a) , (2.43b) 

would lead us directly to the numerical factors present in Eq. 
(2.41). On the other hand, the action of a is different on even 
and odd entire functions of z. From Eqs. (2.41) and 
(12.20 a,b), viz., 

aI2n;a) = (2n)1!212n - I;a) , 

al2n + I;a) = (2n +2a)1!212n;a) , 

(2.44a) 

(2.44b) 

we find that the action of a on an even entire function is 
df(z)ldz whereas its action on an odd entire function is 
[d I dz) + (2a - I )lzV(z). Hence, if we writef(z) as a sum of 
an even part and an odd part 

f(z) = j;.(z) + J-(z) , 

then a is realized by 

A d (a -1/2) (I pA) a--+ - , 
dz z 

where P is the parity operator 

Pf(z) = f( - z) . 

Alternatively, if we expressf(z) as a column vector 

(
'j.(Z») 
I-(z) , 

then at and a are realized by matrix operators 

At (oz) Ai
O 

a -\zo' a d 

dz 

d 2a -I) -+--
dz z 

o 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

In the space !1J a' a vector If) is determined by the 12 
sequence Ifn ) : 

If) = I fn In;a) . (2.50) 
n=O 

Now since !1J a is the direct sum of D{3 and D{3 + (1/2» 
/3 = a/2, the even members U;, ) define a vector lying in the 
subspace carrying the representation D{3' while the odd 
members U;, + I ) determine a vector lying in the compli­
mentary space D {3 + (1/2) . Each of these in tum gives an entire 
function of w via Eq. (2.12) and a similar one with /3 + ! in 
place of /3. Thus, we have 

If)= Ifz,I/;/3)EIl Ifz'+II/;/3+!> 
,~O ,~O 

-iI(w),Jiw) , 

fl(W) = [r(a)] 1/2 I f2' [n!r(n + a)]-1/2w', 
,~O 
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(2.51) 

(2.52) 

f2(W) = [r(a+I)]1/2 Ifz'+1 [n!r(n+a+I)]-1/2w'. 
I~O 

(2.53) 

From Eq. (2.27) and the relations (2.17) and (2.40) we read­
ily find that the pair of entire functions offl andfz are related 
to the single entire functionf(z) by the equation 

f(z) = fl(!Z2) + [Z/(2a)1/2]f2(V) . (2.54) 

Thus'!l andf2 determine the even and the odd parts, respec­
tively, off 

j;.(z) =iI(!Z2) , 

J-(z) = (zl(2a)1!2}fz{!z2) . 

(2.55a) 

(2.55b) 

We can now develop an expression for the inner prod­
uct in the Hilbert space of entire functions of z carrying the 
para-Bose representation!1J a' We begin with 

(f'lf) = J d 2w[K(w;/3}f;(w)*fl(W) 

+ K (w;/3 + !}f; (w )*fz(w)] , (2.56) 

obtained using Eq. (2.13) within D{3 and a similar equation 
with D{3+ (1/2)' K (w;/3) is given by Eq. (2.16). We now make 
the change of variable 

(2.57) 

and also allow for the fact that w covers the complex plane 
twice while z covers it once. Using Eqs. (2.16) and (2.55), we 
then get: 

(f'lf) = (:~~») J d2zlzI2a[Ka_1 (lzI2}f'+ (z)*j;.(z) 

+ K,,(lzI 2}f'_ (z)*J-(z)] 

= 1 Jd2zlzI2"[(Ka_l(IZI2)+Ka(IZI2») 
2mTr(a) 
xf'(z)*f(z) + (Ka -I (lzI2) - Ka(lzI2») 

xf'(z)*f( - z)] . (2.58) 

Substituting forf(z) andf'(z) from Eq. (2.40) and observing 
that If) and If') are arbitrary, we obtain thefollowingresolu­
tion of the identity operator in f!j) a: 

t = _I Jd2zlzI2aYa(IZI2)[IKa_1 (lzl2 + Ka(lz I2») 
21T 

xlz;a)(z;al] + IKa_I(lzI2)-Ka(lzI2») 

X Iz;a) ( - z;al . (2.59) 

The appearance of the "nondiagonal" terms may be unex­
pected, but this formula has the virtue of being valid for all a 
and that the functions appearing in the integrand are all well 
behaved. For a = !, we observe that K I/2(X) = K- 1I2(X) and 
Eq. (2.59) reduces to the diagonal resolution of the identity 
operator 

1112 = ~ J Iz;!) (z;!ld
2
z . (2.60) 

It is interesting to note as shown in Appendix A that a reso­
lution of the identity in the form 

la = J F1(z)lz;a) (z;alld 2Z + J Fz(z)lz;a) ( - z;ald Zz 

(2.61) 

is also unique as long as we require that F ± Fz are positive 
definite functions. 
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It may further be observed that the nondiagonal nature 
of the representation (2.59) disappears if we rewrite it in 
terms of the eigenstates of l = !a2

, viz., Iw;/3 ),lw,P + ~). 
Essentially, this appears in Eq. (2.56). Viewed differently, we 
may define 

1 
Iz ± ,a) = y2 ! Iz;a) ± I-z;a) 1 (2.62) 

(2.63) 

which is essentially a "diagonal" representation. The states 
Iz ± ;a) are orthogonal to each other, but are not properly 
normalized. They are in fact proportional to Iw;/3) and 
Iw;/3 + !> , respectively. 

One may observe that the operator R I introduced in Eq. 
(12.22) has the effect of changing Iz;a) to I - z;a): 

Rllz;a) = I - z;a) , (2.64) 

so that 

c. Diagonal coherent state representation of the 
Identity operator in fj) a 

(2.65) 

We now consider the question whether a diagonal reso­
lution of the identity in terms of the coherent states exists in 
fj) a: 

(2.66) 

On taking the matrix elements of Eq. (2.66) between the 
number states Im;a) and In;a), it is readily seen from the 
orthogonality of these states that X (z;a), if it exists, depends 
on z through Izl only and does not depend on the phase of z. 
We write 

p = !lzl2 (2.67) 

and take X to be a function of p. We also write 

%(p;a) = 22- a1T!r(a)Ya(:2p)l-lx (p;a). (2.68) 

For m = n, we then obtain using Eq. (2.34) the following 
moments of %: 

f"pn%(p;a)dP=!r(a)l-I[; ]!F([ n;1 ]+a), 

= !r(a)l-l/!r(/+a), n=2/, 

= !r(a)l-ll!r(1 + 1 + a), n = 21 +1 
(2.69) 

IfEq. (2.69) has a solution, then Eq. (2.66) is established. It 
follows from the results of Appendix A [uniqueness ofrepre­
sentation (2.59)] that Eq. (2.69) has no solution if %(p;a) 
was restricted to a positive definite function except for the 
case a = !, (when % = 2e -2p). Hence, in Eq. (2.69), we 
have to give up the positivity of %. 

Introducing a new variable a, we may convert the mo­
ment conditions (2.69) into the equation 

IO %(p;a)eipudp= !r(a)j-I 1 {/!r(/+a) (ia)21 
o I~o (2/)! 

I !r (I + 1 + a) } + (ia )21 + I (2 70) 
(21 + I)! ' . 

valid within the radius of convergence of the power series on 
the right hand side, i.e., lal < 2. We rewrite Eq. (2.70) using 
the hypergeometric function 

F(a,b;c;u) = r(c) ~ r(a + I)r(b + I) ul 

r(a)r(b) I~O I!r(c + l) (2.71) 

in the form 

Ie %(p;a)eiPCT dp = h (a;a), (2.72) 

where 
h (a;a) = F(a,!;!; - !if) + iaaF(a + 1,1; ~; - !if). 

(2.73) 
We can now state a precise condition that will deter­

mine, for each a, whether % exists. Equation (2.72) allows 
us to analytically continue the right hand side ofEq. (2.70) 
outside the circle lal = 2. Since the integral on the left hand 
side ofEq. (2.72) runs from 0 to 00, a solution to our problem 
exists if and only if the right-hand side ofEq. (2.73) is free of 
singularities in the upper half of the complex a plane. In 
general, the hypergeometric function (2.71) has a branch 
point at u = 1, with a cut conventionally drawn along the 
real axis from u = 1 to u = 00, and in the cut plane it has no 
singularities. Thus, the function on the right hand side ofEq. 
(2.73) in general has a branch point on the positive imagi­
nary axis at a = 2i, with a cut from a = 2i to a = i 00. (The 
branc point at a = -2i is not relevant to us here.) Let us 
first calculate the discontinuity across the cut. 

We must evaluate the limits of h (a,a) as a approaches a point on the positive imaginary axis beyond 2i from the right and 
from the left half-planes. For this we must use standard continuation formulas to deal with the hypergeometric function 
outside the circle of convergence of its power series definition. For the moment, assume a =11,2,3,.·· . Then the relevant 
formulas are [Ref. 4, p. 1043, formula (9.132.2)] 

F(a,l;!;u) = [1T1/2r(1- a)lr(~ - a)]( - u) - aF(a,a + !;a;1!u) + [2u(1 + all -IF(l, ~;2 - a;1!u) , 

F(a + 1,1; ~ ;u) = ~1T1/2[r( - a)/rq - a)]( - u)-a-1F(a + l,a + !;a + 1;1!u) 

- !(ua)"IF(l,p - a;1!u), larg( - u)1 < 1T. 

We can now calculate the jump of h across its cut. With y a real number greater than 2, we find that 

h (iy - E;a) - h (iy + E;a) = [1T1/2r(1- a)/r(~ - a)](ehra 
- e- i1Ta)(y2/4)-aF(a,a + ~;a; 4/y2) 

_ aY[1T1/2r( _ a)/l2rq - a)J ](ei17{a + I) _ e- i17{a+ 1)( y2/4 ) -a -IF(a + 1,a + !;a + 1; 4/y2) 
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(2.74) 
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(2.75) 

It turns out that this final result is valid even if a = 1,2,3,.·· , though to obtain it in these cases one must use formulas other 
than Eq. (2.74) to perform the analytic continuation. So Eq. (2.75) is valid for all a> 0 (and, of course,y > 2). It follows that for 
all values of a other than !,~,~,. .. , h (u;a) certainly has a branch point at u = 2i, with a nonzero discontinuity across the cut, so 
no solution exists for the moment problem (2.69). Thus, in the para-Bose representation ~ a with a#!,~,~, ... , there is no 
diagonal coherent state resolution of the identity. 

If a = m + ~ with m = 0,1,2,.··, the expression (2.75) vanishes, so h (u;m + !) has no branch point in the upper half u 
plane. We must now check whether it has a pole at u = 2i. As mentioned earlier, it definitely has no singularities anywhere else 
in the upper half u plane. It turns out that we are able to express h in quite elementary form for the set of values of a being 
considered. One has, in fact, the results 

F(m+p;!;u)= -Hr(m+I)/{r(m+!)(l-u)m+I}] f r(n-p~l-u)", 
n =0 n. 

F(m + ~,q;u) = r(m + I) f r(n + D(l- u)" ,m = 0,1,2,. ... 
2r(m +3/2)(1- u)m+ I n=O n! 

(2.76) 

[See, for example, Ref. 5, p. 110, formula (14)]. This leads to the following explicit expression for h: 

h(u;m+!)= -Hm!/r(m+!)](I+!crj-m-1 f r(n-!HI+i(!-n)u](I+!crtlnl, m=0,1,2,.··. (2.77) 
n=O 

For the normal Bose case m = 0, the potential pole at u = 2i due to the factor standing ahead of the sum is killed by the sum 
(actually just one term) and 

h (u;D = (I - !iutl , (2.78) 

so the moment problem has a solution and we get % inverting the Fourier transform in (2.72): 

I J'" {2e - 2p P > 0 %( p;~) = - du exp( - ipu)h (u;!) = ' , 
21T - 00 0, p < 0 . 

(2.79) 

This, when used in Eq. (2.68), leads to the known diagonal resolution of the identity for the normal Bose case: 

A I I 2 
1112 = -; d z/z;!) (z;!/ . (2.80) 

However, for a = ~,~,. .. , i.e., m = 1,2,···,h (u;a) always has a pole, of order m, at u = 2i. Thus, except for the very special case 
a = !, h (u;a) always has a singularity at u = 2i in the upper half-plane, this being either a branch point (a#1,~,···) or a pole 
(a = H,···). We conclude that the moment problem (2.69) has no solution if a#!. 

A quick way to reach this conclusion avoiding an analysis of singularities in the complex u plane is to note that the 
Fourier inverse transform of h (u;a) is explicitly calculable [Ref. 4, p. 853 formulas (7.531.1), (7.531.2)]: 

%'(p;a)- _I_J'" exp( - ipu)h (u;a)du 
21T - 00 

(2.81) 

Thus, if Eq. (2.69) or (2.72) has a solution, it must be given by Eq. (2.81), which should automatically vanish for p < o. This 
happens only when a = !. 

Hence, we find that a diagonal coherent state resolution (2.66) o/the identity operator does not exist, even ifwe allow % to 
be a distribution (as usually defined) in any para-Bose representation ~ a except ~ 112. 

3. PARA-BOSE OPERATOR DESCRIPTION 

We now consider some aspects of the description opera­
tors acting on a space carrying the para-Bose representations 
~ a. We first recall the situation in the familiar a = ! case 
and then consider the problem of generalizing those results. 

In the ~ 1/2 space we can write the coherent state /z;!) 
in the form 
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= e - (l/2)I Z I'e"U'/0;!) . (3.1) 

A fairly large and important class of operators can be de­
scribed by the Weyl representation 

A = I d 2Z F(z)e"U' - z*u , (3.2) 

which is analogous to a Fourier representation with a c-num­
ber weight function F (z). We also have the diagonal coherent 
state representation valid for a certain class of operators 
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(3.3) 

There is close relationship between a particular ordered 
form of A and the various representations of A such asF (z) or 
¢ (Z).6 From the commutation relations of a and at one ob­
tains the operator relations 

(3.4) 

with z,z' any two complex numbers. Such relations when 
used in Eq. (3.2) allow us to express A in normal ordered 
form with dependences on at standing to the left of the de­
pendences on a, or in the antinormal ordered form with the 
dependences on a to the left of the dependences on at. Put­
ting z' = - z* in Eq. (3.4) we find that the normal (antinor­
mal) ordered description involves better (worse) behaved 
weight function relative to that ofWeyl representation. 
Thus, for example, we obtain the following normal and an­
tinormal ordered forms of A from Eq. (3.2): 

(3.5) 

J F(z)e(1/2)l z l'e - z*"eza'd 2Z . (3.6) 

Using the resolution of the identity (2.60), one can immedi­
ately obtain the diagonal coherent state representation A 
from its antinormal ordered form 

1 = ! J F(z')e(I/2)IZ'I'e-z'*alz;!)(z;~lez'a'd2zd2z' 
= J d 2z J d2z'F(z')exp[~lz'12 - z'*z + z'z*J Iz;!)(z;~1 . 

(3.7) 

Thus, we find 

¢ (z) = ~ J d lz'F(z')e(1!2)lz'I' exp(z*z' - zz'*). (3.8) 

Similarly, the normal ordered form of 1 is related to the 
diagonal matrix elements of 1 in the coherent state: 

(z11 Iz) = J d 2z'F(z')e - (l/2)lz'I'exp(z*z' - zz'*) . (3.9) 

It is unfortunately not easy to obtain generalizations of 
these results in the para-Bose representation YJ a for ai+ 
For example, we have seen in Sec. 2 that even the identity 
operator does not have a diagonal coherent state representa­
tion for a#!. Most of the statements we can make about 
operator descriptions in YJ a rest on general arguments and 
not on any explicit calculations. 

From Eqs. (12.20) and (2.34) we obtain the following 
generalizations of Eq. (3.1): 

Iz;a) =JVa(lzl)r(a)2a-IYa(zat)10;a) , (3.10) 

whereffa and Y a are given by Eqs. (2.30) and (2.31), 

respectively. 
We now consider whether we can express an operator in 

normal or antinormal ordered forms for general a. An oper­
ator 1 is clearly determined by the values of its coherent state 
matrix elements 
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(z';a 1..4 Iz;a) (3.11) 

in the sense that if this matrix element vanishes for all z and 
z', then 1 must vanish. Now that bra and ket vectors in­
volved above depend on z and z' such that the function 

(z';a 11 Iz;a) / (z';a Iz;a) (3.12) 

is analytic in z'* and z. This is evident from the relation 
(2.34). We may thus define an analytic function/(z'· ,z), 
which does not depend on z' and z*, as 

/(z'*,z) = (z';aI1 Iz;a)/(z';alz;a) . (3.13) 

Ifin/we set at in place ofz'* and a in place ofz, and always 
keep the former to the left oflatter, we obtain an operator 
;/{atla): in a normal ordered form all of whose coherent state 
matrix elements coincide with those of 1. The two operators 
must then be equal 

(3.14) 

We have used a bar rather than a coma to separate the argu­
ments of/to stress the normal ordered nature of this opera­
tor. Thus, in principle, every operator is expressible as some 
normal ordered function of at and a. It is perhaps important 
to stress that this argument rests on the properties of coher­
ent states and not on a recipe for moving at and a past each 
other. 7 

One can show that any normal ordered operator can be 
rewritten as the sum of two parts in the form 

l(at la): = "g(alat)" +RI"h(aW)," (3.15) 

where R I is defined from the relation 

[a,at ] = I + (2a -1) RI , (3.16) 

and g and h are both antinormal normal ordered and unique­
ly determined by f One reaches this conclusion by working 
with simple monomials and obtaining results such as 

at a21 = a2/at _ 21 a21 ~. I , 
ata2/ -t I = a21 + lat - (21 + l)a21 - (2a - l)R la21 , 

(3.17a) 

(3.17b) 

at2/a = aat21 _ 21at2/ - 1 , (3.17c) 

at21 + I a = aat21 + I _ (21 + I) at2J - (2a -1) R lat21 . 
(3.17d) 

These relations can be established by induction. Using these 
relations, one may verify that the general expression 

can be systematically transformed to finally assume the 
form of the right-hand side ofEq. (3.15). Unfortunately, no 
simple analytical expression can be worked out for general m 
and n; if it were, one could try generalizing Eq. (3.4) fora#! 
(but with R I present in the expressions). Thus, we see that 
any operator has, in addition to the normal ordered form 
(3.14), the possibility of being expressed in the form (3.15), 
which way be called a quasi-antinormal ordered form. This 
result of course neither confirms nor denies the possibility of 
achieving a true antinormal ordered form, which is possible 
if R I itself is expressible in antinormal form. 

Using the structure (3.15) and inserting the resolution 
of identity (2.59) in between a and at and also using the 
obvious result 
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Rllz;a) = I-z;a), (3.18) 

we readily see that every operator A posseses, in principle, a 
representation 

A = f(atla): = J tPl(z,z*)lz;a) (z;ald 2z 

+ J tPiz,z*)lz;a) ( -z;ald 2z. (3.19) 

Here 

and 

tPl(Z,Z*) = F I(lzI 2)g(z,z*) + Filzl 2)h ( - z,z*) , (3.20a) 

tPiz,z*) = Fz(lzIZ)g(z, - z*) + FI(lzIZ)h ( - z, - z*) , 
(3.20b) 

1 
FI(x) = '-xaYa(x)!Ka_l(x) + Ka (x) ! , (3.21a) 

21T 

Fz<x) = _l_xaYa(x)/Ka_l(x)-Ka(x)!. (3.21b) 
21T 

Thus, we find that if we are given g and h we obtain tPl 
and tP2' Conversely, knowing a representation of the type 
(3.19), i.e., tPl andtP2' we may determinegand h. For this, we 
regard tPI' tP2' g, and h as functions of two independent com­
plex variables. We rewrite Eq. (3.20b) by replacing z* with 
-z*: 

tP2(Z, - z*) = Fz< - IzIZ) g(z,z*) 

+ F I( - Izl2)h ( - z,z*) . (3.22) 

We then obtain, from Eqs. (3.20a) and (3.22) the following 
expressions for g and h: 

(z *) _ F I( - IzI2)tPI(Z,z*) - Fz(lzIZ)tPz(z, - z*) 
g,z - FI(lzI2)FI( _ IZI2) _ FZ<lzlz)F2( _ IzIZ) , 

(3.23) 

h ( _ z,z*) = Fz( - IzI
2
)tPI(Z,z*) - FI(lzIZ)tPiz, - z*) . 

Fz(lzIZ)Fz( - IzIZ) - FI(lzIZ)FI( _ IzIZ) 
(3.24) 

Lastly, we discuss the existence of diagonal and discrete 
diagonal coherent state approximations (not representa­
tions) to operators. For definiteness let us restrict ourselves 
to the family of Hilbert-Schmidt (H-S) operators A for 
which 

Tr(A tA) < 00 • (3.25) 

The expression 

(A,B) = Tr(AtB) (3.26) 

serves as an inner product among such operators, making 
them elements of a Hilbert space. Condition (3.25) can be 
expressed in the basis In;a) as 

L L I (m;aIA In;a) IZ < 00 , (3.27) 
m n 

so that these matrix elements of A are surely bounded, and in 
fact go to zero for large values of m and n. Using the argu­
ment used in Ref. 8, it now follows that the diagonal coher­
ent matrix elements of A are separately analytic, in fact en­
tire, in the real and imaginary parts ofz, the eigenvalue of a. 
Thus, using Eq. (2.34), 
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(z;aIAlz;a) =~r(a) f 2- m
-

1 

l.m=O 

X [m!l!r(a + m)r(a + I)]-I/Z 

X {(X - iy)2m(x + iy)2IAzm.21 

(X - ly)2m(x + iyfl + I A 
+ (2a + 2/)112 2m.ZI + I 

(X - iyfm + I(X + iyfl A 
+ (2a + 2m)112 2m + I,ZI 

(X - iy)Zm + I(X + iy)ZI + I } 

+ 2[(a+m)(a+l)]I/Z AZm + 1;ZI+l 
(3.28) 

is the boundary value, for real X and y, of an entire analytic 
function in two complex variable sand 1/, say, defined by the 
replacement x-+S and y-+1/ on the right hand side of Eq. 
(3.28). This allows us to assert that an (H-S) operator A is 
fully determined by its diagonal coherent state matrix ele­
ments since by the principle of uniqueness of analytic 
continuation 

(z;aIA Iz;a) = 0 for all z=}A = 0 . (3.29) 

Using the inner product notation (3.26) we could state this 
result as 

(lz;a)(z;al,A)=O, allz =?A =0. (3.30) 

However, this has the interpretation that in the Hilbert space 
of all H-S operators, "linear combinations" of the (continu­
ous) family of elements Iz;a) (z;a I form a dense set, so that 
any operator A can be approximated arbitrarily closely by 
such linear combinations. We can therefore assert that the 
diagonal coherent state approximation to a given operator A: 

A- J d 2ztp (z)lz;a) (z;al (3.31) 

can be found to arbitrary accurary. 
Actually, it is possible to replace Eq. (3.29) by a much 

more economical one. It is well known that an entire func­
tion vanishes identically if it vanishes on a suitably chosen 
infinite sequence of points in the complex plane. For exam­
ple, a sequence with a finite limit point has this property. In 
general, a set of points in the complex plane with the proper­
ty that the only entire function (out of the class of entire 
functions under discussion) that vanishes on this set is the 
zero function is called a characteristic set. For entire func­
tions in two variables, characteristic sets are defined in the 
product of the complex plane by itself. We can now replace 
Eq. (3.29) by the following one: choose two characteristic 
sets I Xj I, lYk ! in the complex plane, both restricted to the 
real axis. Define the set of points Zjk by 

Zjk = Xj + iYk . (3.32) 
Then 

(zjk;aIA IZjk;a) = 0, all) and ~A = O. (3.33) 
Alternatively, 

(IZjk;a) (zjk;al,A) =0, all) and k =;>A =0. (3.34) 

Thus, such a denumerable sequence of coherent state projec­
tion operators already yields via its linear combinations a 
dense set in the Hilbert space of H-S operators, leading to 
the existence of discrete diagonal coherent state approxima­
tions to a given A: 
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A - L tp,k IZjk;a) (Zjk;a I 
j.k 

to any desired accuracy. 

(3.35) 

4. POSITION-MOMENTUM UNCERTAINTY PRODUCT 

In this section we consider the problem of constructing 
states with a minimum value of the product of the uncertain­
ties in position and momentum variables. It is well known 
that if 

(4.1) 

where A, B, and {; are Hermitian operators, then one has the 
inequality 

«.:1A )2) «.:1B i) >11 ({; W , (4.2) 

where 

«.:1Ai) = «A - (.4 »2) = (.42) - (.4)2, (4.3) 

and the sharp brackets denote the quantum expectation val­
ues in the given state. Relation (4.2) reduces to an equality if 
and only if the given state is an eigenstate of (A + iAB ), 
where A is some real number. Let us now identify A and B as 
the position and momentum variables respectively of the 
para-Bose system 

A A a + at 
A=q=--, 

v'2 
(4.4) 

so that 

[A,B 1 = ;la,at] = i( 1 + (2a -l)Rll , (4.5) 

where [cf. Eq. (12.22)] 

R1In;a) = (-1 tln;a) . (4.6) 

We then find that 

(4.7) 

We may readily verify that relation (4.7) is an equality for the 
para-Bose coherent states (being the eigenstates of the opera­
torq + ift). However, since [a,at ] is in generalnotac - num­
ber, the right-hand side of (4.7) itself depends on the given 
state. Hence, the para-Bose coherent states do not minimize 
the product of the uncertainties in q and p in the absolute 
sense, except for the ordinary Bose case where a = ~. Rela­
tion (4.7) gives the minimum value of the product of the 
uncertainties only in a restricted sense. Consider all those 
states for which H [a,at 1)2 is a given definite number. The 
uncertainty product in any of these states is greater than or 
equal to this number. There is no guarantee that such states 
would include any coherent state. 

In order to determine the minimum value of the uncer­
tainty product, we consider the cases a < !, a = !, and a > ! 
separately. 

Case 1: a <~. The commutator [a,at ] can be expressed 
in the form [cf. Eq. (4.5)] 

t A A [a,a ] = 2aPe +2(1 - a)Po , (4.8) 

where Pe and Po are the projection operators on the even and 
odd number states respectively: 

Pe = f 12n;a) (2n;al ' (4.9a) 
n=O 
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Po = f 12n + l;a)(2n + l;al· (4.9b) 
n=O 

Since fie + Po = 1, we readily find from Eq. (4.8) that 

2(1 - a) -2(1 -2a) Pe = [a,at ] = 2a +2(1 -2a) Po . 
(4.10) 

Further, a < ~ and both Pe and Po are positive definite opera­
tors; we have 

2(1 - a» ([a,at ]) >2a . (4.11) 

From the equalities (4.7) and (4.11) we the obtain 

«.:1q)2) «.:1ft)2) >a2 , (4.12) 

giving us a lower bound to the product of the uncertain ties in 
q and p. In order to search for the states for which this lower 
bound is actually reached, we observe that for such states we 
must have [cf. relations (4.7), (4.11), and (4.12)] 

«.:1q)2) «.:1p)2) = !([a,at]) 2 (4.13) 

and 

(4.14) 

separately. For Eq. (4.13) to hold, the given state must be an 
eigenstate of q + iAft for some real A (in fact A >0, since there 
are no eigenstates of q + iAp for A < 0). Also, from Eqs. 
(4.10) and (4.14) we find that such a state could contain only 
the even number states and hence 

(4.15) 

which follows from the fact that q and ft have nonzero matrix 
elements between the neighboring number states only [cf. 
Eq. (12.20)]. 

We thus conclude that for a <~, the minimum value of 
the product of the uncertainties «.:1q)2) «.:1p)2) is a 2, and 
that this is achieved for the states which are the eigenstates of 
q + iAft with eigenvalue zero. One may readily see that this 
state is given by 

I1/') = { f rea + n) (A -1 )2"} -1/2 
"=0 n! A + 1 

X f {( rea ~ n) )1/2( A-I )"12n;a)} , (4.16) 
"= 0 n. A + I 

which in fact contains only the even number states. 
For such a state, we find thae 

«.:1qf) = Aa , 

«.:1p)2) = a/A. 

We also have, therefore, 

«.:1q)2) + «.:1ft)2) >2a , 

(4.17a) 

(4.17b) 

(4.18) 

with equality holding only if A = 1, i.e., for the ground state 
10;a). 

It is interesting to note that the minimum uncertainty 
state (4.16) may also be written directly as 

I1/') = exp(!log). (at2 - a2)lI0;a), (4.19) 

which follows from the fact that 

e(l/4)logA (a" - a'lae - (1/4)logA (a" - d') = q + iAP, A > 0 , 

(4.20) 

and that 10;a) is an eigenstate of eX with eigenvalue O. 
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Case 2: a = !. This is the familiar case of the ordinary 
Bose oscillator. In this case the commutator [a,at ] is a c­
number, and the situation is very simple and in fact well 
known. The minimum uncertainty product < (..dq)2) «(..dft)2) is 
now i and this is achieved for the eigenstates of the operator 
q + Up, A. > O. Again, here also, we find that 
«(..dqf) + «(..dft)2);;;'1 and the minimum value 1 is reached 
for the coherent states, i.e., the eigenstates of q + ift. 

Case 3: a>!. Consider first the case when !<a< 1. 
From Eq. (4.10), we find in this case that 

([a,at) ;;;.2(1 - a) 

and hence 

«..dq)2) «..dft)2) ;;;'(1 _ a)2 . (4.21) 

It may readily be seen that equality in (4.21) can never hold. 
F or if it does, the given state must be an eigenstate of Ii + Up 
and in addition we must have 

([a,at ] > = 2(1 - a) . 

Equation (4.10) then shows that the minimum uncertainty 
state should contain only the odd number states and such a 
state can never be an eigenstate of q + Uft for any real posi­
tive A.. 

For the case when a;;;' I, we can have states for which 
([a,at ] > = 0; however, such a state can never be an eigen­
state of Ii + iAP so that the product of the uncertainties in q 
and p can never be made to vanish. 

It is believed that when a > !, the lower bound of 
«(..dq)2) «(..dPf) is i, the same as in the ordinary Bose case. 
This conjecture is based on the following observations: 

(I) The coherent states are the eigenstates of q + Up 
with A. = I. For such states we have 

«..dq)2) «..dft)2) = !I (z;al [a,at ] Iz;a) 12. (4.22) 

Further, we find from Eqs. (4.5), (2.64), and (2.35) thae 

• A At • _ fa -1 (lzI2) - fa (lzI2) 
(z,al [a,a ] Iz,a) - 1 + (2a - I) fa -1 (lzI2) + fa(lzI2) , 

(4.23) 

where fa is the modified Bessel functions. Hence, for coher­
ent states we obtain 

«..dq)2) «..dft)2) =HI +(2a-l) 

fa -1 (IZI2) - fa(lzI2) }2 
X . 

fa -1 (IZI2) + fa (lzI2) 
(4.24) 

We show in Appendix B that 

fa -1 (lzI2) > fa (lzI2), a;;;.!, (4.25) 

so that from Eq. (4.24) we find for a;;;.! the inequality 

«..dq)2) «..dft?) >! . (4.26) 

It may be observed that there is no coherent state for 
which the uncertainty product actually takes the value!. 
However, by letting z be very large we may approach this 
value as close as we like. 

(2) Consider any stationary state represented by a den­
sity operator p. This implies that p commutes with the Ha­
miltonian, i.e., p is diagonal in the number representation 
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p = ! Pn In;a) (n;al . 
n=O 

For such a state we find that (q) = (ft) = 0 and 

(q2) = (ft2) = .! Pn(n + a);;;.a, 
n=O 

(4.27) 

(4.28) 

with equality holding only for the ground state (Pn = on.o). 
Hence 

«Aq)2) «..dft)2) ;;;.a2. 

(3) From Eq. (4.10) we find that 

([a,a t ]) =2(I-a)+2(2a-l)( Pe>. 
Thus, if (Pe );;;.! (and a;;;.D, 

([a,at]);;;.l . 

Hence, for all those states for which (Pe );;;.! we find 

(4.29) 

(4.30) 

(4.31) 

«Aq)2) «..dft)2);;;.! . (4.32) 

Also, if (Pe ) <[a - (3/2)]/(2a -1), we have 

([a,a t ])..;; -1, 

and again we find that 

«Aq)2) «..dft)2) ;;;.l (4.33) 

Of course, it is not necessary that the lower bound is actually 
obtained in these cases. Thus, we find that the product of!he 
uncertainties cannot be less than! if either (Pe );;;.! or (Pe ) 

";;[a - (3/2)]/(2a -I). For a very large, it includes almost 
the whole range. 

In Table I below, we summarize the results of this 
section. 

I t is interesting to observe that the ground state 1 O;a) is 
actually an extremum state for the uncertainty product 
«Aq)2) «..dft)2) for all a in the sense that it satisfies 

o! (l/tl(q - (q»21l/t)(l/tI<P - (ft)? 1 l/t) J = 0, (4.34) 

subject to the condition (l/t/l/t) = 1. For a <!, the ground 
state 10;a) is the minimum uncertainty product state as dis­
cussed earlier. For a>! it turns out that 10;a) is actually the 
maximum uncertainty product state. However, this maxi­
mum is only a local maximum, i.e., if we look into neighbor­
hood of the ground state, we get «Aq)2) «..dftf), a maxi­
mum for the ground state. The inequality (4.29) is not a 
contradiction, since any stationary state other than the 
ground state is not in the neighborhood of it. It appears that 
the general solution of Eq. (4.34) for Il/t) is the eigenstate of 
q + Up with eigenvalue 0 [except for the normal Bose case 
a =!, for which the general solution ofEq. (4.34) is any 
eigenstate of q + i..1P]. 

5. CONCLUDING REMARKS 

We have considered energy, position, and momentum 
eigenstates and the Bargmann description of the para-Bose 
system with one degree of freedom. Using the coherent 
states, a resolution of the identity operator containing the 
diagonal and pseudodiagonal term has been obtained. Nor­
mal and antinormal ordering of para-Bose operators has 
been discussed. We also discussed the minimum value of the 
product of the uncertainties in position and momentum var-
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TABLE I. Lower bound of the uncertainty product «..1IW) «..1p)2). 

Restriction 
a on the state 

a<! All states 

a = 1 
2 All states 

a>! Coherent 
states 

(Pe ) )! 
(P

e
)';;; a -3/2 

2a -1 
All a Stationary 

states 
rp,H] = 0 

} 

Lower bound of 
«..14?) «..1p)2) 

1 
4 

>! 

>! 

iables. We have tried to generalize the several known results 
for the normal Bose case (a = D to the para-Bose case (gen­
eral a). We have found significantly different results in the 
general case. 

It is obvious that the coherent states form an overcom­
plete set. For the case a = ~, it has been shownlo that the 
existence of a diagonal coherent state representation is anal­
ogous to the existence of an expansion of a given state in 
terms of coherent states with imaginary eigenvalues, i.e., in 
terms of the states of the form I ix), with x real. This is dem­
onstrated by introducing "super operators" whose action on 
the space consisting of ordinary operators is suitably de­
fined. It will be of interest to see if such a formalism could be 
generalized for the para-Bose system. It is necessary, for this 
purpose, to consider first a para-Bose system with more than 
one degree of freedom. Unfortunately, the algebra for sys­
tems with more than one degree of freedom becomes much 
complicated II especially because even the operators belong­
ing to different modes need not commute. One may then 
naturally ask for the minimum value of the uncertainty 
product «..141)2) «..1P2)2) for the position and momentum 
variables in different modes. It will also be of interest to 
study the Weyl representation for para-Bose systems with 
one or more degrees of freedom. 

APPENDIX A: A MOMENT PROBLEM 

In this Appendix we consider the moment problem 

100 

dx K(x,a)x2n+ 1= n!F(a + n)/(21TT(a)) , (AI) 

and show that if we restrict K (x,a) to be positive, it has a 
unique solution. We further show that this leads to unique 
resolutions of the identity operator in the spaces of the repre­
sentationsD(3 [Eq. (2.23)] and IiJ a [Eq. (2.61)] as long as the 
corresponding weight functions F(w) or F1(z) ± F2(z) are 
restricted to be positive definite. 
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Remarks 

Lower bound is obtained 
for the eigenstate of 4 + i).p, 
with eigenvalue 0 ()')O). 

Lower bound is obtained 
for any eigenstate of 4 + iAp. 
By taking z large, we can 
approach the value! 
as close as we like. 

Lower bound is obtained 
for the ground state 
10;a). 

We set 

1TF (a)K (x,a) = ¢ (t), 

and write Eq. (AI) in the form 

LX> ¢(t)tndt=n!F(a+n). 

A solution of Eq. (A4) is given by 

¢ (t ) = 2t (a - 1)/2 Ka _ I (2t 1/2) , 

(A2) 

(A3) 

(A4) 

(A5) 

where Ka -I is the modified Bessel function of the second 
kind. 12 

Shohat and Tamarkin give a sufficient condition under 
which the moment problem 

(A6) 

is determined [i.e., q;(t) is unique as long as q;(t) is restricted 
to be positive]. This condition is (Ref. 13, theorem 1.11, p. 
20) that the series 

I #n- I/(2n) (A7) 
n = 1 

is divergent. In the present case the moment problem (A4) is 
determined, i.e., has a unique positive definite solution (A5), 
if the series 

I [n!r(a + n)] -1/(2n) (AS) 
n = 1 

is divergent. It is readily seen that the nth term of this series 
for large n behaves as n- 1 and hence the series is in fact diver­
gent. This establishes the required result. 

Consider the resolution (2.23) of the identity operator 
in the space of the representation D (3: 

(A9) 
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One may readily show using Eq. (2.19) and comparing Eq. 
(A9) with the relation 

! In;l3) (n;l3/ = Ip). (AW) 
n=O 

That F(w) must be a function of Iwl only and that it must 
satisfy the moment condition f" P [F( Iwl){ I2P _ d2lwlll-llwl2P - I llwl 2n 

+ I d Iwl 

n!r(a + n) (All) 
21T 

Since I 2P _ I > 0 for P > 0, we conclude that as long as F (w) is 
positive, it is given by 

F(lwi) = 2. /213 _ 1 (2Iwj)K2I~_1 (2Iwl). (AI2) 
1T 

Finally, we consider the resolution ofthe identity oper-
ator in the space of the representation g; a: 

t = J {F,(z)lz)(zl + Fz(z)lz) ( -zlld 2z. (AI3) 

Again using Eq. (2.34) and comparing Eq. (AI3) with the 
relation 

ia = ! In;a) (n;al , (A 14) 
n=O 

one may readily show that both FI ± F2 must be functions of 
Izl2 only. This implies FI and F2 must also separately be 
functions of Izlz only. Further, one finds that 

1"" {F1(lz lz) + Fz(lzll)J {Ya (lz/ Z)j- l lzI 4n +Id Izl 

= 1T- 122n + a -2n!r(n + a) (AI5) 

and 

i= {F,(lzl l ) - Fz(lzIZ) I {Y a (Izll) J -'lz\4n + 3d \Z\ 
= 1T-'22n + a -'n!r(n + a +1). (AI6) 

Setting Izlz = lx, Eqs. (AI5) and (AI6) may be written in 
the form 

i= {FI(lx) + Fl(lx)} IxYa (lx)J-'x2n + Idx 

= 1T-12a -2n!r(n + a), 

fO (FI(lx) - Filx)} {.'Y u(2x)J-'x2n + 'dx 

= 1T- 12a -2n!r(n + a +1 ). 

(AI7) 

(A1S) 

Since Y a (2x) is always positive for a > 0, we conclude that 
as long as FI ± Fl are positive they are uniquely determined. 
The resolution of the identity operator (2.59) is unique under 
this restriction. 

APPENDIX 8: PROOF OF THE INEQUALITY 
la _,(z» la (z) 

In this Appendix we show that for a;>! and z;>O, we 
have the inequality 

Ia_l (z»Ia(z) , (Bl) 

where Ia (z) is the modified Bessel function 

Ia(z) = (~)a ! (z/2)2n . 
2 n=on!r(n+a+l) 

(B2) 
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Define a functionf(z,a) as 

f(z,a) = I a _ 1 (z) - Ia(z). (B3) 

From Eqs. (B2) and (B3) we find that 

= ( /2)2n + a - , 

f(z,a) = L z [n + a - z/2]. (B4) 
n=O n!r(n+a+l) 

Each term on the right-hand side of Eq. (B4) is positive for 
a > z/2. Hence, it follows that 

f(z,a) > 0, for O.;;;z.;;;2a. (B5) 

Further, for large values ofz, we know the asymptotic nature 
of IaCz): 

Ia (z)- (21Tztl!l e[ 1 - ~ (a2 - !) J 

so that 

f(z,a)-(S1Tz3t I/2e(2a - I) . 

(B6) 

(B7) 

Hence, it also follows that for some large and positive num­
ber M, and 2a> I, 

f(z,a) >0, z>M. (BS) 

Further, we also know thatf(z,a) is an analytic function of z 
for z > O. Hence, from Eqs. (B5) and (BS), it follows that if 
f(z,a) was negative for somez, such thatza <z <M, then it 
must have a minimum at some point where its value is nega­
tive. Thus,f(z,a) can be negative for 2a <z <M only iff or 
some z = zo, we have the following three conditions satisfied: 

d d 2 

f(zo,a) <0, - f(zo,a) = 0, and ~ f(zo,a) > 0. (B9) 
dz dz 

Now IaCz) satisfies the differential equation l2 

[z2 ~ + z ~ - (z2 + aZ
) ]Ia(Z) = 0, 

dz2 dz 

from which it follows that for all z, 

d Z d z2 -Z f(z,a) + z - f(z,a) - (z2 + aZ)f(z,a) 
dz dz 

+ (2a -1)Ia _1 (z) = 0. (BiO) 

Sincel4Ia -I (z) > 0 for z> 0 and a >~, Eq. (BiO) atz = Zo is 
obviously in contradiction with Eq. (B9). Hence,f(z,a) can­
not take any negative value. This established the inequality 
(4.25) of the text, viz., 

Ia _ 1 (z) > Ia (z), z;>O,a;>!. (B 11) 
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We derive new Ermakov systems with velocity-dependent potentials. The extended Ermakov 
system presented contains all known one-dimensional cases and many new systems. These 
Ermakov systems lead to a nonlinear superposition law for the solutions. 

PACS numbers: 03.65.Db 

I. INTRODUCTION 

In earlier work I we have applied Noether's theorem to 
the Lagrangian 

(1.1) 

where G; and F; are initially arbitrary functions of their ar­
guments. The following results are obtained by applying 
Noether's theorem to this Lagrangian: 

G G 2m-2 
i = OjX' , (1.2) 

F; = Fo; P - 2m;, (1.3) 

where Go;, Foi' and m; are arbitrary constants. Here x is an 
auxiliary function, associated with the time part of the 
Noether symmetry transformation, and satisfying the 
equation 

x + u/(t ~ = Klx3
, (1.4) 

where K is an arbitrary constant. The equation of motion for 
p takes the form 

(1.5) 

and the Noether invariant the form 

I=~[(XP-PX)2+K(~)2 + ~ ~; (;Ym;] , (1.6) 

where Cj = - 2mjGojFoj. The invariant lis constant ifp is 
any solution to (1.5) and x is any solution to (1.4). For the 
details of the calculation we refer to Ref. 1. The idea for that 
calculation arose from the work ofLutzky2 who obtained the 
above results for C j = O. These calculations represent an in­
teresting application of Noether's theorem. For arbitrary G; 
and Fj the Lagrangian (1.1) does not allow a Noether sym­
metry transformation. Noether's theorem applied to this La­
grangian forces Gj and F; to have the above forms so that the 
Lagrangian will allow a Noether symmetry. 

Previous to arriving at the above results we had intro­
duced3 more general Ermakov systems containing the above 
Ermakov systems as special cases. The equation of motion 
for these more general Ermakov systems has the form 

ji + 0)2(t)p =f(xlp)/(p2X ), (1.7) 

wherefis an arbitrary function. The auxiliary equation and 
invariant have the form 

(1.8) 

where g is also an arbitrary function. lis constant ifp satisfies 
(1.7) and x satisfies (1.8). We refer to (1.7) and (1.8) as an 
Ermakov pair of equations and to (1.9) as the Ermakov invar­
iant associated with this pair. It is clear that the Ermakov 
system (1.5), (1.4), and (1.6) is a special case of the more gen­
eral Ermakov system (1.7), (1.8), and (1.9). 

An important property of Ermakov type systems such 
as (1.7), (1.8), and (1.9) is that they imply a general nonlinear 
superposition law relating the solutions to the Ermakov pair 
of equations. The nonlinear superposition law can be derived 
by using the new dependent variable r = pix and indepen­
dent variable dT = dt Ix2

• In terms of these quantities the 
invariant I has the form 

1= V2 + vIr), (1.10) 

where the prime implies differentiation with respect to T and 
vIr) is defined by 

I
r Il/r 

vIr) = g(7]) d7] + f(7]) d7]. (1.11) 

For obvious reasons we refer to I as the energy and vIr) the 
potential energy of the Ermakov system. The energy integral 
(1.10) can be integrated to obtain 

1 I dr 
T + C = '\12 (I _ v(r))112 ' (1.12) 

where C is an arbitrary constant of integration. Equation 
( 1.12) is the key equation for the existence of a nonlinear 
superposition law for the Ermakov pair. Suppose we choose 
a particular solution to (1.8), say, x, then the general solution 
to the p equation (1. 7) can be written 

p = x{ I dt Ix2 + C, I), (1.13) 

where r is obtained by solving (1.12). Equation (1.13) is the 
general solution to (1.7), the integration constants being I 
and c. Thus, the nonlinear superposition law (1.13) gives the 
general solution to (1.7) in terms of a particular solution to 
(1.8). Examples of the use of this nonlinear superposition law 
can be found in Refs. 4 and 5 and an example of a more 
general nonlinear superposition law of the same general type 
is in Ref. 6. For the present purposes it is sufficient to note 
that the implicit nonlinear superposition law (1.13) can be­
come explicit, that is, constructive for certain choices off 
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and g. It, therefore, represents a practical method of con­
structing solutions of the p equation in terms of solutions to 
the x equation. Also such nonlinear superposition laws have 
utility in numerical analysis, where the accurate determina­
tion of particular solutions yields the general solution 
through the nonlinear superposition law.7 

The purpose of the present paper is to derive more gen­
eral Ermakov systems involving velocity-dependent poten­
tials and forces. We shall employ Noether's theorem to ob­
tain new Ermakov systems and then generalize these systems 
in the same way that the more general Ermakov system (1.7), 
(1.8), and (1.9) can be obtained by generalizing the Noether 
theorem results (1.4), (1.5), and (1.6). In Sec. II we start from 
the Lagrangian 

L = ~(p2 _ m2(t )p2) + P(p,p,t), (1.14) 

containing a velocity-dependent potential and give the 
Noether theorem results for this Lagrangian. In Sec. III we 
generalize these results to more general Ermakov systems. 
In Sec. IV we discuss various examples of these more general 
Ermakov systems. Finally in Sec. V we shall give our conclu­
sions along with suggestions for further work. 

The inclusion oflinear friction in Ermakov systems can 
be obtained by a change in the independent variable as ex­
plained in Ref. 4, hence, without loss of generality we can 
consider only the friction-free equations. 

II. NOETHER'S THEOREM INVARIANTS 

The Lagrangian under investigation is the time-depen­
dent harmonic oscillator with the velocity-dependent 
potential 

L = !(p2 _ m2(t )p2) + P(p,p,t). (2.1) 

We use the formulation of Noether's theorem as given by 
Lutzky.2 A symmetry transformation for a system is de­
scribed by the group operator 

x = S(p,t )(alat) + 1/(p,t )(alap). (2.2) 

If X is a symmetry transformation then the following combi­
nation of terms must be a total time derivative of a function 
I(p,t), i.e., 

S aL + 1/ aL + (if - pt) a~ + tL =j (2.3) 
at ap ap 

If (2.3) is satisfied then the Noether invariant is 

(2.4) 

The details of the calculation involve solving Eq. (2.3), which 
is an identity inp,p, for 1/,J, S, andP. Since the details of this 
type of calculation have been given in Ref. 1 and 2 we only 
give the results for the Lagrangian (2.1). In the following 
calculation we assume that Pis as general as possible subject 
to the requirement that Noether's theorem produces explicit 
invariants. 

The terms proportional to ,03 in (2.3) imply S depends 
only on t. The ,02 terms give 1/ as 

1/ = !t p + tf!(t ), (2.5) 

where t/l(t ) is an arbitrary function of time. 
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The ,0 terms then yield I 
1= Jj p2 + if, P + X(t), (2.6) 

where X is an arbitrary function of time. Here we have 
assumedP (p, p,t) is general enough so that the terms in (2.3) 
involving Pare not proportional top,p2, andp3. If this is not 
the case then the above results will be modified in a way that 
depends on the explicit form of P. Thep2 terms in (2.3) now 
yield the equation 

f+ 4m2t + 4mwS = 0 (2.7) 

which can be integrated to the form 

x + m2(t)x = Klx3
, S = x 2

, (2.8) 

where K is an arbitrary integration constant. The p terms of 
(2.3) yield 

if, + m2(t)t/l = O. (2.9) 

In obtaining these last two results (2.8) and (2.9) we have 
assumed that the terms involving P in (2.3) do not contain 
t~rms proportional to p and p2. Next from (2.3) we obtain 
X = 0 which implies that we may choose X = O. Finally then 
(2.3) takes the form 

SP, + (!t p + t/l)P p + (~t p - !tp + if,)P p + tP = O. 
(2.10) 

From this point it is not possible to progress further in the 
solution without some restrictions on the form of the poten­
tial P, that is, the Lagrangian cannot allow a Noether sym­
metry for arbitrary P. This same type of result occured in 
Ref. 8, where the potential initially having the form F (p,t ) is 
forced by Noether'stheorem tohavetheformG(t )F(k (t )p), 
where the functions G (t ), k (t ) follow from Noether's theo­
rem. For the present case Noether's theorem implies P has 
the form 

P = G(t )F(q(t )p,k(t)p + h (t ),0), (2.11) 

where G, q, k, and h are to be determined. In the following we 
denote the derivative of Fwith respect to its first argument as 
F, and the derivative with respect to its second argument as 
F2• We now deduce the explicit forms for G, q, k, and h from 
Noether's theorem. Using the form (2.11), Eq. (2.10) takes 
the form 

S(GF + GF,iJ p + GF2(Rp + hp) + (!t p + t/l) 
X (GF,q + GF2k) + (!t p - !tp + if,)GF2h + tGF = O. 

(2.12) 

Next the coefficients of F, F" F2, pF" pF2' and pFz must 
separately vanish in order for Fto remain arbitrary. ThepF2 
terms yield 

(2.13a) 

or 

h = c,x, (2.13b) 

where S = x 2 and c, is an arbitrary integration constant. The 
pF2 terms yield 

Sk + ! tk + ! th = 0, 

which integrates, after using (2.13b) to 

k = c2/x - cli, 
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where C2 is another integration constant. ThepF) terms yield 

54 + ! tq = 0, (2.15a) 

or 

q = c3/x, (2.15b) 

where C3 is another integration constant. The F) terms yield 

t/J=o, 
and the F terms 

G= l/x2
• 

(2.16) 

(2.17) 

Summarizing the results of the calculation we have obtained 
the function P as 

P= F(c3 P/x,C2P/x + c)(xp - pi)l/x2, (2.18) 

where F is an arbitrary function of its arguments and the 
constants c)' c2, and C3 are arbitrary constants. Since the 
function F is an arbitrary function of its arguments we lose 
no generality in taking C3 = 1, c2 = 0, c) = 1 in which case P 
has the form 

P = F( pix, x P - pi)/X2, (2.19) 

where F is still an arbitrary function. The Lagrangian takes 
the form 

L = !(p2 _ w2(t )p2) +F(p/x, xp - pi)/X2. (2.20) 

For convenience in writing the formulas let 

r= pix, 

W=xp- pi. 

(2.21) 

(2.22) 

The utility of using these variables has been emphasized by 
Lutzky.9 Here r is the ratio variable that was introduced in 
our earlier discussion of nonlinear superposition and W is 
defined the same as the Wronskian for linear equations. It is 
important to note, however, that Wis not constant in gener­
al.We note the following important relation between these 
two new variables: 

x 2 dr = W. 
dt ' 

and if we introduce the new independent variable 
d-r = dt /X2, we obtain 

r' = dr = W. 
dt ' 

which was used in our earlier discussion of nonlinear 
superposition. 

(2.23) 

(2.24) 

In terms of these new variables the results of this section 
can be summarized as follows: The velocity-dependent La­
grangian which allows a Noether symmetry has the form 

(2.25) 

the equation of motion associated with this Lagrangian is 

.. 2() 1 aF W a2F W a2F p+w t p- -- + --- + --- =0, 
x 3 ar x 3 awar x aw2 

where x satisfies the auxiliary equation 

i + w 2(t )x = K/X3 

and the Noether invariant is 
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(2.26) 

(2.27) 

1 2 I aF 
I=-W +-Kr-F+ W-. 

2 2 aw 
(2.28) 

Note that in the equation of motion (2.26) the term W con­
tains p and i since 

W=xp- pi. (2.29) 

We could use this result to make the p dependence explicit, 
however, we prefer to do this after we have derived the gen­
eralized Ermakov system in the next section. 

In the special case aF law = ° these results reduce to 
the Ermakov system 

.. 2() 1 aF 1 f(P) p+wtp=--=- -, 
x3 ar p2x x 

(2.30) 

i + w2(t )x = K/X3 (2.31) 

which we have previously derived from Noether's theorem.8 

As a final point in this section, we return to the idea of a 
nonlinear superposition law between the p and x equations 
(2.26) and (2.27). Using the new independent variable 
d-r = dt /x2 and (2.24) we obtain 

1 1 aF 
1= _r,2 + -Kr - F(r,r') + r' - , (2.32) 

2 2 ar' 
which still leads to the nonlinear superposition law 

p = x{ f dt /x2 + c,I ). (2.33) 

if we can solve (2.32) for r', integrate and then solve for 
r = rlJdt /x2 + c,I). Even if this cannot be done explicitly it 
might still be useful for numerical solutions of the p equa­
tion.7 The fact that the nonlinear superposition law (2.33) 
can become explicit has been mentioned earlier and is dis­
cussed in Refs. 4, 5, and 6. 

III. ERMAKOV GENERALIZATIONS 

In this section we discuss the equation of motion (2.26) 
derived in the last section 

p + w2(t)p 

1 aF W a2F W a2F 
- x3 a; + x3 araW + ~ aw2 = 0, (3.1) 

where x satisfies the auxiliary equation 

i + w2(t )x = K/X3
• (3.2) 

Now in the Ermakov derivation of the invariant for (3.1) and 
(3.2) we eliminate w2(t ) between these equations, multiply by 
Wand notice that the resulting equation implies that the 
quantity 

(3.3) 

is constant. After performing this latter calculation we are in 
a position to generalize these results by generalizing the aux­
iliary equation from (3.2) to 

i + w2(t)x 

_ J.- aG + W a
2
G _ W a

2
G = ° 

p3 af p3 afaW p aw2 ' 
(3.4) 

where G = G (f,W) is an arbitrary function and 

John R. Ray and James l. Reid 93 



                                                                                                                                    

f = x/ p = r- I
. Elimination of w2(t ) and multiplication by 

W leads to the Ermakov invariant 

1=J.-W2_F+ WaF -G+ waG (3.5) 
2 aw aw 

for the pair (3.1) and (3.4). Equations (3.1), (3.4), and (3.5) 
represent an extended Ermakov system of a fairly general 
form. 

As another genralization of the form of the extended 
Ermakov pair (3.1) and (3.4) we may replace the first terms in 
these equations by m( W) p and m( W)X, where m is an arbi­
trary function. The Ermakov invariant then takes the form 
of (3.5) except that the first term is replaced by 

fW 1Jm(1J) d1J. (3.6) 

The Ermakov invariant (3.5) corresponds to the choice 
m = 1. It is not yet clear whether or not this type of term can 
be introduced using Noether's theorem applied to a different 
Lagrangian than employed in this paper. The addition of the 
term m( W) to the Ermakov system is also discussed in Ref. 6. 

Through the change in independent variable dt /x2 the 
invariant (3.5) is converted into a function ofr, r' and there­
fore we have the same implicit nonlinear superposition law 
connecting (3.1) and (3.4) as discussed in the previous sec­
tion. This is still true if we add the function m just discussed. 

IV. EXAMPLES 

The extended Ermakov system (3.1), (3.4~and (3.5) con­
tains all previous Ermakov systems as special cases and 
many new Ermakov systems. It is the first example of an 
Ermakov system with velocity-dependent forces except for 
the special case discussed in Ref. 6. 

As a first example suppose neither For G depend on W: 

aF -0 aG_ O aw - , aw - . (4.1) 

The Ermakov pair (3.1) and (3.4) then become 

.. 2() 1 dF P + w t P - - - = 0, 
x 3 dr 

(4.2) 

(4.3) 

which isjust our original Ermakov system3 if we define/and 
gas 

1 1 dF 
-/(x/p) = --, (4.4) 
p2 x2 dr 

J.- g( pix) = J.- dG . (4.5) 
x2 p2 df 

As pointed out previously the Ermakov pair (3.1) and 
(3.4) containp and x in the Wterms. When this dependence 
is made explicit, the equations take on a different and some­
times startling form. For instance, if we assume that F and G 
depend only on Wthen the Ermakov pair (3.1) and (3.4) 
become 

.. 2() W d 2
F p+w t p+ --- =0, 

x dW 2 
(4.6) 
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.. 2()x W d 2
G x+w t - --- =0. 

P dW 2 
(4.7) 

Using (2.29) and solving the resulting equations for p and x 
one finds 

p + w2(t ) P = 0, 

x + w2(t)x = 0, 

(4.8) 

(4.9) 

that is, the Ermakov pair for (4.6) and (4.7) are equivalent to 
two uncoupled time-dependent harmonic oscillators. For 
this case W = const and the F and G terms in the Ermakov 
invariant (3.5) are superfluous. 

As another example we consider the partially coupled 
system 

F= - r - W 2/2 + 1/(6W2), 

G=O. 

The Ermakov pair take the form 

p + w 2(t)p + x 5;.4 = 0, 

X + w 2(t )x = 0, 

and the Ermakov invariant is 

1= r - 1/(2W2). 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

If we use the new independent variable dr = dt /x2 then 
(4.14) can be written 

1= r - 1/(2r'2). (4.15) 

Solving (4.15) for r' and integrating we easily derive the non­
linear superposition law between (4.12) and (4.13) 

p =x tl + 32/3(X~1 1/2/WO + eXt 3/2)2/3/2, (4.16) 

where x 1 and X 2 are solutions to the linear auxiliary equation 
(4.13) with Wronskian Wo andp is the general solution to 
(4.12), I and e being the arbitrary integration constants. This 
same example was discussed in Ref. 6, where it arose by 
introducing the function m( W) in the original Ermakov sys­
tem (1.7), (1.8), and (1.9). 

We shall let these examples serve to illustrate the ex­
tended Ermakov system (3.1), (3.4), and (3.5). 

V. CONCLUSIONS 

In this paper we have started from the Lagrangian for 
the time-dependent harmonic oscillator with a velocity-de­
pendent potential 

L = ~!I? - w2(t )p2) + P(p,p,t). (5.1) 

Applying Noether's theorem to this Lagrangian we deter­
mine the form of the function P so that L admits a Noether 
symmetry. The result we are led to is that P has the form 

P=F(p/x,xp- p.i)/x2=F(r,W)/x2. (5.2) 

The resulting equations of motion and invariants, have a 
simpler form in terms of the variables rand W, as empha­
sized by Lutzky.9 The Ermakov equations of motion and 
invariant are 

p + w2(t)p 

_ J.- aF + W a
2
F + W ~F = 0, 

x 3 ar x 3 araw x aw2 (5.3) 
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x + lil(t ~ = K/X\ 

and 

1 2 1 aF 
I=-W +-Kr-F+ W-. 

2 2 'aw 

(5.4) 

(5.5) 

In this N oether's theorem approach to Ermakov systems the 
auxiliary equation (5.4) is uncoupled from thep equation. 
This will always be true for Lagrangians of the type under 
investigation since Noether's theorem leads to 

(5.6) 

In Sec. III we found that the Ermakov type derivation 
of the invariant by elimination of lii between the pair leads to 
an immediate "symmetric" generalization of auxiliary equa­
tion from (5.4) to 

x + ())2(t ~ 

_ ~aG + W ~G 
p3 af p3 afaW (5.7) 

The Ermakov invariant now becomes 

I=~W2-(F+G)+ W~(F+G). (5.8) 
2 aw 

This extended Ermakov system (5.3), (5.7), and (5.8) contains 
all previous Ermakov systems as special cases and many new 
Ermakov systems. It is the first example of an Ermakov sys­
tem with velocity-dependent forces except for the special 
case discussed in Ref. 6. 

Apart from their intrinsic interest, Ermakov systems 
deserve study for two main reasons. The first is that the have 
proven useful in solving time-dependent quantum problems. 
As an example we mention Ref. 10 and the references con­
tained therein. Here one finds the eigenfunctions of the 
quantum mechanical operator associated with Ermakov in­
variants used to construct the wave functions of the Schro­
dinger equation in exact closed form. Also one finds the 
Feynman propagator expressed in terms of the eigenfunc­
tions of the Ermakov invariant. One key reason that Erma­
kov invariants are useful in describing quantum systems is 
that one of the pair of variables p, x becomes a q-number 
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while the other remains a c-number. The Ermakov invariant 
thus becomes an exact quantum mechanical invariant. Spe­
cial cases of the Ermakov invariants discussed in this paper 
could prove useful in quantum treatment of physical sys­
tems. The second practical application of Ermakov systems 
is the existence of a nonlinear superposition law relating the 
solutions of the Ermakov pair. A key point in the nonlinear 
superposition law is the form the Ermakov invariant takes in 
terms of rand r'. We are left, in principle, with only one 
integral to perform before the superposition law becomes 
explicit. We have presented a simple example of the use of 
the nonlinear superposition law for the extended Ermakov 
system in Sec. IV. 

Although it may be "beyond our fondest dreams"l1 to 
hope for a nonlinear superposition law of universal validity, 
Ermakov systems represent an important subset of nonlin­
ear equations for which one always has a nonlinear superpo­
sition law. In cases where this law becomes explicit it is of 
practical value and furnishes the general solution. As a final 
point we mention that nonlinear superposition laws obtain 
for Ermakov systems associated with systems of several de­
grees of freedom. 12.13 
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The free electron network model of a metal is reformulated in terms of restricted random walks' 
this allows direct calculation of the propagator. The reformulation gives more freedom in the ' 
choice of boundary conditions and is suitable for the investigation of topologically disordered 
networks. 

PACS numbers: 03.65.Db, 02.40.Pc, 71.25.Cx, 61.50. - f 

INTRODUCTION 

The quantum network model has had a long history (at 
least since 1936 1

) and has been revived periOdically, mainly, 
in the opinion of the author, for the following three reasons: 
it is intuitive, versatile, and can be solved without perturba­
tion theory. The network model was originally formulated 
for the investigation of conjugated molecules (see for exam­
ple Plate) and was extended to crystals by Coulson. 3 In the 
free electron model of a crystal the electron moves as a free 
particle along wires of a network which is fitted to the crystal 
lattice. Despite the apparent naivety of a model where wires 
represent bonds and nodes atoms the resulting spectrum 
compares favorably with those obtained from tight binding 
and linear combinations of atomic orbitals models. 

The model can be made more realistic by putting poten­
tials on the lines so that each node lies in the center of a 
we11. 4

.
5 In addition to the investigation of bulk crystalline 

properties, the model has been used to investigate surface 
properties,6 and localization in disordered systems. 7 

The present revival is a reformulation of the lattice net­
work model in terms of restricted random walks. The net­
work model is unusual in quantum mechanics because the 
system is multiply connected. In a multiply connected sys­
tem there is no unique self-adjoint extension of the Hamil­
tonian. 8 The extension proposed by Griffeth,9 explained in 
Sec. I, is only one of many. 

Dowker 10 describes how to do quantum mechanics sys­
tematically on a multiply connected space. Quantum me­
chanics is first considered on the covering space; mechanics 
on the base space is then described by summing over those 
points identified under the covering. To see just what points 
are identified by the covering requires a study of homotopic 
paths in the base space. This is explained in Sec. 2 by means 
of a simple example. This example will act as a model for the 
reformulation of the lattice network and occurs as a special 
case of the final result. 

The reformulation of the lattice network model is ex­
plained in Sec. 3; the covering space of the network is identi­
fied as a Cayley tree. It is shown how to calculate the Green 
function for an electron on a Cayley tree. The Green func-

"'My thanks are due to N. H. March for drawing my attention to this model 
and to J. T. Devreese whose encouragement made this work possible. The 
work was performed in the framework of the project ESIS (Electronic 
Structure in Solids) ofthe Universities of Antwerpen and Liege, Belgium. 
The title paraphrases a paper by Nash-Williams. '7 

tion for an electron on the lattice is then given directly as a 
sum over restricted Polya walks, the distinct homotopic 
paths. The reformulation makes quantitative the critical role 
of the topology (which manifests itself in terms of closed 
loops) in the success of the network model (c.r. Budgorll). 

The calculation of the number of restricted walks is de­
scribed in Sec. 4. As an example of the calculation of a Green 
function, the average density of states per unit cell of the 
lattice network is calculated with the machinary developed. 
The modifications to the spectrum which a limited class of 
extensions of the boundary conditions allows, is examined. 

The reformulation of the model is shown to be suitable 
for the investigation of topological disorder in Sec. 5. Pre­
vious authors 7 who use the network model to study localiza­
tion in disordered systems consider a completely disordered 
network, and because Bloch's theorem is no longer available 
to them, resort to statistical arguments. They compare the 
motion of an electron with the trajectories of particles in a 
perfect gas and by neglecting closed circuits (the lattice 
forms a Cayley tree) derive a Boltzman equation for the sys­
tem. By way of contrast, the present investigation calculates 
the exact Green function for a Cayley tree. The Green func­
tion for the lattice is found by summing this over all closed 
circuits. 
1. The nonessential self-adjointness of the network 
model 

The formulation of the quantum network model of a 
lattice3 is as follows: Consider a lattice in which lattice sites 
are connected to nearest neighbors by wires (line segments) 
which represent bonds. (Pictorial representations will al­
ways depict the square lattice, Fig. 1.) An electron is allowed 
to move along the wires. Let iEl index the line segments each 
of which is considered a closed interval O,;;x i .;;bi of the real 
line. The Hilbert space for quantum mechanics is 
EB iEIL 2(0,b i ). In the free electron model the wave functions 
tPi on each segment satisfy the free particle Schrodinger 

FIG. 1. Portion of a square lattice with a nontrivial loop indicated 
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equation 

H;¢; = - J 2¢;lJx; = iJ¢;lJt, 

so that the Hamiltonian H = (l:l ;EI H; , where the domain 

D (H;) = I ¢;EL 2(0,b;):J2¢;lJx;EL 2(0,b;)1 . 

If 1 ¢>; 1 ;EI and [¢; 1;E1 are two sets of wave functions in 
the domain of H, the Hamiltonian differs from being sym­
metric by 

L [ - ¢> rJ¢;lJx; + J¢> rIJx;¢; ]~i. (1.2) 
iEl 

The Hamiltonian will be symmetric if the domain is further 
restricted to wave functions with zero boundary conditions. 
The Hamiltonian, however, is not self-adjoint as the domain 
of H * is larger than that of H (there is no restriction on the 
boundary values). Any extension of the domain of H which 
gives a self-adjoint operator is called a self-adjoint extension. 
If there is a unique self-adjoint extension the operator is said 
to be essentially self-adjoint. 

The extension proposed by Griffeth9 is the following: 
(i) The wave function ¢ should be single valued and 

continuous at a node. For the next condition a slight change 
of notation is convenient. Let pEP label the sites and 
O';;;x .;;;b label a point on a line segment joining site p to pq pq 

one of its nearest neighbors q. 
(ii) With condition (i) satisfied the current will be con­

served at each node p if and only if 

n·nq 

where the sum is over all nearest neighbors q to p. 
(iii) For quantum mechanics on a lattice network, Coul­

son3 supplements these two conditions by Bloch's theorem 

¢(r + R) = exp(ik.R)¢(r) , 

where R is a lattice vector. (The notation has been changed 
again for the concise statement of this condition: ¢ is as­
sumed defined over all Euclidian d dimensional space, rER d, 

but takes only nonzero values on the line segments.) 
An operator defined on a multiply connected space is 

not essentially self-adjoint.8 A space M, is said to be simply 
connected if all loops (continuous paths with initial and final 
points the same) can be continuously deformed into one 
another. 12 

In particular, they can be deformed into the constant 
loop whose image is one point. If this cannot be done the 
space is said to be multiply connected. (As can be seen from 
Fig. 1, the loop depicted cannot be shrunk to a point without 
breaking it.) When a space is multiply connected there is the 
possibility of multivalued wave functions. The boundary 
conditions described above are thus not unique, in particular 
the first condition of Griffeth, and in fact it will be shown 
that there are countably infinitely many one-parameter 
extensions. 

2. QUANTUM MECHANICS ON A BENZENE RING 

To exemplify some ofthe statements in Sec. 1, quantum 
mechanics on the most elementary nonsimply connected 
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network will be examined. This consists of a ring of wire (unit 
radius) with a single node on it. Other nodes can be added 
without affecting the arguments, and so this model could be 
considered to describe a benzene ring. 

In a multiply connected space the classes ofloops which 
can be deformed into one another are called homotopy 
classes. For the ring or circle, S I, these correspond to classes 
of paths which wind around the circle continuously in one 
direction a specific number of times. It is intuitively clear 
that two loops which wind around the ring a different num­
ber of times cannot be deformed into one another. 

In general two loops can be composed to give a third by 
traversing the first loop and then the second. It can be shown 
that this gives rise to a group structure in the homotopy 
classes called the fundamental group which is denoted 
1T1{M). For the circle 1TI{S I) = Z, the additive integers, isjust 
the winding number; it is clear that the composition of two 
loops results in the addition of the winding numbers. (Loops 
which wind around the circle anticlockwise correspond to, 
say, positive integers; those which wind around the circle 
clockwise correspond to negative integers; those which can 
be deformed into the constant loop correspond to zero. 

The circle or one sphere S 1 is closely related to the real 
line R, locally they are indistinguishable. The relation is giv­
en by rolling the circle without slipping along the real line so 
that it prints out copies of itself. Analytically this relation is 
given by the projection xER -+S 1 3 exp(ix) so that points 
which are related by a 21T translation x-+x + 21Tn, nEZ, are 
projected onto the same point in S I. The circle can be 
thought of as the real line modulo 21T; that is S 1 is the quo­
tient of R by the group Z, of translations by multiples of 21T; 
this is denoted S 1 = R IZ. It is no coincidence that the trans­
lation group is isomorphic to fundamental group (there is 
one point in R above each point in S 1 for each element of the 
fundamental group) so thatS 1 = R 11T1(S I). The realline and 
the circle look locally the same, the difference between them 
is global; R is simply connected so that 1T ,(R ) = 0 consists of 
only the identity element. The real line is the universal cover­
ing space of the circle. 

The above is true in general; for each multiply connect­
ed space M there is a universal covering space M which is 
locally like Mbut which is simply connected. For each point 
in M there is one inverse image in M for each element of the 
fundamental group. The fundamental group 1T1(M) acts like 
a translation group on M and M 11T1(M) = M. (Note in the 
example 1T 1(M) is commutative, but this is not true in 
general.) 

The systematic description of quantum mechanics on a 
multiply connected space is given in terms of quantum me­
chanics on its universal covering space. 10 Let ¢(x) be a wave 
function on M. This will define a multivalued wave function 
on Mby ¢(rx), rE1T,(M). For physical reasons, since rx and 
x describe the same point, ¢(rx) must represent the same 
probability density: 

¢(rx) = exp(ia(r»¢(x). 

It is easy to see that the phase factors must form an abelian 
representation of 1T ,CM). If K M(X,x';t) is the propagator on 
M, the propagator on M is given by 
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KM(x,x';t) = I exp(ia(r»KM(rX,x';t). (2.1) 
J'E7r,(M) 

Rather than finding the propagator on the circle, the 
prescription (2.1) will be used to find the Green function, the 
time-energy Fourier transform or the propagator. The pre­
scription will be the same because the Fourier transform is 
linear. The Green function on the covering space R, the real 
line, of a free electron is 

GR(x,x';E) = - ~( - E)- 1/2exp( - ( - E)I/2lx - x/I), 

for E> O. (Positive energies are given by analytic 
continuation. ) 

Since the phase factors form a representation of Z, the 
group of integers, a(n) = an, where a is an arbitrary real 
constant. Then 

Gs,(x,x';E) = -1(-E)-1/2_ 1(-E)-1/2! exp(ian) 
n=1 

Xexp( - (- E)1/2(21Tn + Ix - x/I)J 

-!(_E)-,/2! exp(-ian) 
n=l 

xexp( -(_E)'/2(21Tn-lx-x/lll 

for Ix - x/ I < 21T. It is written in this rather long way for later 
consideration so that it appears as a sum over nonhomotopic 
paths on the base space S I. Every time the electron passes 
through the node in an anticlockwise(clockwise] direction it 
picks up a factor exp(ia)[exp( - ia)]. The spectrum of the 
system is given by the singularities of 

Gs' (x,x;E) = -!( - E )-1/2 sinh(21T( - E )112)1 

(cosh(21T( _E)112} -cosaJ, 

which has poles at COS(21TE 112) = cosa for E> O. 
The situation of quantum mechanics of a point particle 

on a unit circle is the same as a particle on a line segment of 
length 21T. Symmetry of the Hamiltonian, - a 2lax2, re­
quires that 

rP ·at/Jlaxl~7r - arP ·laxt/JI~7r = 0 

for two wave functions rP and t/J in its domain. This will be 
true if the wave functions have zero boundary conditions, 
but the Hamiltonian is not then self-adjoint. If the wave 
functions satisfy the extended boundary conditions 
¢(x) = exp(ia)¢(x + 21T), where a corresponds to the pa­
rameter introduced above, the Hamiltonian will then be self­
adjoint. The presence of the parameter affects the spectrum 
of the system. A physical interpretation of this is the Ahar­
onov-Bohm effect,S where the splitting of degenerate states 
(a = 0) is due to a magnetic field. 

3. REFORMULATION OF THE NETWORK MODEL 

In order to incorporate some of the above freedom in 
the network model it will be formulated as a problem on a 
multiply connected space and evaluated as a sum over non­
homotopic paths. The covering space of the lattice network 
is obtained by eliminating all closed loops. Locally the lattice 
and its cover look the same. It is clear that the covering space 
of a lattice is an infinite or Cayley tree. 

The propagator on a Cayley tree is obtained as follows. 
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FIG. 2. Portions of the covering space of the square lattice in Fig. I. 

Suppose at time t = 0 the electron can be located at a par­
ticular point 0 on one of the line segments of the tree. The 
electron wave function on this line segment for time t> 0 is 
the free particle propagator 

t/J = (41Tit )-1/2exp(iy2/4t) , 

where distance y is measured from the initial point O. The 
electron diffuses outward from this initial point. At a node 
the wave function is required to vary continuously, but the 
current divides equally down the remaining q - 1 branches 
(q the number of nearest neighbors). The wave function t/J 
and (q - 1 tlat/JI ax evaluated at the node act as initial condi­
tions for the wave function in the next q - 1 segments. These 
are Griffeth's boundary conditions but in this new situation 
the network, an infinite tree, is simply connected. The same 
procedure occurs at the next node and so on. 

As with the example in Sec. 2, rather than deal with the 
propagator, the Green function will be calculated between 
two poin ts 0 and P a distance x and x/ from a node as indicat­
ed by Fig. 2. In the initial line segment the Green function is 

_!( _ E)- 112exp( _ (_ E)tI2Iyl)· 

(Again the energy is taken to be negative. Positive energies 
are obtained by analytic continuation.) In each segment the 
Green function satisfies 

- ati;lax; = EGi , 

the general solution to which, written in what will prove to 
be a convenient form, is 

(exp( - (i)x;),exP«(i)x;)GJ ' 

where (i) = (- E)1/2, A; and B; arbitrary constants. The 
boundary values of G;, (q - 1 tlaG; / ax; are initial condi­
tions for the next segment. The relationship between coeffi­
cients in consecutive segments is given by 

where bi is the length of the segment and Z (b) is the matrix 

!(q _ 1)-1 (qexp( - (i)b) (q - 2)eXP«(i)b») . 
(q - 2)exp( - (i)b) qexp«(i)b) 

Thus the Green function between two points 0 and P repre­
sented in Fig. 2 which are separated by N nodes is given by 

GT(P,O; E) = (exp( - (i)x'),exp((i)x')) 

XZ(bN _ 1 )Z(bN _ 2) .... • .. Z(b t ) 

XZ(X)( 01(i))-t 
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The fundamental group of a general network is the free 
group, one generator for each closed loop. The free group on 
n generators is formed as follows. Take n symbols aj, .... ,an 

called the alphabet, and supplement these with the symbols 
a j- ,a2- ..... an- ande. The set S of words is formed by arrang­
ing any number of these 2n + 1 symbols in any order with 
repetition included. The composition of two words is given 
by juxtaposition. The inverse of a word is obtained by revers­
ing the order of the symbols with the replacement 
aj~j~ ,e--+e. An equivalence relation on the set of words is 
defined by 

ee-aj- aj -ajaj- -e , 

eaj -aj,eaj- -aj- . 

The class of words form a group Fn , the free group on n 
generators. For n > 1 the group is not commutative. If a fin­
ite network has N nodes and L line segments, the Euler 
Characteristic of the network X is defined as N - L. The 
Euler Characteristic of a tree is 1 but in general X < 1. The 
fundamental group of a network is the free group on 1 - X 
generators. By building up a lattice from a finite network 
step by step, it is seen that the number of generators for the 
lattice network is infinite. The representation of the funda­
mental group of interest is abelian and so will also be a repre­
sentation of Z Z (countable infinite product of the integers), 
the abelianised fundamental group. Thus the Hamiltonian 
on the lattice admits a countable infinity of one-parameter 
extensions. 

The Green function on the lattice G L is given in terms of 
the Green function on the infinite tree by 

GL(x,x';E) = L exp(ia(y»Gr(yx,x';E). (3.2) 
ye1T,(L) 

Because of the complexity of the sum, it is difficult (if not 
impossible) to do in complete generality. To begin with the 
prescription for performing the sum for the identity repre­
sentation, a(y) = 0 for all y, will be given; some special non­
trivial representations will be considered in the next section. 

As with the example in Sec. 2, the sum will be over 
nonhomotopic paths between two given end points. In order 
to do the sum, the lattice will be divided into cells. A point on 
the lattice is associated with its nearest node. The points 
associated with each node constitute a cell. (Points on the cell 
boundary are equidistant from two nodes but these points 
only form a set of measure zero.) A point in a cell can then be 
labelled by a triple I,X,x, where I labels the node, X the direc­
tion of the bond on which the point lies, and x the distance 
along the bond from the node (Fig. 3). The homotopic paths 

_1- r- -J -
I ! I 

I I 
-t-

FIG. 3. Decomposition of the lattice into cells 
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FIG. 4. The homotopic restriction imposed on Polya walks. 

implied in the sum (3.2) can then be considered as Polya 
walks between two lattice cells I and 1'. The walks are not 
completely random but are restricted. A walk such as in Fig. 
4 is not allowed because it is contractible. The homotopic 
representative of this walk is shown in Fig. 1. The walks are 
thus restricted in that immediate reversals are not allowed. 

The contribution from a n-step walk will depend on the 
initial and final directions. Let M ~F (I) be the number of re­
stricted walks from the origin 0 to a site I with initial step in 
the F direction and final step in the L direction. (The direc­
tions F and L specify the position of nearest neighbor sites to 
the origin.) There will be four distinct contributions to the 
Green function which are tabulated in Table I. The contribu­
tion of the O-step walk is - ~liJ - j 

4.RESTRICTED WALKS ON A LATTICE AND EXTENDED 
BOUNDARY CONDITIONS 

To calculate the Green function in the identity repre­
sentation, it remains to calculate the number of restricted 
walks on a lattice. The probability distribution of such walks 
was calculated by Domb and Fisher,13 but for the sake of 
completeness a direct derivation of the number of restricted 
walks using the approach of Montroll will be given. 

Consider a d dimensional regular lattice in which the 
lattice sites are labelled by integers 1 = (ll, ... ,ld)' then 

M~+IF(I)= L M~F(I-L), (4.1) 
n.nX,.cL 

where the sum is over nearest neighbor sites (n.n). Defining 

MnF(I) = L M~F(I), 
n.nL 

the number of walks starting at the origin (all directions) and 
finishing in a direction F at site I, and iterating (4.1) gives: 

M~ + IF(I) = MnF(I- L) - Mn -IF(l) + M; -IF(l)· 

(4.2) 

Define the generating function 

M~(I,z) = .! M~F(I)zn 
n=l 
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TABLE I. Breakdown of contributions to the Green function. 

L F Multiplicity 

7"X 7" -X' I X M~,,(/' -l)] 
/1-//1. r 

7"X -x' I M!;F ,I' II 

/1-/11' T 
, 

X 7" -x' I M!;F Ii' II 

/I·IlLI- X' 

X -x' M" 
X' II II 

X 

by introducing a parameter z. Multiplying (4.2) by z n + I and 
summing from n = 2 to infinity, the generating functions are 
related by 

(1 - z2)M}(I,z) = z2M~F(I) + zM~F(I) + zMF(i- L,z) 

- zZMIF(1 - L) - zZMF(I,z) . (4.3) 

Define the Fourier transform 

H}(4)>,z) = I exp(i4».l)M}(4»,z) 
alii 

and H F(4)>,z) correspondingly, with the sum over all sites I; 
this can be inverted 

M}(I,z) = (21T) - d f~ IT ddtP Hh4»,z)exp( - i4».l). 

Multiplying (4.3) by exp(i4».I) and summing over all I with 
M~F(I) = DI,FDL,F and M~F(I) = DI.L + F(1 - DF. _ L) gives 

(1 - zZ)H } (4)>,z) = z exp(i4».F)DL,F - ZZDF, _ L 

+ (z exp(i4».L) -~) H F(4)>,z). 

Summing L over nearest neighbors 

H F (4)>,z) = (zexp(i4».F) - zZ)I(l - zA + (q _1)zZ) 

with 

,.1,= 2:MI(I)exp(i4».l) = I exp(i4».X) 
alii n.nX 

the characteristic function of the lattice. Substitution of this 
result finally gives 

H ~(4)>,z) = (1 - z2t l [zexp(i4»·F}t5L,F - ZZDF. - L 
+ (zexp(i4».F) - zZ)(zexp(i4».L) - ZZ)j 

(l-zA+(q-l)zZ)J. 

To calculate the Green function, Sec. 3, it is clear that 
what is required is the generating function of the walks 
M } (I,z) with z replaced by the matrix Z (b). The length of 
each bond will be taken to be the same. An example of such a 
calculation is the average density of states per unit cell: 

l
b/2 

Imq-I1T -1 I !b- I dxGL(O,X,x;O,X,x;E+), 
n.nX 0 
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Contribution 

(exp( - wx'), exp(wx'))Z "(b)Z (xi( -l~ ') 

(exp( - w(b - x'),exp(w(b _ x')))Z" '(b)Z (x{-l~ ') 
(exp( - wx'),exp(wx'))Z n - '(b )Z (b _ xf l~ ') 

(exp( - w(b - x')).exp(w(b - x')))Z" '(b)Z (b - x{l~ ') 

which the above prescription gives as 

......,Im1T- 1(217') - d f~ IT d dtP [sinh((wb )I wqcosh(wb ) - A ) 

- (q - 2)12wsinh(wb) + (q - 2)12qbwzJ (4.4) 

withw = ( - E +)I/z. Only the first term of the integrand has 
a nonzero imaginary part and since 1,.1, 1 <q the cut is along the 
positive real axis and the density of states per unit cell is 

- (21T) - dw-Isinh(wb) f~ IT d dtPD(qcosh(wb ) - A ) . 

The condition qcos(E 1/2b) = A is the genalization of the dis­
persion relation given by Coulson3 for specific examples. In 
the special case of a linear chain, d = 1, q = 2 and 
MI(l) = (j/l + (jl _I the density of states reduces to that ofa 
free particie: ~E ~l/z,E>O. 

The general expression (4.4) even applies to the example 
of a circle (Sec. 2) with q = 2, and Ml (I) = 2(jI.o any dimen­
sion. The extended boundary conditions for the circle can be 
achieved by replacing MI(I) by exp(ia)(jl.o + exp( - ia)DI.o 
(A = 2 is replaced by cosa). Mn (I) is then not the restricted 
number of walks, but a sum of phase factors picked up at 
each bond on a restricted walk. This suggests the following 
generalization to the lattice network. Associate with each 
nearest neighbor bond X a phase ax. Bonds in opposite di­
rections are given phases of opposite sign a _ x = - ax. 
The summation of phase factors then goes through as for the 
number of restricted walks above, but with the result that A 
is replaced by ~nnX exp(i4».X)exp(iax ), which is real. 

For the simple cubic lattice A becomes 
2~7 ~ I COS(tPi + a i ), but the phases a i can be removed by a 
change of origin in the tP integration. However, for the body­
centered cubic lattice three of the phases can be eliminated 
by a choice of origin 

A = 4COS(tPl + tP2)C0stP3 +4cOS(tPl - tPz)COS(tP3 + a), 

leaving one arbitrary phase. Similarly for a face-centered cu­
bic lattice three phases may be eliminated leaving three arbi­
trary phases. These correspond to more general boundary 
conditions than those proposed by Griffeth9 but as is clear 
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from Sec. 3 they are far from being the most general. The 
increased freedom could perhaps represent a physical situa­
tion in which interstitial sites possess a magnetic moment. 

5. APPLICATION TO TOPOLOGICALLY DISORDERED 
NETWORKS 

In his conclusion Coulson3 attributes the similarity be­
tween the network model and other models to the large ex­
tent which the geometry plays in determining the spectrum. 
Budgorll attributes the similarity to the homological struc­
ture of the network model. The present formulation in terms 
of restricted random walks derives the spectrum directly 
from the homotopic structure. 

The expression for the density of states (4.4) 

- Im1T- I(21T) - d f~" d d¢W -Isinh(wb )/(qcosh(wb ) - A ) 

can be rewritten 

- Im1T- Iq-Iw -Itanh(wb) ! (q cosh(wb )) - nNn (0) , 
n=O 

where Nn (0) = (217) - d S"- "d d¢A n (5.1) 

is the number of unrestricted returning Polya walks on a 
lattice. This form may be compared with the density of states 
in a tight binding model with overlap V. 

Im1T- I ! IV /(E - Eo) ) nNn (0) , 
n=O 

where Eo determines the center of the band. This leads to the 
direct comparison V ~ - 2/ qb 2 as noted by Coulson. 3 

The above argument shows that the only lattice depen­
dence of the spectrum is now on the number of unrestricted 
returning Polya walks. Even if a nonregular lattice is chosen, 
such as graphite,3 using a method similar to Thorpe, 14 block 
diagonalizing the connectivity matrix, the number of return­
ing walks on a graphite layer can be found from the eigenval­
ues of the reduced matrix 

(0°. ~) where 0 = 1 +2cos(t,6I)exp( it,62)' 

A rotation of the t,6 coordinates puts the number of returning 
walks in the form 

N 2n (0) = (21T) - 2 J~" d 2t,6 (3 +2costPl +2COstP2 

+ 2cos(t,61 - t,62W , 

N2n + I (0) = ° . 
Substituting this into the expression (5.1) gives the density of 
states obtained by Coulson.3 

In a paper by Ringwood 15 it was argued that the asymp­
totic form of the number of returning walks for any three­
dimensional network is 

Nn(O) = qn(An-3/2 + B ( - gYf(n» , 
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where A, Band g are positive constants 

0.22<g<l; n-1/2<!(n)<n-3/2 n-oo. 

The density of states produced by the asymptotic form of the 
number of returning walks 

- Im1T-Iq-Iw-Itanh(wb) 

X lim ! (cosh(wb» - n(An-3/2 + B ( - gYn - v) 
N-+oo N= n 

gives the position and the behavior of the band edges. The 
function/(n) has been chosen for simplicity to be n - v. More 
complicated functions can, however, be handled. 16 Using an 
integral transform and summing the geometric series in its 
domain of convergence, the asymptotic form of the density 
of states is the discontinuity across the cut of 

- 1T- Iq-Iw -Itanh(wb) lim (ch(wb)) - N 
N-oo 

xloo 

dylA (Iny)1I2/r(3/2lYN(y - sech(wb)) 

+ B (lnyr - 1/ r (vlYN (y + gsech(wb ))} . 

This function has a sequence of overlapping cuts on the posi­
tive real E axis. The asymptotic density of states is 

tan(~ E b 1I u(sec(~ E b) - l)A 

Xln1l2(sec(~E b)/r(3/2) 

+ u( - gsec(~E b) - I)B 

XlnV-I(gsec(~E b )/r(v))/qvE, 

where (J" is the Heaviside function. 
Topological disorder can only affect the parameter g 

and functionf(n) (a completely random walk takes the lower 
limits) and so gaps cannot be created in the network model 
by topological disorder. This finding can be contrasted with 
the result for the Weaire model. 15 
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This paper presents a general expression for the WKB approximation to the propagator 
corresponding to an arbitrary Hamiltonian operator H. For example, if the correspondence rule 
used to pass from the classical Hamiltonian He to H is such that it associates aP;Qj 
+ (1 - a)Q.ip; to p;qj, then the formula gives 

where Kyy = (211Hi) - nl2 (detM)1/2exp(iSelli) is Van Vleck's well-known formula, Sc being the 
action functional evaluated at the classical path (q e ,p e) and M ij = - J2 SJ oq a ;oq /. More 
generally, the formula presented here applies to any system with n degrees of freedom described 
byafunction/(x,t ) whose time evolution is given by (H(x,ko lox,t) + ko lot )/(x,t) = O,regardless 
of the form of H. The Schrooinger equation of quantum mechanics and the Fokker-Planck 
equation of diffusion are obvious examples. Many examples are discussed. This generalizes results 
obtained in a previous publication [J. Math. Phys. 18,786-90 (1977)]. 

PACS numbers: 03.65.Db, 03.65.Ge, 03.65.Sq 

I. INTRODUCTION (v) Sc(qb,tb,qa,ta) 

The propose of this paper is to obtain a general expres­
sion for the WKB approximation to the propagator corre­
sponding to an arbitrary Hamiltonian operator. In an earlier 
publication 1 we determined a range of validity of Van 
Vleck's well-known formula, 2 which was known not to be 
universally valid. 3 The approximation derived here, general­
izing Van Vleck's formula, is also valid beyond quantum­
mechanical applications, as it applies to any system de­
scribed by a function/(x,t ) whose time evolution is dictated 
by 

= f)Pc;(t )tj~(t) - Hc(qc(t ),Pc(t ),t)] dt (4) 

[H(x,ko lox,t ) + ko lot ]f(x,t ) = 0, (1 ) 

such as the Fokker-Planck equation for diffusion processes. 

II. THE GENERAL WKB APPROXIMATION FORMULAS 

We operate in n dimensions and summation over re­
peated indices is implied. The following theorem summa­
rizes our findings: 

Theorem: Let 
(i) H(Q,P,t ) be an arbitrary Hamiltonian operator (the 

lack of constraints imply that it could be non-Hermitian, 
time-dependent, nonquadratic in P, etc.). 

(ii) He (q,p,t )=H(Q-rl}, P~p, Ii = 0) be its classical 
counterpart. 

(iii) The correspondence rule used to pass from He to H 
be such that it makes the following associations: 

!(q)-/(Q), /(p)-/(P), (2) 

p;qj-aP;Qj + (1 - a)Qjp; for a given a. (3) 

[Note that (2) and (3) do not imply Hermiticity ofH, even if 

a=n· 
(iv) [qc (t ),Pc (t)] be the classical solution, solving Hamil-

ton's equations for Hc such thatqc(ta) = qa andqc(tb) = qb' 

be the classical action (T=[ta,tb ], also T=tb - tal· 
(vi) Mij(qb,tb,qa,ta)= - 02SJoq~oq~ (5) 

be the Van Vleck-Morette matrix, with determinant 
detM. 

(vii) K (qb,tb,qa,ta) be the propagator corresponding to 
H, defined by 

[H(Q,P,tb) - iii.!...... ] K = 0, (6) 
atb 

(7) 

where Q is represented by qb and P by - ilia /Oqb· 
(viii) KWKB (qb,tb,qa ,ta) be the WKB approximation to 

the propagator, defined by: 

K W~B [H(Q,P,tb) - ilia/otb ]KWKB = o (1i2), (8) 

limt.~t"KWKB = O(qb - qa). (9) 

Then the WKB approximation is given by 

WWKB =Kyyexp[(~-a)f" a2~c (qc(t),Pc(t),t)dt], (10) l aqap; 

where Kyy is Van Vleck's formula: 

Kyy = (211Hi)-n12(detM)1/2exp(iSJIi). (11) 

(The case where det M = 0 is not examined here). 
More generally, the WKB approximation is given by 

KWKB = Aoexp(iSJIi), (12) 

where 

(13) 

(ii) KO(qb ',tb,qa ',ta) is the propagator corresponding to 
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the Hamiltonian operator 

Ho=~.ij(t)Uij + Vdt)Vij + k/(t)W~, 
(iii) 

.. azHe I azHe I 
g'J(t)==-a a q=q,jt) , };j(t)= !] i!] j q=q..(t) ' 

'Pi 'Pj uquq 
P=P,(t) p=p,(t) 

. azHe I k't =--
I () aqiap q = qAt)' 

J p=p.J.t) 

(14) 

(15) 

(iv) The correspondence rule used to pass from He to H 
is such that it makes the following associations: 

(16) 

III. PROOF OF THE GENERAL WKB APPROXIMATION 
FORMULAS 

Let us begin by giving a simple example illustrating the 
fact that the Van Vleck formulaKyy in (11) is not always 
equal to the WKB approximation KWKB • Let H be an opera-

tor such that Kyy = KWKB ' The operator 

H'=F - I(Q)HF(Q) 

has the same He (and hence the same Kyy ) as H. Yet its 
WKB approximation is not Kyy but 

(17) 

K~KB =F(qa)F -1(qb)Kyy, (17a) 

as can be verified by direct substitution. 
We now prove the theorem. Formula (10) will be proved 

by generalizing the proof given in Ref. 1. The more general 
formula (12) will be proved by generalizing the method used 
in Ref. 4, which involves path integrals. It is presented sepa­
rately because it is more on the heuristic side. 

Proof of first formula: In Ref. I, where we investigated 
the range of validity of Van Vleck's formula, we assumed 
that the WKB approximation was of the form: 

KWKB = a(Ii)Cexp(iB /Ii), (18) 

where C and B are real functions of qb' tb, qa' and ta, inde­
pendent of Ii, and found that 

KwiB (H-ili a~ \YWKB =B+F(O)Hc(B',qb,tb)+Ii[-i C - (~Hc(P,qb,tb)) (F'(O) + i...F(O)) 
br

L 

C apiaqb p=B' 2 

iF(O)C; (aHc ) . F(O) ., ( azHc )] { [ a2 
- C ~(P,qb,tb) . -z-2- Bij ~(P,qb,lb) +1i2 -V(O)-i-j 

'P, p=B 'P, 'PJ p=B' aqbaqb 

c a c~ az c' 2 
- F(O) _' -. - F(O) ~ -IF(O)B ~~ --- F(O) _k B ~~ ~ _ V(O)B ~~B" _a _ 

2C aqt 2C IJ aPkaq: 2C IJ aPk IJ ks aPkaps 

-~F(O)B;k - + -£'(0)-.-. +iF'(O)_i -. + ~F'(O)B;~-- +!F'''(O)_a-
a i az C' a' a2 

2 ] 

aPk 2 aq~aq/, c aq/, 2 ~ aPkaq: aq~aqi 

x a aza . Hc(P,qb,tb )} + o (1j3), (19) 
'P, 'PJ p=B' 

whereB ;==a2B /aq~aqi, etc., and Fis Cohen's Ffunction,5 establishing the correspondence between Hand 
He by 

H = (21rll)-2ni4ndP dq du dv F(u,v)He(q,p,t )exp[(i/Ii)[(q - Q)·u + (p - P).v] J. (20) 

F effects the generating-function correspondence 

F(u,v)exp[( - i/Ii)(Qu + Pv)] 

~xp[( - i/li)(qu + pv)], (21) 

and a set of F's effecting a given correspondence He~H 
can be found by solving6 

F (u,v) i,,,dP dq He (q,p,t )ei(qu + pvll" 

= (21rllnr(ei(Qu + PVII"H). (22) 

This equation for F, to be understood in the sense of distribu­
tion theory, mayor may not have a solution, and the solution 
mayor may not be unique if it exists. 

In Ref. I, Fwas assumed to be a function of u·v/Ii only, 
and this requirement is maintained here, as u·v/Ii is the only 
dimensionless quantity one can form with u, v, and Ii, and it 
is assumed here that H contains no constants (other 
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I 
than Ii) that do not appear in He' It can be shown 7 that the 
fact F depends on the combination u·v/Ii implies that the 
operator H corresponding to pmqN in one dimension is a lin­
ear combination of all the possible ordered arrangements of 
P m times and Q n times (true "factor ordering"). Thus, no 
true divisors are allowed in Cohen's scheme,8 an important 
restriction since the Laplacian in curved spaces contains true 
divisors. We shall return to this point later. 

In Ref. 1, Fwas also assumed to be real9 so as to insure 
the Hermiticity of H. This requirement is dropped here. 
Therefore, equating both the real and the imaginary parts of 
the constant term and the term proportional to Ii to 0 in (19) 
yields the following four equations to be satisfied by Band C: 

He qb' - ,tb Re[F(O)] + - = 0, ( 
aB ) aB 
aqb alb 

He (qb' aB ,tb)Im[F(O)] = 0, 
aqb 

Maurice M. Mizrahi 
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=0, (25) 

=0, 
(26) 

where the third equation was rewritten in a more compact 
form. 

First, let us translate the conditions (2) and (3) on H into 
conditions on F. These are: 

F(O) = 1, Re[F'(O)] = 0, Im[F'(O)] = a -!. (27) 

[Indeed, (2) readily results from (21) withF(O) = 1. Ifwe dif­
ferentiate (21) with respect to v, then set v = 0, then do the 
same with u, we obtain 

pq+-------+F (O)(QP + PQ)l2 - fzF '(0), (28) 

which yields the two conditions on F'(O).] 
It is, in fact, possible to drop the requirement that the 

correspondence be given by an Ffunction, so that the results 
are valid for any H satisfying (2) and (3). This will be seen 
when we treat the more general formula (12). 

Let us now solve (23)-(26) for Band C. Since F(O) = 1, 
(23) and (24) are recognized as being one of the Hamilton­
Jacobi equations, yielding B = Sc' Note that since (23) and 
(24) stem from equating only the constant term to 0 in (19), an 
approximation to zeroth order in fz yields B = Sc and no 
information on C other than the fact that it must be such that 
the boundary condition (9) is satisfied (this is not sufficient to 
fix C). 

To solve (25), we note that ifIm[F'(O)] = 0 (a = !) then 
C 2 = detM, since the (continuity) equation satisfied by the 
Van Vleck-Morette determinant is precisely 

a [ . ] a -. q{(tb)detM + - [detM] = 0. 
aqf, atb 

(29) 

This leads us to write 

C 2 = NdetM, (30) 

which, when substituted in (25) and using Im[F'(O)] = a - ! 
yields the equation for N (qb ,tb ,qa ,ta): 

aN .j() aN -a +qc tb aJ th qb 

a2
H ( t) I +N(2a-l) eQ'P'b ~ 
aq'api q~qh 

p~p,·(t.1 

=0, 

with N-+l as tb-+ta and qb-+qa' if Kyy -+l5(qb - qa) as 
tb-+ta' 

(31) 

The search for a solution of(31) is facilitated by the 
observation that the first two terms form the convective de­
rivative of N with respect to the final endpoint. Knowing 
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that the convective derivative of any function! of position, 
momentum, and time (at the classical path) with respect to 
either the initial or the final endpoint is 0, i.e., 

[a. a] 
atb +q{(tb)aq£ !(qe(t),Pe(t),t)=O (32) 

(to be proved shortly), we are led to a trial solution of the 
form 

(33) 

By direct substitution in (31), (33) is seen to be the correct 
solution [use! = qc and! = Pc in (32)]. 

To prove (32), we first observe that it is sufficient to 
prove it for! = qe and! = Pc: the chain rule will then extend 
its validity to any f Now, derivatives of the classical solution 
with respect to any parameter introduced by the boundary 
conditions (here, ta ,tb ,qa' and qb) are known to be solutions 
of the equation of small distrubances, obtained from the sec­
ond variation of the action functional. 10-13 Since this equa­
tion is linear, its general solution is a linear combination of 
2n linearly independent solutions. Thus, the only solution 
vanishing at both ta and tb must be zero everywhere. Now, 
the left-hand side of (32) with! = q~(t) is, by its very con­
struction, a solution of the small-disturbance equation. It 
vanishesatta becauseqe(ta) = qa (a constant). It also vanish­
es at tb because 

aq~(t) I ft
, aq~(t) 

-- = dt--
atb t ~ t, t" atb 

. aft' . 
= - q~(tb) + - q~(t) dt 

atb t" 

- q~(tb) + aa (q~ - q~) 
tb 

(34) 

[since a latb commutes with a lat when acting on 
qe(t,tb,qb)]' Thus, (32) is true for!=qe' The case! Pc is 
proved by observing, by substitution in the equation of small 
disturbances in phase space (tl h = 0), that if u is a parameter 
introduced by the boundary conditions, then 

apci(t )/au = Dij(t )aq/(t )lau, 

where 

tl-- (k-~/dt k+:ldt) , 

= (aqe(t )Iau) h- , 
ape(t )lau 

D g~l(l:t -k), 

(35) 

(36) 

andf, g, and k are defined in (15). This completes the proof of 
the WKB approximation formula (10). • 

Note that (19) indicates that when He is quadratic in 
both P and q, the term proportional to fz2 is ° because Cis 
independent of qa and qb (Sc being quadratic in qa and qb)' 
and higher-order terms are 0 because they involve third and 
higher derivatives of He. Thus, the WKB approximation is 
exact in that case. This goes beyond the well-known result 
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because H does not have to be Hermitian, so that the extra 
exponential term in (10) supplementing the Van Vleck for­
mula is not constant. 

Note also that in terms ofthe LagrangianL (q,q) we have 
J2He(q,p)/JpiJqi=tr(Hcl21 = tr( - L 22 IL2t1· 

Proofofsecondformula: Formula (12) will be proved 
using the path-integral approach, generalizing a method pre­
sented in Ref. 4. More details on this method and its exten­
sion to a WKB expansion of the propagator for arbitrary 
Hamiltonians will be presented elsewhere. 

The propagator K can be written as a phase space path 
integral as follows: 

K(qb,tb,qa,ta)=J [dP~q ]eXP(iS/Ii), 
!7 h 

(37) 

where S =S T [pq - H (q,p,t )] dt is the action functional and 
9 is the space of paths (q,p) such that q(ta) = qa and 
a(tb) = qb' If S is expanded around the classical path (qe,Pe)' 
its first functional derivative vanishes by definition of the 
classical path and we obtain 

K - is,/''1 [dXdY ] iSc• (x.y)l" ~ if1~x.y)l" -e -- e e , 
,""0 h n 

(38) 

where 9 0 is the space of paths (x,y) such that x(ta) = x(tb) 
= 0, fle contains the terms beyond the second functional 

derivative, 13a and the second functional derivative S; is 

S;'(x,y) = idt [Yi(t)Xi(t) - Wj(t)Yi(t)Yj(t) 

- !fij(t )Xi(t )xj(t) - k 5(t )yilt )xj(t)], (39) 

with/, g, and k in (15). 

We can define a measure won 9 0, normalized to 1 and 
absorbing the second variation of S by: 

dw(x,y)~ o~ I [dxdy/h n]lexp(iS ;(x,y)/Ii), (40) 

the normalization factor being 

Ao= Lo [dxdy/h n]exp(iS ;'(x,y)/Ii). (41) 

Now, it is observed that the S;' term in (39) is in the form of 
an action functional corresponding to the fictitious 
Hamiltonian 

Ho(x,y,t )=Wj(t )YiYj + U;j(t )xixj - k 5(1 )yiXj. (42) 

Hence, (37) indicates that Ao must be the propagator 
KO(qb ',tb,qa ',ta) corresponding to Ho, evaluated at qa' = qb' 
= O. But for which Hamiltonian operator Ho? It makes 

sense6 that it should be the operator derived from Ho using 
the same correspondence rule linking He and H, i.e., (14) 
with (16). This leaves us with 

K - A is,/"f ~ i[}«x,y)/" d ( ) - oe e wx,y. 
.ro 

(43) 

It can be shown in this general case, as was done before for 
special cases, 11-13 that the expansion of the fl e term followed 
by the evaluation of the path integrals (the correspondence 
rule being taken into account) yields a series in Ii, 

K = Aoe
is
'/"(l + IlKI + 1i2K2 + ... ), (44) 

which identifies the constant term as the WKB approxima­
tion .• 
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Let us now retrieve formula (10) from this more general 
case. The operator Ho in this case is 

Ho= Wj(t)PiPj + U;j(t)QiQj 

+ k 5(t) [aPiQj + (1 - a)QjPi ], (45) 

which can be rewritten, using [Qi,Pj ] = iM5. as 

Ho = Hoo + ili(~ - a)k;(t), (46) 

where 

Hoo !gij(t )PiPj + V;j(t )QiQj 

+ !k i(t )(PiQj + Qjpi)· (47) 

Now, since Hoo is quadratic and Hermitian, its propagator 
Koo is given exactly by Van Vleck's formula, (11). In this 
case, however, the Se in (11) is zero because q~ = q~ = O. (In 
fact, in generalSe = qiPeo,i(tb) - q~Peo,i(ta)' where (qeo,Peo) is 
the classical solution for Ho). Further, the "det M" in (11) is 
the same as the "detM" for He becauseHo and He share the 
same equation of small disturbances and M ij is a boundary 
value of a specific solution of that equation,t 1-13 Therefore, 
Koo = (21Tili) ~ n/2 (detM)1/2. Now, if HI = H2 + f(t), the 
propagators KI and K2 are related by KI 
= K2 exp[ - (i/Ii)S dIs) ds]. Ho and Hoo are related in this 

manner. Putting all these results together gives 

KWKB = (21Tili) ~ n12(detM)1/2 

Xexp {(i/Ii)Se + (! -a)lk;(S)dS} , (48) 

which is formula (10). Note that this suggests that the nor­
malization factor (21Ti) ~ nil is universal and independent of 

He·
14 

Note in passing that it is not always easy to find out 
what operator Piqj corresponds to, given the He~H cor­
respondence, if the latter is not given by an F-function. Scal­
ing tricks (replacing Q by A. Q in functions of Q, then differ­
entiating with respect to A. and setting A. equal to 0) 
sometimes help. 

IV. SOME EXAMPLES 

We begin with an example pointing out that formulas 
(10) and (12) are not restricted to the correspondence rule 
being effected by an F-function. Consider the Hamiltonian 

H = !g ~ 1I4(Q)[Pi _ Ai(Q)]gl 12(Q )gj(Q) 

X [Pj -Aj(Q)]g~ 1I4(Q) + V(Q) (49) 

corresponding to 

He = !gij(q) [Pi -Ai(q)][Pj -Aj(q)] + V(q), (50) 

where gikgkj=8! and g=det(gij)' There is no F in general 
because of the divisors. 15 Nevertheless, a direct substitution 
shows that Van Vleck's formula applies, and we get: 

K vyl(Hb - illa/Jtb)Kyy 

= 11i2gij(F';:.iM,/M + r~M,tlM + M,iM,/2M2 

- M,ij/M - !F';:.ir~ - r~r';:.l + r~,i)(qb) 
= o (1i2), (51) 

where the following properties and definitions were used: 
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M=detM, 

r lk =!g'a(gja.k + g kaJ - gjk.a ), 

~~ = - r~kgmj - r~kim, 

If'.i = 2alf' r ~i' 
4j(tb) = g'i(tb) [Pci(tb) - Aj(qb)], 

Pci(tb) = aSJaq~, 

aSJatb = -He(qb,iJSc/aqb), 

as well as (29).16 

(52) 

On the other hand, (19) gives the following expression 
for the miss term: 

K vyl(Hb - ifWlatb)Kyy 

= - ~If [ t,~iUF (0) - iF '(0) - F" (0)) 

+ t,jj(F(O) - 2iF'(0))C ;IC + ijF(O)C" ijlC], (53) 

an expression which cannot be matched with (51) for any F, 
for C = M 112. (Thus, there is no F). 

Consider now the Fokker-Planck equation of diffusion 
processes: 

ap =! ~ [D ij(q,t)P ] - ~ [vj(q,t)P], (54) 
at aq'aql aq' 

where D is the diffusion matrix and v the drift vector. 17 It 
formally corresponds to a Hamiltonian H=PiPjD ij(Q)1 
2ifz + Pjvi(Q) with classical Hamiltonian He = PiPjD iJj 
2ifz + Pi Vi. Since the P factors precede the Q factors, a is 
simply equal to 1. Thus, formula (10) gives: 

KWKB = (21Tifz) - n/2(detM )1/2 

X exp [ ~ Se - (2ifz) - J!ei(t)D ijJ(qe(t)) dt 

-llVi,j(qe(t))dt]. (55) 

Note that the dynamical equation gives Pci(t) 
= ifz(D -1)ij(41 - vi), so that in one dimension part of the 

integration can be performed, yielding 

KWKB = Kyy [D (qb)lD (qal1 -112 

xexp(!l((VD' - v'D)lD) dt). (56) 

In the case of the backwards equation (Q precedes P, a = 0), 
the factors ~ are replaced by - ~ in (56) and inside the brack­
et of (55). 

For constant diffusion parameter (D = 1) and linear 
drift v = - yq, one retrieves the well-known propagator18 

KWKB = [yhr(l- 2e-2rT)] 1/2 

X exp[ -y(qb _qae-rT)2/(I_e-2rT)], (57) 

which, H being quadratic, is also exact [it satisfies (54) 
exactly]. 

It can be shown, by direct calculations, that the "miss 
factor" for (55) is exactly as given by (53) with 
F(x) = exp(ixI2). 

Another interesting application is the "lognormal" pro­
cess with Hamiltonian 

(58) 
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in one dimension, useful in modeling population growth. 19 

Using formula (10) on He = aq2p2 + {3qp one gets 

KWKB = (qblqa)l- 2aKyy exp[ {3(a - !)T], (59) 

where20 

Kyy = (21Tifz)-1I2(2aTqaqb)-1/2 

X exp [ _i (In qb _{3T)2]. 
4fzaT qa 

(60) 

In our case, a = O. Note that for a = 0 the exact propaga­
tor21 is 

K = KWKBexp( - ifzaT 14), (61) 

so that the expansion of the exponential gives the terms of a 
WKB expansion of K, useful for checking general formulas. 

Let us also mention the elements of the WKB approxi­
mation for Hamiltonians in one dimension of the form 

He = kpmqn, (62) 

where k is a constant. The classical equation of motion is lie 
= (nlm)q~/qe and the Lagrangian is L = qm/(m - I) 

XL = q -n/(m-l )(mk)-l /(m-l). For m#n these elements are: 

qc(t) = A (t - tot/1m - nl, 

Pe(t) = [k (m - n)) 1I(m - I)(t _ tor/In - m)A (l - n)/Im - I) 

(
1 - y)m/lm - n) 

A qa Yr ' 
ta - ytb 

to= , 
l-y 

y==(qalqb)(m - nl/m, (63) 

Sc = (m - l)(kT)-I/(m-I)(m_n)m/(l-m) 

M= [Tk(m_n)]-l(m-l} m-n ( )-n/m 
m(m - 1) qaqb 

X (qb (m - n)/m _ qa (m - n)lm)(2 - m)/(m - I). 

For m = n, these elements are: 

qc(t) = exp(At + B), qc(t )Pc(t) = (A Ikm)I/(m - II, 

A =T - Iln(qblqa)' B =In [qa(qalqb)t.,IT], 

Sc = (mkT) -111m -1)(1- m -I)[ln(qblqa)]m/(m - 1), 

M = (mkT) - 1I(m - I)[(m _ l)qaqb] - I 

X [In(q b1qa)]'2 - m)/(m - II. 

In all cases, 

KWKB = Kyy(qblqatll12-a). 

IV. CONCLUSION 

(64) 

(65) 

We have produced a formula to approximate the propa­
gator corresponding to any system described by a function 
whose time evolution is given by a partial differential equa­
tion that is of first order in time. This approximation can be 
supplemented by correction terms that can be generated by 
path integrals, and this will be the subject of a follow-up 
study.22 
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1. INTRODUCTION 

In this paper we shall investigate certain properties of 
rank N separable (also called degenerate) perturbations A Vs ' 

in particular the effects they have on the bound-state ener­
gies of an arbitrary Schrodinger operator H. Many of the 
results we shall obtain are well known (see in particular Kato 
Ref. 1, Ch. IV.6, Ch. X.3, and Ch. X.4). However, a detailed 
study of these degenerate perturbations in a quantum me­
chanicallanguage will be useful. 

The behavior of the bound -state energies En (A ) as func­
tions of the real parameter A ( - 00 < A < 00) is especially 
interesting. In contrast to the case of local perturbations, 
these En (A ) are in general confined to certain bounded inter­
vals, as we will see below. We have to take full account of the 
possibility that there are discrete eigenvalues embedded in 
the continuum. Such "positive eigenvalues" can occur for 
local potentials in exceptional cases only. A second compli­
cation concerns the fact that the negative eigenvalues can be 
degenerate. As is well known, for a regular local potential [in 
one particular partial wave space] the eigenvalues cannot be 
degenerate. 

It may be noted that in Ref. 2 the particular case of the 
Coulomb potential plus the rank one Yamaguchi perturba­
tion has been studied. Here explicit formulas containing hy­
pergeometric functions have been given. (See also Refs. 3 
and 4.) 

In a subsequent paper5 we shall consider the case of a 
complex (nonreal) coupling parameter A. 

Some preliminaries will be given in Sec. 2. In Secs. 3-6 
we consider rank one perturbations. Four different cases will 
be distinguished here (see the classification at the end of Sec. 
2). Figs. 1-4 correspond just to these four cases. The investi­
gations ofSecs. 3-6 pave the way for the general case of rank 
N perturbations (Sec. 7). Indeed, any rank N perturbation 
can be obtained by iteration of rank 1 perturbations. In Sec. 7 
we also give certain closed formulas for rank 2 perturbations. 
Finally in Sec. 8 we discuss some important and interesting 
properties of rank N perturbations. 

2. PRELIMINARIES 

Weare interested in certain properties of degenerate 
perturbations to a given Schrodinger operator (see Ref. 6, 
pp. 355, 365), 

H=Ho + v. (2.1) 

Here Ho is the kinetic energy operator. As usual we take 
fz = 2m = 1, so Ho = p2. We assume that H is a self-adjoint 
operator whose essential spectrum 7 is [0,00]. Then V can be, 
for example, a local potential V (r) which vanishes for r_ 00, 
or a separable potential. In certain cases when Ho + V is 
essentially self-adjoint, one obtains a self-adjoint operator in 
a standard fashion by taking the closure, (see e.g., Ref. 6, p. 
358). 

A degenerate perturbation is an operator of finite rank, 
also called a separable potential, 

N 

Vs = - L Ig)Aj(gjl· (2.2) 
i= 1 

Here N is the rank, A. j are real numbers and Igj) are called 
the form factors. We assume that these have a finite norm, 
(gj Igj ) < 00. The operator Vs is defined in a space corre­
sponding to one particular value of the orbital angular mo­
mentum quantum number I. We shall restrict ourselves in 
this paper throughout to I = O. However, all results can be 
generalized easily to the case of any I> O. 

The main purpose of this paper is to study the behavior 
of the non positive eigenvalues of H + V, as functions of the 
real parameters A j' We shall first restrict ourselves to the 
case N = 1 [Secs. 3-6]. Once this case has been fully under­
stood, the properties of a general perturbation of rank-N > I 
can easily be derived, (see Sec. 7). Indeed, by including 
N -1 terms of the sum in Eq. (2.2) into V, the general case is 
reduced to the case N = 1. The perturbed Schrodinger oper­
ator is now 

(2.3) 

In Secs. 3-6 we shall study the behavior of the nonpositive 
eigenvalues of H;. as functions of A.. 

We have to introduce some more notations. The (so­
called outgoing) scattering states of the unperturbed Hamil­
tonian H, corresponding to the continuous spectrum, will be 
denoted by Ik + ). For simplicity we assume that the con­
tinuous spectrum of H is absolutely continuous (see Kato, 
Ref. 1). Let the point spectrum of H (to be distinguished 
from the discrete spectrum of H, which is the set of isolated 
eigenvalues of finite multiplicity, (see Ref. 1, p. 187 and Ref. 
8, p. 2292) consist of the nonpositive eigenvalues - K;' 
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(n = 1,2, ... ,nn) and the positive eigenvalues k ~ 
(m = 1,2, ... ,np )' We denote the corresponding eigenstates by 
IK n ) and I k m ), respectively. Then we have the following use­
ful resolution of the identity, 

1 = L IKn)(Knl + L Ikm)(kml 
n m 

+ f" Ik+ )(k+ Ik 2dk. (2.4) 

Furthermore, 

n 

(2.5) 

is the spectral resolution or spectral decomposition of H (e.g. 
Refs. 8 and 6, pp. 252, 452 and 5(0). The orthonormality of 
the eigenstates and the scattering states is expressed by 

(Kn IKn' ) = Dnn·, 

(km Ikm· ) = Dmm' , 

(k + Ik' + ) = k -2D(k - k '), 

(Kn Ikm) = (Kn Ik + ) = (km Ik + ) = o. 
We shall use the Green operators or resolvents, 

G(E)=(E-Htl, 

and 

GA(E) = (E - HAtl. 

From Eqs. (2.4) and (2.5) we have 

G(E)= L IKn)(K~1 + L Ikm)(k;1 
n E+Kn m E-k m 

roo Ik + )(k + I k2dk. 
+ Jo E - k 2 

(2.6) 

The eigenvalues of HA are just given by the poles of the 
resolvent GA' Obviously on the physical sheet G A (E) has 
poles for real values of E only. The following expression, 

G = G _ G Ig)(gIG 
A A. -I + (giG Ig) , 

(2.7) 

is very useful for the study of GA' From Eq. (2.7) one easily 
obtains the interesting equality 

(gIGAlg)-1 =,.1. + (giG Ig)-I. (2.8) 

The poles of G and G A at some E.;,;;O are all simple poles. 
We note that the residue at such a pole is a projection opera­
tor. For example, when G A has a pole at E = En' one easily 
finds 

lim (E - En)GA(E) = lEn»).). (En I=Pn. (2.9) 
E-E" 

Here IEn),{ is the eigenstate of HA corresponding to the non­
degenerate eigenvalue En . If the eigenvalue En happens to be 
degenerate, say r-fold, the projector Pn is equal to 

In order to find the poles of G,{, it is sufficient to 
investigate 

109 J. Math. Phys., Vol. 22, No.1, January 1981 

(i) the poles of G, and 
(ii) the zeros orA. -I + (giG Ig). 

This follows easily from Eq. (2.7). It is useful to distinguish 
degenerate and nondegenerate eigenvalues of H. Further­
more, it can happen accidentally that the form factor Ig) is 
orthogonal to one or more of the bound state vectors IKn) of 
H. We shall see that the behavior of the eigenvalues of HA as 
functions of A. is different in this case. Therefore these differ­
ent situations should be distinguished. We shall make the 
following classification: 

I (Sec. 3) No degeneracy, all eigenvalues of Hare 
simple, 

(gIKn) #0, for all n. 

II (Sec. 4) No degeneracy, all eigenvalues of Hare 
simple, 

(glKnJ =0, (gIKn)#O, for n#no· 

III and IV At least one of the eigenvalues of His d-fold 
degenerate: Kn. = ... = Knd . 

III (Sec. 5) (gIKn. ) #0. 
IV (Sec. 6) (glKn ) = 0, for all i = 1,2, ... ,d. 

3. CASE I: NO DEGENERACY, (g/Kn) # 0, FOR ALL n 

In this section we assume that all eigenvalues of the 
unperturbed Hamiltonian H are simple, and that (gIKn) #0 
for all n. We shall investigate the poles of G and the zeros of 
A. -I + (giG Ig). 

From Eq. (2.6) we see that the expression 
(giG (- K2)lg) (we take E = - ~';';;O) has simple poles at 
K = K n • Also G and G Ig) have simple poles at these values of 
K. From Eq. (2.7) we have 

(3.1) 

This implies that G A has no pole at K = K n' The poles of G A 

are therefore obtained from the solutions of the equation 

A. -I + (giG ( - K2)lg) = O. (3.2) 

In this connection it is useful to recall Eq. (2.8), 

(gIGAlg)-1 =,.1. + (giG Ig)-I. 

This equality shows in a simple way that we have to solve Eq. 
(3.2) since GA has no pole at K = Kn' Indeed, for K = Kn one 
has (giG Ig)-I = 0, and therefore (gIGAlg)-1 #0 when A. #0. 

We recast Eq. (3.2) in the form 

A. -I = f(K). (3.3) 

The functionfis defined by 

f(K)=(gl(~ +Htllg)· (3.4) 

Differentiation with respect to K yields 

(3.5) 

Furthermore, by inserting Eq. (2.6) into Eq. (3.4) we get 
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f(x) 

! 
if f (0) > 0 

-c~ 

- co o 

if frO) <0 

FIG. I. The behavior of the functionJ(K)=: - (giG ( - ~)Ig) in case I: No 
degeneracy, and (gIK,,) #0 for all n. The eigenvalues of HAc are obtained 
from the solutions K ofJ(K) = A. -', i.e., K =J-'(..1. -'). The numbers Cm are 

defined as the zeros ofJ(K), soJ(cm ) = O. Note that an eigenvalue of HAc can 
never pass anyone of these numbers Cm • 

/(K) = L (gIK;) (Kn Ig) 
n K-~ 

+ L (glkm ) (km Ig) 

m K2 + k~ 
+ roo (glk + ) (k + Ig) k 2 dk. (3.6) 

Jo K2 + k 2 

From Eqs. (3.5) and (3.6) it follows that/(K) is a real-valued, 
continuous, and monotonically decreasing function of K on 
each of the following intervals, 

O<K<Kn",'" ... ,K2 <K<KI,KI <K< 00. (3.7) 

The residues of/(K) at its poles Kn are all positive. Since/(K) 
decreases from + 00 to - 00, Eq. (3.3) has exactly one solu­
tion in each one of the intervals 

Kn" <K<Kn" ,"" ... ,K2 <K<KI, 

for every real value of A #0. Since/( (0) = 0, there isjust one 
and only one solution for K I < K < 00 if A > 0, and there is no 
solution in this interval if A <0. (See Fig. 1.) 

We can determine the nonpositive eigenvalues of H). 
somewhat more precisely. The function/has an inverse on 
each one of the intervals given by (3.7) since/is continuous 
and monotonous on these intervals. We denote this inverse 
by/-I. The domain Of/-I is the whole real axis. The solutions 
K of Eq. (3.3) are given by 

K =/-I(A -I). (3.8) 

It is useful to introduce the numbers CO,cI, ... ,cn ,,' These are 
defined by /-1(0) on each one of the intervals given by (3.7). 
Note that c is not defined when/(O) < O. In Fig. 1 we have 
sketched th~'function/ as a function of the energy E = - ~, 
so that it is now monotonically increasing. When E = - 00 

we have/ = 0 and therefore - c~ = - 00. 

Now we are in a position to discuss the behavior of the 
bound-state energies as functions of A, (see Fig. 1). We start 
with A = O. The bound-state energies are then, of course, 
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- K~, i.e., the nonpositive eigenvalues of H). . Let the param­
eter A now increase from 0 to + 00. The eigenvalues of H). 
then move to the left and approach the numbers - c~ in the 
limit for A---+ + 00. If/(O) > 0 (so that cn" exists), there 

emerges a new eigenvalue in the interval ( - c~ ,0] for 
A -I =/(0). So we see that, for positive A, the nu~berofnon­
positive eigenvalues of H). is either nn or nn +1. 

On the other hand, if we let A decrease from 0 to - 00, 

the eigenvalues move to the right, (see Fig. 1). The particular 

eigenvalue which starts at -~" moves to - c~" ifj(O) > 0 
(so that cn" exists). However, if/(O) < 0, this eigenvalue 
moves to 0 and then disappears when A becomes sufficiently 
negative, i.e., A -I >/(0). Therefore, the number of nonposi­
tive eigenvalues of H). is either nn or nn - 1 when A is 
negative. 

It is important to note that the eigenvalues can never 
pass the numbers - c~. Each one of the intervals 

( - c~, - ci), ...... ,( - c~" -2 , - c~" -I ) (3.9) 

contains just one and only one eigenvalue for every 
A # ± 00. For A> 0 there is also an eigenvalue in 
( - c~" -I , - K~), and there can be an eigenvalue in 
( - c~" ,0. On the other hand, for A < 0 there can be an eigen­

value in the interval ( - K~", - c~). 
So we have nroved that 
(i) If/(O) = 0, the number of non positive eigenvalues of 

H). is always nn' independent of A (finite). 
(ii) Ifj(O) > 0, H). has nn nonpositive eigenvalues if 

A < 1//(0); nn + I nonpositive eigenvalues if A> 1//(0). 
(iii) Ifj(O) < 0, H). has nn non positive eigenvalues if 

A> 1//(0); nn -1 non positive eigenvalues if A < 1//(0). 
In particular, the number of non positive eigenvalues cannot 

decrease if/(O) > 0, and cannot increase ifj(O) < 0, for any 
finite A. 

We conclude this section with a derivation of the bound 
state vectors of H). in closed form. To this end we determine 
the residues of G). at its poles, see Eq. (2.9). With the help of 
Eq. (2.8) we obtain 

lim (E _ E )G). (E) = G (En)lg) (giG (En) 
E ~E" n (gIG 2(En)lg) 

=Pn = lEn»).). (Enl· (3.10) 

Therefore the bound state vector corresponding to the nega­
tive eigenvalue En of H). is given by 

(3.11) 

It should be noted that every negative eigenvalue of H). is 
simple. From Eqs. (2.8) and (3.11) one can easily prove that 

). (En' lEn»). =On'n' (3.12) 

which is the well-known orthonormality property of the 
bound state vectors. 

4. CASE II: NO DEGENERACY, (gIKn> = 0, FOR n = no 
ONLY 

In this section we shall investigate Case II. The negative 
eigenvalues of Hare nondegenerate, and (gIKn) = 0 for 
n = no only. 

Just as in Sec. 3 we have to determine the poles of 
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FIG. 2. The behavior ofJ(K)== - (giG ( - K')lg) in case II. The eigenvalues 
of Hare nondegenerate, and (gIK,,) = 0 for n = no only. In this case - K", 
is a fixed eigenvalue of HA , i.e., it is independent of A. The eigenvalues of H;, 
are obtained from the solutionsKoftheequationJ(K} = A -',i.e.,K = J-'(A -I). 

G;., (E). It is obvious that the present case differs from Case I 
in one respect only. Indeed, we only have to investigate here 
the behavior off(K) in the interval 

-Kn.+ 1 <K<Kno _ I ' 

Because (gIKn, > = 0, it follows from Eq. (2.6) that Gig> is 
regular for K = K n" for all values of A.. We see that the resi­
dues ofthe two terms on the right-hand side ofEq. (2.7) do 
not cancel. It follows that, in this case, G,;. has a pole for 
K = Kn, for all values of A.. Therefore we call this pole afixed 
pole and we call - K~o afixed eigenvalue of H,;.. 

The functionf(K) has only and only one zero, 
K = C 1-1(0), between Kn, +1 and Kn, _I • According to the 
definition of the c's, this number C is cn, when it lies between 
Kn, +1 and Kn,' so that cn, _I is missing. It is Cn, _I when it 
lies between K n, and K n , _I ; then the number cn, is missing. 
In Fig. 2 we have sketched the function fin the vicinity of 
K = K n" assuming that its zero is Cn, -1 . 

WhenA. = 0, H,;. has an eigenvalue -~, +1 . Ifwe letA 
increase to + 00, this eigenvalue shifts to the left and ap­
proaches - c~, _I for ,1_ 00, (see Fig. 2). Clearly it will 
coincide with -~, for a certain finite value of A. For this 
particular A, H;., has a twofold degenerate eigenvalue - K~,. 
We shall deduce the two corresponding eigenstates of H,;. by 
evaluating the residue of G;., at E = -~" 

For all real A, except one, we have 

A-I + (gIG( -~Jlg)#O. (4.1) 

By using Eq. (2.7) we easily obtain for this case, 

lim (-~ + K~JG,;. ( -~) = IKn.> (Kn, I=p~l,). (4.2) 
K-K"" 

We see that the fixed eigenstate of H,;. is identical to the 
eigenstate IKn,) of H. This is obvious when we consider the 
Schrodinger equation, because (gIKn,) = O. 
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For one particular value of A we have 

A-I + (gIG( -~Jlg> = o. (4.3) 

In this case the residue of G,;. at E = -~, is different from 

p~~). We denote this residue by the projector P~~). From Eq. 
(2.7) we get 

P~:)-lim (-~ + ~JG,;.( - K2) = IKn,) (Kn, I 

- G ( - ~Jlg)(gIG ( - ~J 

-~+,c 
X lim 1 n, 2 

K_K" ,1- + (gIG( - K )Ig) 
(4.4) 

By applying l' Hospital's theorem we obtain 

p(2)= IK >(K 1+ G(-~Jlg)(gIG(-~J. (4.5) 
n, n, n, (gIG2(_~Jlg) 

This expression may be compared with the expression for Pn 

in Eq. (3.10). Note thatthe state G ( - ~Jlg> is indeed orth­
onormal to IKn ,), according to Eq. (2.6). 

This shows in an explicit way that P ~:) is a projector. 

Since P ~:) projects onto a two-dimensional space, it follows 
that -~, is a twofold degenerate eigenvalue of H;." where A. 
is determined by Eq. (4.3). 

We conclude this section with three remarks. 
(i) If (giG ( - ~.)Ig) = 0, Eq. (4.3) is valid for A -I = 0 

only. Therefore, the eigenvalue - K~ is nondegenerate in 
this case. See Fig. 2: The eigenvalue ~ K~o + I shifts to the left 
when A increases, and approaches -~" for A. = + 00. On 
the other hand, when A decreases from 0 to - 00, the eigen­
value - K~" _ I shifts to the right up to - K~". 

(ii) When Ig) is orthogonal to every eigenstate IKn) of 
H, the functionf(K) is everywhere positive (i.e., for K;;;'O). 
Obviously in this caseH,;. has only one moving eigenvalue, if 
and only if A;;;' 1If(0). The states IKn) are fixed eigenstates of 
H;.,. 

(iii) The functionf(K) and its derivative, 
f'(K) = -2K(gIG 2( - ~)Ig), are in general smooth func­
tions between their asymptotic values. In particular, in the 
case when (gIKn,) = 0, the behavior Ofj(K) andf'(K) in the 
vicinity of K = Kn, is in general not exceptional, cf. Fig. 2. 

5. CASE III: d-FOLD DEGENERACY, (gIK~,>#O 

In this section we shall investigate the complications 
which are connected with a d-fold degenerate eigenvalue of 
H. So we put 

(5.1) 

where the IKn ,) may be taken orthonormal. We assume that 
at least one of the numbers (gIKn,) is different from zero. In 
Sec. 6 we shall consider the case when all (gIKn, > vanish. 

Following the same procedure as in Sees. 3 and 4, we 
obtain for the residue of G", at its pole - K~, the expression, 

lim (- K2 + K~, )G,;. ( _ K2) 
K_KII, 

= P - Pig) (gIP·(gIP Ig)-I. (5.2) 
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FIG. 3. The behavior ofJ(K) in case III. The eigenvalue - K", of His d-fold 

degenerate, and (gl< ) ~O. It is split up by the perturbation - A Ig) (gl 

into d -I fixed eigenvalues and 1 moving eigenvalue E (A) of H". 

Here we have used Eqs. (2.6) and (2.7). The projector P is 
defined by 

d 

P= I IKn,)(Kn,l· (5.3) 
i= I 

Note that (giP Ig)-I is a well-defined quantity, because 
d 

(giP Ig) = I (gIKn,) (Kn, Ig) (5.4) 
i= 1 

cannot vanish. By using P 2 = P one easily verifies that the 
expression on the right-hand side ofEq. (5,2) is a projection 
operator. However, the dimension of the space on which it 
projects is not shown. 

In order to simplify the expression on the right-hand 
side of Eq. (5.2), we perform a basis transformation in the 
subspace spanned by the states IKn,), By applying a suitable 
unitary operator to the IKn,) we can obtain new basis states 

IK~,), such that 

(gIK~)#O, 

(5.5) 
(gIK~,) = 0, i = 2,3, ... ,d. 

This procedure is well known from quantum mechanical 
perturbation theory in the case of degeneracy. Indeed, one 
has to diagonalize the perturbation, i.e., adjust the basis to 
Ig). Since the perturbation here is one-dimensional, there is 
only one matrix element different from zero, namely 
(K~, Ig) (gIK~, ). In general Ig) is not proportional to IK~, ). 

The projection operator on the right-hand side of Eq. 
(5.2) has a much simpler form when expressed in terms of the 
IK~). Indeed, by using Eq. (5.5) we get 

d 

L IK;,,) (K;" I - IK~, ) (K~, I 
i= I 
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(5.6) 

This is a rank-(d -1) projector, which we denote by P~~ -I). 
Clearly the multiplicity of the eigenvalue - < of H). is 
d -1. This eigenvalue is fixed, i.e., independent of A. In ad­
dition there is a moving eigenvalue of H). which does depend 
onA. It is obtained from the solution of the equation 

A -I + (gIG( -~)Ig) = 0, 

i.e., 

f(K) = A -I. 

When A = ° this moving eigenvalue coincides with the 
(d -I)-fold degenerate eigenvalue -~" (see Fig. 3). 

So we see that the d eigenvalues - K~, of H are split up 
into d -1 fixed eigenvalues - K~, and 1 moving eigenvalue 
En of H).. The corresponding eigenvectors of H). are ob­
tained from the residues of G). at its poles. According to Eq. 
(5.6) the fixed eigenvectors are IK~), i = 2,3, ... d (or linear 

combinations). The unique eigenvector depending on A is 
given by Eq. (3.11), 

lEn»). = G(En)lg) «gIG 2(En)lg)-1/2, 

where En = En (A) is the corresponding eigenvalue. 

6. CASE IV: d-FOLD DEGENERACY, <BIKn.> = 0; 
i = 1,2, ... ,d 

Just as in Sec. 5 we consider here a d-fold degenerate 

eigenvalue -~" 

H IKn) = -~, IKn), i = 1,2, ... ,d. 

In this section we assume furthermore that 

(gIKn
i

) = 0, i = 1,2, ... ,d. 

(6.1) 

(6.2) 

This implies that the perturbation Ig) (gl is diagonal with 

f ('II.) 

d fold, fixed 

J -c~ 

FIG. 4. The behavior Ofj(K) in case IV. The eigenvalue - K", of His d-fold 

degenerate, and (gIK,,) = 0 for all i = 1,2, ... ,d. This d-fold eigenvalue 

- K:', does not "feel" the perturbation - A Ig) (gl at all, i.e., it is ad-fold 

fixed eigenvalue of H A • There is one moving eigenvalue E (A) which coin­
cides with - K;" for one particular value of A only [Eq. (6.5)]. 
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respect to the basis states IK n ) (i = 1,2, ... ,d). Therefore no 
basis transformation is necessary here, in contrast to the case 
of Sec. 5. 

From Eq. (2.6) we see that G ( - ~)Ig) is regular at 
K = K n ,' by using Eq. (6.2). Therefore G). ( -~) does have a 
pole atK = K n " according to Eq. (2.7). So -~, is an eigen­
value of H).. We shall now investigate the degree of degener­
acy of this eigenvalue, and find that it is either d or d + 1. 

For every real value of A, except one, we have 

A -I + (gIG( -~'>lg)#O. (6.3) 

When Eq. (6.3) holds, the residue ofG). atK = K n , is given by 
the following projector, 

P~~)= lim (-~ + ~'>G). ( - K2) 
K--+K

II
, 

(6.4) 

This implies that the multiplicity ofthe eigenvalue - K~, is 
equal to d. 

For one particular value of A we have 

A -I + (giG ( - K~, )Ig) = O. (6.5) 

When Eq. (6.5) holds, we obtain the following projection 
operator, 

+ G(-~'>lg)(gIG(-~'>. 
(gIG 2

( -~'>Ig) 
(6.6) 

So we see that the multiplicity of the eigenvalue - K~, 
equals d + 1 in this case. There are d fixed eigenvectors, 
independent of A. These are just the eigenstates IKn,) of H. 
The unique eigenvalue which does depend on A is given by 

(6.7) 

as is easily seen from Eq. (6.6). The behavior of the function 
!(K)= - (giG ( - K2)lg) in the vicinity of K = Kn, has been 
sketched in Fig. 4. 

7. ON RANK-N PERTURBATIONS 

In this section we shall consider some interesting prop­
erties of a rank-N perturbation. We have seen in Secs. 3-6 in 
which way the eigenvalues shift when a rank-l potential is 
added to H. The eigenvalues are confined, for arbitrary 
strength A, to certain intervals ( - c~, - c~ + I ), [see Eq. 
(3.9) and Fig. 1]. In general an eigenvalue of H). cannot shift 
from a particular eigenvalue of H to one of the two adjacent 
eigenvalues of H. 

When a rank-l potential is added to H)., the eigenvalues 
are again confined to certain intervals, different from 
( - c~, - c~ + I ). It follows that, in general, any eigenvalue 
of H plus a rank-2 potential can pass only the two adjacent 
eigenvalues of H. 

By iteration we see that for a rank-N perturbation, the 
eigenvalues can pass at most N -1 adjacent eigenvalues of 
H upwards and N -1 adjacent eigenvalues of H down-
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wards. Exceptions to this general case occur when one (or 
more) of the form factors Ig;) is orthogonal to one or more of 
the bound state vectors of H, (cf. Sec. 4 and Fig. 2). 

It is instructive to consider some explicit formulas. The 
Green operator corresponding to the rank-N potential 

N 

V(AI,···,A.N) = V-I Ig)A; (g; I 
i= I 

is given by (cf., e.g., Sec. 5 of Ref. 9) 
N 

G(AI,· .. ,A.N) = G - I G Ig)1';j(gjIG, 
iJ= 1 

where the matrix elements 'T ij follow from 

(rl)ij = (A -I)ij + (g; IG Ig). 

(7.1) 

(7.2) 

(7.3) 

It follows from Eq. (7.2) that, in order to find the poles of 
G (AI, ... ,A. N)' one has to investigate the poles of G and the 
poles of'Tij. 

From now on we restrict ourselves to the case N = 2. 
Furthermore, we introduce the notations 

(7.4) 

and 

Tij =D'Tij' (7.5) 

Here D is the determinant of the 2 X 2 matrix 'T- I
, so 

D = (det'T)-1 = (A 111 + gll)(A 2-
1 + g22) - ~2' (7.6) 

Note that gij = gji and'T ij = 'Tj ; because we restrict the ener­
gy variable E to negative values. We have 

(7.7) 

According to Eq. (2.6), i.e., 

IKn)(Knl " f k G (E ) = I 2 + L.. ... + ... d , 
n E + Kn m 

G has simple poles at E = - K~. We see from Eq. (7.2) that 
any pole E of G (A I,A. 2) is 

(i) either equal to a zero of D 
(ii) or equal to an eigenvalue - K~ of H. We shall inves­

tigate the latter case only. 
To this end we deduce the residue of G (A I,A.2) at 

E = - K~ in closed form. By using Eq. (7.2)-(7.4) and (2.6) 
we obtain 

lim (E + K~)G (A I,A.2) = IKn) (Kn I 
E_~K;, 

X[l- lim ~~~I(Knlg)Tij(gjIKn)]. (7.8) 
E - - K;, (E + K~)D 

By using the explicit expressions of (7.6) and (7.7) for D and 
T we can evaluate the numerator and the denominator of the 
fraction in Eq. (7.8) in closed form. We obtain for both these 
quantities the same expression, namely 

lim (E +~)D = F. (7.9) 
E~-.r" 

Here F is defined by 

F=(A I-I + GIl)(g2IKn)2 + (It 2-
1 + G22)(gIIKn)2 

-2G12 (gIIKn)(Knlg2), (7.10) 
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where the Gij are defined by [cf. Eq. (2.6)] 

Gij==.Gij( -~) 

= lim (g; I G Ig
j

) _ (g; IKn) (Kn Igj ) ). 

E~-~, E+K~ 
(7.11) 

Therefore, the right-hand side ofEq. (7.8) will vanish in 
general, 

lim (E + ~)G (AI .A. 2) = 0, 
E~-~, 

so that G (A I.A.2) has no pole at E = - ~. This is just what 
we expect: The perturbed eigenvalue differs in general from 
the unperturbed eigenvalue - ~ . Clearly G (AI .A. 2) can have 
a pole at E = - ~ only if 

lim (E + ~)G (A I.A.2);60. 
E~-~ 

SO we see that "F = 0" is a necessary condition in order that a 
perturbed eigenvalue coincides with the unperturbed eigen­

value -~. 
It is interesting to consider the particular case 

IgI) = Ig2)' Obviously the rank-two potential is then equal 
to a rank-one potential, so that our formulas must reduce to 
those of Secs. 3-6. Indeed we have in this case 

(7.12) 

So F can be zero only if either Al = - A2 (vanishing pertur­
bation) or if IgI) is orthogonal to the eigenstate IKn) (in this 
case - K~ is a fixed eigenvalue). This is in agreement with 
the results of Sec. 4. On the other hand, when we let A2 go to 
zero, we see from Eq. (7.10) that lim'\,----oA 2F can be zero 
only if (g 11K n) = 0. This is again in agreement with previous 
results. 

In general F will not vanish for different K n 's, for fixed 
A I and ,1,2' In order to prove this, we shall work out a particu­
lar case. We take A I = A2 = A fixed, and we assume that 
K I > K 2 > ... , and furthermore, 

(gIIKI);60, (gIIK2);60, 

(g2IKI) = (g2IK2) = 0. 

In this case F reduces to 

F( - K~) = (A -I + G22( - ~»(gIIKn )2. 

By using Eq. (2.6) one easily verifies that 

0> G22( - Ki) > G22( - ~). 

(7.13) 

Because G22( - Ki) differs from G22( - ~), the equation 

F( - Ki) = F( -~) = ° 
cannot hold, according to Eq. (7.13). 

By this example we have proved that the perturbed ei­
genvalues do not all at the same time coincide with (some 00 
the unperturbed eigenvalues, in general. 

8. DISCUSSION 

From the investigations of this paper we draw some 
interesting conclusions. Let..::1 n n denote the alteration in the 
number of non positive eigenvalues of H, caused by a pertur­
bation A V. 
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(i) We have proved that a rank-l perturbation can alter 
the number of nonpositive eigenvalues nn (where the multi­
plicity is included) at most by 1: 

l..::1nnl<1. 

By iteration one obtains from (i): 
(ii) a rank-N perturbation can alter nn at most by N: 

l..::1n n l<N. 
This fact can also be obtained from the first Weinstein­

Aronszajn formula, (see Kato, Ref. 1 Ch. IV. 6, cf. Ref. 10). 
For a rank-l perturbation - A Ig) (gl we have proved 

the following interesting facts, which give more detailed 
information. 

1. Given the Hamiltonian H and the form factor Ig), 
then one and only one of the following three alternatives 
applies: 

a. Either nn increases by 1 if A goes from ° to + 00. In 
this case any finite negative A will not alter nn' We have 
f(O) > 0, wherefis defined asf(K)= - (giG ( - K2)lg); 

b. or nn decreases by 1 if A goes from ° to - 00. In this 
case any finite positive A will not alter nn' We havef(O) < 0; 

c. or the number of non positive eigenvalues is always 
nn' independent of A. This case applies ifj(O) = 0. 

2. The multiplicity of any nonpositive eigenvalue of H 
can alter at most by 1 (a particular case of the Weinstein­
Aronszajn formulas, see Ref. 1). A change in the multiplicity 
is caused by the so-called moving eigenvalues of H,\. It is 
important to note that a moving eigenvalue is always simple 
(i.e., nondegenerate), except for one particular value of A, 
when it coincides with some fixed eigenvalue. 

3. More specifically, we have defined certain intervals 
with boundaries - c;" and 0, see Figs. 1-4. The union of 
these intervals is just the real negative axis. When we let A go 
from - 00 to + 00, every moving eigenvalue shifts from the 
right-hand side to the left-hand side of some particular inter­
val. Different eigenvalues move in different intervals. All 
moving eigenvalues are continuous and monotonically de­
creasing functions of A. 

Finally we consider the operator 

H,\ = H -Alg)(gl 

for A~ ± 00. One might expect that every eigenvector of H,\ 
will approach, in a certain sense, the form factor Ig) when A 
goes to + 00. However, only the ground-state vector of H,\ 
converges to Ig) in this case. The corresponding eigenvalue 
goes to - 00, which means infinite binding energy. The re­
maining eigenvectors and eigenvalues of H,\ have simple 
limits, both for A~ + 00 and for A~ - 00. We have ob­
tained simple closed expressions: 

(i) (gIKn) = 0 for some n, then IKn) is not only eigen­
vector of H, but also of H,\, with eigenvalue - ~, for all real 
A. 

(ii) All other eigenvectors of H,\ have the form 

e·G (En)lg) = c Ig). 
En -H 

The eigenvalue En is a solution E = En of the equation, 

A-I + (gIG(E)lg) =0. 
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Therefore, for A_ ± 00, the eigenvalues En are just given by 
the zeros of the quantity 

So we see that H). is, for A- - 00, a well-defined operator, 
with simple eigenvectors and eigenvalues. Its essential spec­
trum is [0, 00 ), just as the essential spectrum of H. 

IT. Kalo, Perturbation Theory for Linear Operators (Springer, New York, 
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It is shown that the existence of Aharonov-Bohm scattering depends upon the criteria used for 
establishing the stationary states. If one applies Pauli's criterion, there is no scattering. It is shown 
further that applying the usual criteria that the wave functions be continuous and single valued, as 
was done by Aharonov and Bohm, leads to stationary state wave functions which, with two 
exceptions, are eigenstates of the acceleration operator corresponding to eigenvalue zero. The 
acceleration operator is undefined for the remaining two states. Thus, only the eigenfunctions 
satisfying the Pauli criterion lead to well-defined, sensible physics. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

In a recent paper I it was argued that the total cross 
section for Aharonov-Bohm scattering diverges. This con­
tradicts the well-known result of Strocchi and WightmanZ 

that shows electrodynamics to be a local theory. It is this 
contradiction that has stimulated the investigation of the 
mathematical nature of Aharonov-Bohm (hereafter called 
AB) scattering reported here. 

The author feels that it is essential to distinguish be­
tween AB scattering and the AB effect, which several inves­
tigators claim to have observed,3-5 and which is treated in 
graduate textbooks, such as the one by Sakurai.6 It must be 
noted that, in the past two years, papers have appeared that 
claim to prove the nonexistence of an AB effecf- IO

; their 
authors would say that the distinction being made here is 
superfluous. These papers will be discussed elsewhere; the 
only comment to be made here is that the author believes 
that some of the derivations of the AB effect in the literature 
are correct. 

The claim being made here is considerably more modest 
than those of the papers cited above. It is shown here that the 
AB effect, if it exists, may not be interpreted as scattering. 

AB scattering is alleged to be the scattering of electrons 
by a whisker of flux located along the Z axis. The differential 
cross section was computed by ABII to be 

dO' sinZ(1Ta) 
-= , 
d() 21Tk sinZ(() /2) 

(1 ) 

w here a = - ect> / eli and the energy ofthe incoming particle 
is fzzk 2/2m. This result was obtained by taking the wave 
function of the incident particle to be eikr 

cosge - iaf}. This func­
tion gives a probability current density in the x direction and 
is an eigenfunction of the velocity operator. It is also an ener­
gy eigenfunction, but it does not meet the commonly im­
posed requirement of continuity, unless a is an integer. It 
will be shown here that the criteria imposed by AB (i.e., 
continuity and single valuedness) are not the correct ones. 
The essential criterion for admissibility of wave functions 
was set down by W. Pauli I2

•
13 in 1939. Had AB subjected 

their energy eigenfunctions to Pauli's criterion, they would 
have found no scattering. This is shown below. 

The Hamiltonian of the system is given by 

H = UP - (e/c)A(rW, (2) 

where we put m = fz = 1. The vector potential is given by 

Ar = 0, Ag = ct> /21Tr. (3) 

The stationary state Schrodinger equation is then 

- ~ [~+ ~~+ ~(~ +ia)Z]ifJ 
2 a,z r ar ,z a() 

k 2 

=-ifJ, 
2 

II. THE VELOCITY OPERATOR 

(4) 

In order to understand the physics of the scattering pro­
cess, it is necessary to study the velocity operator, since 
changes in this quantity must be related to scattering. The 
velocity operator is 

v = P - (e/c)A(r) = - iV - (e/c)A(r). (5) 

It has components 

Vx = cos()v r - sin()vg , 

Vy = sin()v r + cos()vg • 

It is convenient to introduce the operators 

v+=vx+ivy, 

v_=vx-ivy. 

Straightforward substitution then yields 

(6a) 

(6b) 

(7a) 

(7b) 

• if} a e
ig a iae

ie 
(8a) v+ = - Ie - + - - + --, ar r a() r 

t . _ ,f} a e - ,0 a ia ill (8b) V = U j = - Ie - - ---- - - e 
ar r a() r 

Equations (8) indicate that the velocity is not a vector under 
the spatial reflectiony~ - y. The condition 
U _ (f) ) = U + ( - () ) fails unless one also replaces a by - a. 
This means that the particle velocity is a vector under spatial 
reflections only if one also reflects the velocities of the 
charges that act as the source of the magnetic flux. One notes 
that the Hamiltonian is also not invariant under y- - y 
unless one puts a- - a, thus inverting the direction of 
the magnetic flux. 

Formal computation shows that u+ and u_ commute, 
as long as no restrictions are placed upon the functions on 
which these operators act. The angular momentum operator 
is 
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M= -i~. ae (9) 

The operators M, v+, and v_ obey the commutation rules 

[M,v+1 = v+, (lOa) 

[M,v_1 = - v_. (lOb) 

These equations lead to the results 

[M,v+v_1 = 0 (11) 

and 

(I2a) 

Thus, M and H commute, and we may use the eigenval­
ue m of the angular momentum operator to characterize the 
eigenstates that comprise the basis of a Hilbert space of states 
having energy eigenvalue k 2/2. Thus if M 1m) = m 1m), we 
find that Eq. (lOa) implies that 

Mv+lm) = (m + I)v+lm) (13a) 

and Eq. (lOb) implies that 

Mv_lm) = (m - I)v_lm). 

v + is therefore a raising operator and v _ is a lowering 
operator. 

(13b) 

Let us restrict a to the range 0 < a < 1. Other values of a 
can be treated by making obvious changes in the discussion 
that follows. We are now ready to discuss solutions of the 
stationary state equation (4). Pauli l2.13 would argue that the 
appropriate energy eigenfunctions are those solutions ofEq. 
(4) that are square integrable and are closed under the oper­
ations v + and v _. This set of functions is 

(14) 

This choice of stationary states leads to understandable 
physics, since the incident wave used by AB can be expanded 
in terms of these functions. Hence, there is no scattering. 

It is enlightening to investigate the behavior of the AB 
eigenfunctions under the operations v + and v _. These eigen­
functions are 

Im)=Jlm+al(kr)eimll, m=0,±I,±2,.··. (15) 

One quickly sees that the operator v + can be used to generate 
the positive m states from the eigenstate 10). The operator 
v _ may similarly be used to generate the negative m state 
from the state I - 1). These results follow easily from the 
well-known recurrence relations for Bessel functions. It is 
clear however, that there are two distinct chains of eigen­
states that are not linked to each other by v + and v _. 

From the recurrence relations for Bessel functions, we 
see that v _I 0) involves J _ I + a (kr); this function does not lie 
in the Hilbert space of AB eigenfunctions. It is infinite at the 
Z axis, while the AB eigenfunctions all vanish there. Apply­
ing v_ twice to the state 10) produces a function that is not 
square integrable over any region containing the Z axis. 
Similarly, the function v + I - 1) does not lie in the AB Hil­
bert space. Thus in order to treat the problem using the AB 
eigenfunctions, one must modify the Hamiltonian to the 
form 
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H=! L v_v+Pm +! L v+v_Pm' (12b) 
m:;.O m <0 

where the Pm are the projectors that project on the states 
1m). Then, on a subspace of fixed energy k 2/2, the operators 
v + and v _ become multiples of isometric operators U and 
ut, so that 

v+ = kU and v_ = kUt. (16a,b) 

The state I - 1) is not in the domain of U and the state 10) is 
not the domain of ut. The acceleration operator that gives 
the rate of change of v + is 

a+ = i[H,v+1 = ik [H,U1. 

Similarly, we may define a_ by 

a_ = i[H,v_1 = ik [H,U t1. 

(17) 

(18) 

Equations (12b), (17), and (18) show that a+ and a_ are 
zero operators when they operate on states in their respective 
domains of definition. The same is true of the Hermitian 
operators 

ax = !(a+ + a_) and ay = (l/2i)(a+ - a_). 

We therefore conclude that the AB states are all states of 
zero acceleration, except for the states 10) and I - 1). The 
acceleration of the particle in these states is not defined. 
Thus to have well-defined observables, one must make the 
Pauli choice of eigenfunctions given in Eq. (14). Only this 
choice leads to well-defined, sensible physics. 

It is well known that if a time independent Schrodinger 
equation has a solution t/,o(r), then, if a vector potential hav­
ing a vanishing curl is added to the system, the correspond­
ing energy eigenstate is given by 

¢(r) = ¢,O(r)elielllc)SS!<iAlr').ds', (19) 

where S(r) is the point r itself. The path of integration is 
otherwise arbitrary. In the AB problem, A(r) is given by Eq. 
(3). Ifwe take the integration path to begin at any point on 
the positive x axis, then Eq. (19) becomes 

¢'(r) = ¢,O(r)eliellic)(<P121T)1I = ¢'O(r)e - ioll. (20) 

Thus the proper eigenfunctions are related to the corre­
sponding zero flux eigenfunctions by the usual London rule. 
It is therefore clear that correct discussion of the Aharonov­
Bohm effect must deal with any physical consequences of 
this phase factor in a proper way. 
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I. INTRODUCTION 

The assumption of local isotropy is a common one in 
astrophysical studies of massive objects. However, recent 
theoretical work on more realistic stellar models suggests 
that stellar matter may be anisotropic at least in certain den­
sity ranges. 1.2 Anisotropy could be introduced by the exis­
tence of a solid core, by the presence of type P superfiuid, or 
by other physical phenomena. In this paper we do not dis­
cuss the mechanisms for inducing anisotropies. Rather, we 
concentrate on the following two questions: 

a) What is the extent to which isotropic models differ 
from anisotropic ones? 

b) How do we develop suitable models for anisotropic 
matter in the context of general relativity? 

Anisotropic matter has already been considered,3,4 and 
it has already been shown that some properties of anisotro­
pic spheres may drastically differ from the properties of iso­
tropic spheres. This paper is organized as follows: 

In Sec. II we give the general conventions and the field 
equations. We describe the procedure for obtaining anisotro­
pic models in Sec. III. In Sec. IV we give five examples. The 
last section contains a discussion of the results. 

II. THE FIELD EQUATIONS 

Let us consider a static distribution of matter which is 
spherically symmetric but whose stress tensor may be locally 
anisotropic. 

In Schwarzschild-like coordinates the metric can be 
written as: 

ds2 = eV dt 2 - fldr - rd0 2 - rsen20 d¢ 2. 

Denoting differentiation with respect to r by a dash, 
letting (t,r,O,¢) = (0,1,2,3), the metric field equations read: 

81TT: = -e-"[v'lr+ l/r] + l/r, (1) 

81TT~ = 81TT~ 
- e-" [~v" -iA 'v' + lv,2 + (v' -A ')/2r], 

(2) 

a)Supported in part by CONICIT, Venezuela. 
b)SUpported in part by N.S.F. under grant number INT-1825663. 

(3) 

with T~ = diag (p, - P" - Pl , - Pl ), whereP, andPl de­
note respectively the radial and tangential "pressure". Using 
(1) and (2) (or the equivalent, the conservation condition 
T ~;p. = 0) the equation for hydrostatic equilibrium is found: 

dP, v' 2 dr = -(p+P')T + -;(P-P,). (4) 

Integrating (3): 

e-" = 1 - 2m(r)!r, 

where 

m(r) = f 41Trp dr. 

From (1) and (3): 

v' 
2 

m(r) + 41Tr P, 

r(r- 2m) 

(5) 

(6) 

(7) 

Obviously in the isotropic case (p, = P) Eq. (4) becomes 
the usual Tolman-Oppenheimer-Volkov (TOV) equation 

for hydrostatic equilibrium. 
Before trying to find specific models, we write Eq. (4) in 

a different form. Let 

(8) 

where C is a parameter which measures the anisotropy; the 
function/and the number n are to be specified for each 
model. Taking in to account (8), Eqs. (4) becomes 

dPJdr = - (p + P,)v'/2 + 2C/(p"r)(p + P,)r" - I. (9) 

Equation (9) can be integrated if p is a known function of 
r and/(p"r) is specified. We keep the usual boundary condi­
tion P,(a) = 0, where a is the radius ofthe sphere. 

III. THE PROCEDURE 

The chief question is how to choose the function/(P, ,r). 
One approach would be to consider (9) as defining this func­
tion for arbitrary p(r: and P,. However this might produce 
models with strange pressure distributions and would usual­
ly not permit C = 0 as a subclass of a particular model. The 
ideal approach, of course, would be to know the relation 
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between Pr and Pi on physical grounds. We shall propose a 
heuristic method which allows us to find a family of non iso­
tropic models from any isotropic model; the family will de­
pend continuously on C and permit the isotropic situation, 
C = 0, as a special case. 

The procedure is as follows: 
1) Take a known exact interior solution of the Einstein 

equations and assume the functional dependence of P = p(r) 
of the anisotropic model is the same as that of the isotropic 
solution. In fact one does not expect that the presence of 
stresses (at least for small values of C) will change the matter 
distribution drastically. 

2) Assume 

f(Pr ,r),." - 1 = v'/2. (10) 

This relation is not assumed for any specific physical 
reason but only because it transforms Eq. (9) into the simple 
form: 

dPr = _ h (p + Pr )v'/2, 
dr 

whereh = 1- 2C. 

(11) 

The next section is devoted to the integration ofEq. (11) 
for different density distributionsp(r). Notice that for h = 1, 
we recover the isotropic case. h = 0, because of the boundary 
condition, implies Pr = O. Such a configuration corresponds 
to a sphere sustained only by tangential stresses. It has been 
considered in a different CO!ltext by Lemaitre.5 

IV. THE MODELS 

A. Schwarzschild-like model 

The first model we discuss is a generalization of the 
Schwarzschild interior solution. Such a generalization is al­
ready known,3 and we can examine how our method repro­
duces this known solution for anisotropic matter. 

Following the procedure sketched in the last section we 
imagine an anisotropic sphere whose density is independent 
of the spacelike coordinates, 

{
Po = const, 0 < r < a 

p= 
0, r>a 

Equation (6) gives 

(12) 

m(r) = ~1T~Po, (l3) 

and condition (10) reads: 

f(r,Pr),." - 1 = !v' = ~1Tr( Po + 3Pr)(1 - (S1T13)rpo) - 1 (14) 

B. Tolman VI-like model 

where Eq. (7) has been used. Equation (11) takes the form 

dPr h 
- = -~1T (Po +Pr)(Po + 3Pr) 

dr 
X (1 - (S1T131oor) - lr. (15) 

Equation (15) can be integrated to obtain the radial 
pressure 

P _ [ (1 - J1Trpo)hI2 - (1 - ~1Ta2po)h12 ] 
r -Po 3(1 _ ~1Ta2po)hI2 _ (1 _ ~1Trpo)h12 (16) 

or 

_ [(1 - 2mlr)h12 - (1 - 2M la)hl2 ] 
P -Po , 

r 3(1 _ 2M la)hl2 - (1 _ 2mlr)h/2 
(16') 

where M is the total mass. 
It is worthwhile to recall some properties of this model. 

For example, the critical value of the quantity 2M la for 
which the central pressure tends to infinity is 

2(M la)erit = 1 - (1/3)2/\ (17) 

thus, the limiting case h = 0 (C = 1/2) yields (2M /a)erit = 1 
and the horizon may be reached. We recall that in the iso­
tropic case (h = 1) the critical value is: 

(2M la)erit =~. 

The critical mass is 

Merit = (3/321Tpo)I12[1 - (1/3)2/h ]312. (IS) 

The ratio of the critical mass for the anisotropic case to 
the corresponding value for the isotropic case is given by 

Ma . 
~ = i[1 - (1/3)2Ih ]312. (19) 
MZerit 

This ratio is less than one for h > 1 (C <0) and greater 
than one for h < 1 (C < 0). 

Furthermore the expression (17) affects the redshift z at 
the surface, given by 

Z= (1 - 2M la)-I12 -1. (20) 

The critical value for the redshift is 

(21) 

thus, in principle, anisotropy is capable of explaining red­
shifts larger than two. 

It is easy to use (16') and (7) to obtain v 

eV = [ 3(1 - 2M la)h/2
2
- (1 - 2m/r)h12 t h. (22) 

The next model we shall generalize is solution VI of Tolman. 6 We recall that the equation of state of this model, for large 
p, approaches that for a highly compressed Fermi gas. 

Using the procedure discussed above and the fact that the matter density is 

S1TP = 317r, (23) 

we get the following equation for Pr 

119 

dPr ..2 
- = - h (3/561Tr + Pr)(3/Sr + 71TrPr). 

dr 

This equation can be integrated to obtain 
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P(r)= --
9h [ 1_(rla)V(4-3h l ] 

, 56m,2 (8 - 3h + 4V(4 - 3h)) - (8 - 3h - 4V(4 - 3h ))(rla)V(4- 3h l • 
(25) 

This solution restricts the values of h, h < 4/3, or equivalently, C> - 116. For the special case h = 4/3, the solution is 

P (r)= _3_ [1- __ 2 __ ] 
, 5611'r 2 -In(rla) . 

(26) 

Of course for the case h = 1 we recover the Tolman VI solution. Also for h = 0, P, = 0, as expected. The ratio of the 
central pressure to the central density is 

PJpc = 3h I (8 - 3h + 4~ 4 - 3h ). 

In the case h = I, one gets the well-known result 

PJpc = 1· 
For the limiting value h = 4/3, the ratio is 

Pclpc = 1, 

(27) 

which in some sense represents a natural limiting value for the equation of state at the center of the sphere. The equation of 
state for the radial pressure can be written as 

[ 
I _ (3/5611')V(4 - 3h 112( P - 1/21 a),,'(4 - 3h I ] 

Pr(P) = 3h 
P (8 - 3h + 4v(4 - 3h )) - (8 - 3h - 4v(4 - 3h ))(3/5611')VI4 - 3h 112( P - Il2la)Vl4 - 3h I ' 

(28) 

which for large values of p, becomes 

(8 - 3h + 4V(4 - 3h)) P 
P - 3h r = 

__ pl- V14- 3h)l2. 
( 

3 
)

V14 - 3h )/2 

5611'a2 (29) 

In the case h = 1, we recover the expected result 

p - 3Pr = constpl12. (30) 

For the limiting value h = 4/3, the equation of state takes the form 

Pr(P)= [1- 4-ln(3~5611'pa2)]' (31) 

Now it is not difficult to find the metric function v. Feeding (25) back into (7) and using (23) 

e
V 

= ~ [ (8 - 3h + 4V(4 - 3h )) - (8 - 3h - 4V(4 - 3h ))(rla)VI4 - 3h) ]llh (ar )16 + VI4 - 3h 1)/18 - 3h + 4VI4 - 3h )1. 

7 8V(4 _ 3h ) (32) 

At the surface r = a 

e v I r ~ a = 1 - 2M I a = ~, 
which agrees with the expression for the exterior Schwarzschild metric. 

For the limiting value h = 4/3, the metric function v takes the form 

eV = 1[(rl20)(2 -In(rla))pI2. (33) 

Equation (24) has also been integrated numerically. Introduce the following dimensionless quantities 

P=PrM
2

, (34) 

(35) z = air, 

where M is the total mass. Equation (24) becomes 

dP = ihP Iz + 711'h (14/3fp 2/z3 + (9/7 X 6411')(31 14)2hz, 
dz 

(36) 

where the fact that Mia = 3/14 has been used. Solutions of (36) for differents values of h are indicated in Fig. 1. It is 
worthwhile to observe that negative values of h correspond to negative radial pressures. Such situations cannot be excluded a 

priori since we are not considering perfect fluids. 

C. Tolman IV-like model 
Let us consider a generalization of the Tolman IV solu­

tion. We recall that the equation of state of this solution leads 
to results similar to those which would be obtained from the 
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equation of state for a Fermi gas in cases of intermediate 
central densities. As in the preceding cases, the density is 
assumed to have the same functional dependence as for the 
isotropic case, thus 
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8~ = _1_ (1 + 3A 21 R 2 + 3r 1 R 2) 
P A 2 (1 + 2r 1 A 2) 

2 (1 - rlR 2) 
+ A2 A (1 + 2r 1 A 2)2 ' 

(37) 

where A 2 and R 2 are constants which in the isotropic case are 
related in a specific way through the central density and 
central pressure. 

We calculate the function m(r) and obtain 

m(r) = ,-"3(R 2 + A 2 + r)l2R 2(A 2 + 2r). (38) 

Hence 

f(r,Pr),-n~ 1 = !v'r[(R 2 +A 2 + r) + 81TR 2Pr 
x(A 2 + 2r)1/2(R 2 _ rItA 2 + r) 

and the equilibrium equation becomes 

dPr 81T-- = 
dr 
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(39) 

[ 
(R 2+A 2+r)+81TR 2p(A 2+2r)]. 

X (R 2 _ r)(A 2 + r) 

For h>3, the integral is given by (40) 

P = 81TA 2Pr(r) 

= (_h_R2_ 3-2h A2_3r)I~2(A2+2r). (41) 
2 -h 2 -h V" 

Unfortunately, this pressure is less than zero for all real 
r and approaches - (3/2)A 2 as r-+oo. Hence the regime 
h> 3 cannot correspond to a bounded distribution of matter. 

We did not succeed in finding an analytical solution to 
(40) other than (41), so that we integrated that equation nu­
merically. In order to do that, we introduce the following 
dimensionless quantities: 

dP 
dz 

- 2 
P= 81TA P" 

P = 81TA 2p , 

Z= lI(y+ E), 

y=rIA; E=Mla, K=A2/R2. 

Thus Eq. (40) becomes 

= h (1 - EZ) [~(1 + 3K) + 3K(1 - Ezf 
2z Z2 - 2(1 - EZ)2 

2z2[Z2 _ K(1 _ EZ)2] - ] 
+ +P 

[r + 2(1 _ EZ)2]2 

X [ z2(1 + K) + K(1 - EZ)2 + P [Z2 + 2(1 - EZ)2] ] . (42) 
[Z2 _ K(I - EZ)2] [~ + (I - EZ)2] 

In order to integrate this equation numerically we must 
specify the values of E, K and h; also the boundary condition 
P (zo) = 0, where Zo = zl r = a' requires that the value of 
Yo = alA be given. 

Now, from the condition 

e~J.llr=a)=1-2Mla (43) 

we get 

E = Mia = Y~(I + K + Y~)/2(1 + 2Y~), 
where the relation 

e"- = R 2(A 2 + 2r)/(R 2 _ r)(A 2 + r) 

has been used. 
For the isotropic case (h = I) we have the analytic 

solution 

(44) 

PlY) = (I - K - 3Ky2)/(1 + 2y2) (45) 

and thus the boundary condition, in this case, leads to 

Y~ = (1 - K)l3K. (46) 

Feeding (46) back into (44) we obtain 

K = 1 - 3E. (47) 

Also, because of (44) 

Yo= [4E-I-K+V((~+Kf-8E+ 16c) r\ 
(48) 

thus, fixing E, one gets uniquely the values of Yo and K. 
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FIG. 2. ThefunctionP s=81rA 2p, versusz = (l/(rIA) + E)intheTolmanIV­
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k = 0.70 
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k = 0.88 
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k=l.04 

In the nonisotropic case (h =1= 1) we do not have an ana­
lytic solution like (45) and so the values of K and Yo cannot be 
obtained from E. In order to pick values of K and Yo which 
would not lead to unphysical situations, we shall integrate 
for values of h not very far from 1, and for K we shall take 

K(h ) = K(h = 1)[ 1 + 11 - h II h ]. (49) 

Fortunately Eq. (42) is "stable" with respect to a pertur­
bation of the coefficients such as (49). Specifically we have 
integrated for the following cases: 
1) E = 0.1: 

i) h = 1, 
ii) h = .67, 
iii) h = 1.33, 

2) E = 0.3: 
i) h = 1, 
ii) h = 0.67, 
iii) h = 1.33, 

K=0.7, 
K = 1.04, 
K = 0.88, 

K=O.l, 
K=0.15, 
K=O.13, 

Zo = 2.09, 
Zo = 2.29, 
Zo = 2.20, 

Zo = 0.49, 
Zo = 0.56, 
Zo = 0.53. 
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The results of integration are displayed in Figs. 2 and 3 . 
The accuracy of the numerical analysis was checked against 
the exact solution (for the case h = 1) with excellent results. 

D. Tolman V-like model 

Though the Tolman V solution does not represent any 
interesting physical situation, we have generalized this mod­
el in order to obtain more information about the difference 
between the isotropic and the anisotropic case . 

Following the established procedure, 

81Tp = 317r + (10/3R 2)(r1R )113, (SO) 

m = (3/14)r + r lO/3 /2R 713, 

e - A = 4/7 _ (riR )713, 

where R is a constant. 
The condition (10) reads 
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!(r,PrV'-1 

= lv' = (3R 7/3 + 7r7/3 + 561TP,R 7/3r )/2r(4R 7/3 - 7r7/3 ) 
2 (53) 

so that the equilibrium equation becomes 

dP 
81T_r 

= - h [3/7r + 1f(r/R )1/3 + 81TP,j 
dr 
X [(3R 7/3 + 7r7/3 + 561TP,R 7/3r )/2r(4R 7/3 _ 7r7/3 )]. 

(54) 

We could not find an analytic solution for (54), so we 
carried out a numerical integration. To do so, we introduce 
the new dimensionless variables 

- 2 P= 81TR Pr, 

p = 81TR 2p, 

z=ERlr, 

with E = Mia. In terms of the new variables, Eq. (54) reads 
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dP 
[ ~(E/Z) - (dZ)10/3j (~/€)-

7 dz 

= h (E/Z)2P2/2 + h [ ~ + l{(dZ)7/3j P 

+ h [ /g(Z/E)2 + H(dz)1/3 + i(dz)8/3j. (55) 

The sUlface of the star is defined by the value 
Zo = ER la; furthermore, the ratio R /a can be expressed 
through E using Eq. (51) 

!i = [ 2(E - 1\)] - 3/7. 
a 

In the isotropic case (h = 1) 

R /a = (14)317 

and 

E=a· 

We have integrated for E = 1/4; h = 1.33, h = 1, 
h = - 2.77, h = - 3.188 and forE = 0.3; h = 1.33, 
h = - 3.188, h = - 2.77. 

The solutions are shown in Figs. 4 and 5. 
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E. Adler-like model 

Lastly, we shall apply our procedure to a solution found 
by Adler.7 This solution is adiabatically stable, does not ex­
hibit singularities and in principle could be used in astro­
physical considerations. 

The density is given by 

81Tp = 4y(3r/(a + 3(3r)5/3 - 3y/(a + 3(3r)2I1, (57) 

where y, (3 and a are constants. In addition, 

m = - yr' /2(a + 3(3r)2I3, (58) 

e- A = 1 + yr/(a + 3(3r)2I3, (59) 

v' 

2 

= .!.... [ 81TPr (a + 3(3r)2I3 - y ] 

2 (a + 3(3rf/3 + yr 
(60) 

and the equilibrium equation reads 
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dPr 81T-­
dr 

= _ hr [4Y(3r 3y + 81TP
r

] 

(a + 3(3r)5/3 (a + 3(3r)2/3 

X [ 81TPr (a + 3(3rf/3 - y ] . (61) 
(a + 3(3rf/3 + yr 

In the isotropic case (h = 1), the solution is 

81TPr = 4 (3/(a + (3r) 

+ rIa + 5 (3r)/(a + (3r)(a + 3(3r)2/3 (62) 

(some errors in Adler's paper have been taken into account) 
and 

e V = (a +(3rf 

Using the boundary conditions 

Pr(a) = 0, 

ei;;.A(r~a) = e~;~a) = 1 - 2E, 

when E = Mia, we find 

a = (1 - 5/2E)/(1 - 2E) 112, 

(3 = d2a2( 1 - 2E) \12, 

y= -2E(I-E) 2/3Ia2(1_2E)1I3. 

(63) 

(64) 

(65) 

(66) 

Hence, for the isotropic case, the radial pressure can be 
written as 

Pr = (d41Ta2)[ 1 - 2Ey2( 1 - E)2/3( 1 - ~ + ¥y2) - 2/3] 

X(1 - ¥ + !Ey2) - 1 _ (1 _ E)2/3(1 _ ¥ + ¥y2) - 2/3, 

with 
(67) 

y= ria. 

Equation (61) was integrated numerically for different 
values of h. To this end, we introduce the following variables: 

P = 81TPJy, (68) 

dP 
dz 

p = 81Tply, 

Z2 = lI(3r, 

M(a + 3z - 2)2/3 - 2 
----'----'---- P 
~[(a + 3z- 2)2/3 +Z-2] 

h8(a + 2z- 2) P 
[(a + 3z - 2)2/3 + & - 2](a + 3z- 2)z3 

h8(3a + 5z- 2) 
+ -----~--~--~----~~ 

[(a+3z- 2f /3 +&-2](a+3z- 2)5/3 ' 

where 

fj = yl(3. 

(69) 

(70) 

(71) 

In order to assign to the constants a and 8 values which 
do not lead to unphysical results, we shall integrate Eq. (71) 
for values of h close to one and assume 

a(h) = a(h = 1)[1 + 11 - h I/h], 

8(h) =8(h = 1)11 + 11-h I/h I· 

Also for Zo = z(r = a) we get, using (67) 

E = 8/~(a + 3zo- 2)2/3. 

(72) 

(73) 

Figure 6 shows the solutions for h = 1, h = 1.33, with 
E = 0.35. 
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v. CONCLUSIONS 

We have presented a heuristic method to obtain aniso­
tropic models in the context of general relativity. 

The main virtue of the method is its simplicity and the 
fact that the models obtained are continuously connected 
with the isotropic case h = 1, which allows comparison with 
this case. Of course, whether or not these models represent 
physically plausible situations will depend ultimately on the 
agreement between relation (10) and a reasonable equation of 
state for the tangential pressure. 
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We discuss how the rotation of an observer's Cartesian reference frame is related to the precession 
ofth.e shear tensor's principal axes and to the rotation vector of the fluid. An approximate solution 
of~mstein's equations illuminates this relationship further. In the case with a magnetic field and 
flUid flow a vorticity is allowed in Bianchi I cosmologies. 

PACS numbers: 04.20.Cv, 04.20.Jb 

I. INTRODUCTION 

In the past decade the well-known models of cosmology 
have been exhausted. Since an important paper by Misner, 1.2 

there has been widespread consideration of anisotropic mod­
els with more complicated geometries,3-7 referred to below 
as the "Maryland" universe. Simultaneously Ellis and his 
pupils have also developed a method for dealing with a spa­
tially homogeneous, anisotropic cosmological model8

-
10 

which we shall name the "Cambridge" universe. Hawking 
has blended them into an hybrid. II

.
12 

The models contain expanding perfect and imperfect 
fluids possessing shear, rotation, and acceleration of the flu­
id flow. In the case of perfect fluids the shear can always be 
diagonalized. Should there be imperfect fluids or electro­
magnetic fields this is not so and the off-diagonal terms in the 
shear tensor interact with the fluid expansion. The shear 
tensor precesses: Its principal axes rotate causing the tem­
perature ellipsoid of the microwave background radiation to 
have an angular momentum. 2 The spin is about the observ­
er's fluid flow vector. 

This is due to another kinematical quantity which exists 
when imperfect fluids and electromagnetic fields are present. 
If the metric is of the form 

ds2 = - dt 2 + e2ue2f3ijdxidxj (1) 

with a = a(t) and Pij = Pij(t), a symmetric, tracefree ma­
trix, that quantity is 

Tij = (ef3).K[i(e-f3)j]K , (2) 

where the brackets denote the usual antisymmetry oper­
ation. It has been formally described previously as the rota­
tion of an observer's Fermi-transported reference triad. 13.14 

The relation between these quantities can be given a 
more precise meaning. We shall examine that in this paper. 
In Sec. II the spatial tensor Tij will be shown to be the mea­
sure of the rotation of the principal axes of the coordinate 
shear tensor 

(3) 

with parentheses indicating the usual symmetrization. Since 
the observer's reference triad vectors can be made eigenvec-

a)NASA-ASEE Summer Faculty Fellow, 1977-78, Marshall Space Flight 
Center. 

tors of this shear tensor, Tij measures the observer's refer­
ence triad rotation. We will show this through a few simple 
kinematical identities. 

Since Tij is a rotation, we will also examine its disen­
tanglement from the fluid vorticity. We will show that the 
frame rotation and fluid rotation are proportional to each 
other with a Bianchi type V cosmological model as an exam­
pie. This means that the universe's dynamics react back on 
our local reference triad. 

In Sec. III we will exhibit a particular family of Bianchi 
I cosmologies with anisotropic stresses and give an approxi­
mate solution which shows how the shear tensor precession 
is truly given by the tensor Tij . A formal solution which 
demonstrates this relation will be first given and then com­
pleted in the approximate solution. 

The effect of magnetic fields will be considered in Sec. 
IV. There we will find two things: First, that the presence of 
the field allows a fluid flow to exist in Bianchi I models. 
Second, that those conditions allow Tij to be nonzero, which 
allows the vorticity to exist through the shear tensor. Again, 
Tij and the rotation end up proportional to each other. In this 
section we also give an approximate solution for all quanti­
ties. The effects of curvature in Bianchi V and IX universes is 
considered here. 

Conclusions and suggestions for future work are sum­
marized in the final section. 

II. REFERENCE TRIAD ROTATION AND FLUID 
KINEMATICAL QUANTITIES 

By the Fermi transport law the Cartesian reference­
frame triad vectors ea evolve according to the equation 15.16 

dea/dT = - n ~ebwhere the precession tensor n is given by 
the wedge product n = - a A u with a the acceleration. 
This acceleration can include rotations as well as boosts. But 
dea/dT = E't,cn ceb = E't,ccdeeideeilljn1eb (see Refs. 8-10), 
where for a fluid congruence, rather than the normal con­
gruence, substitute ub for n b. 

Also from the definition of the Ricci rotation coeffi-
. t 15 r i -i h i h d clen s abc = eaecilljt:"b were ea are t e tetra compo-

nents, we can formulate the relation between the Fermi 
transport n ~ and Tab' For a metric as in the Introduction 
r iOj = - Tij . Combining this with the first two equations 
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(4) 

Hence fJ ~ = 7 ae. By this elementary example tae represents 
the rotation rate of an observer's Fermi-transported refer­
ence triad. This is amplified in the formalism of Ref. 10. The 
fluid flow vector is given by uft = cosh /3nft + sinh /3cft , 
where /3 is the hyperbolic angle of tilt between U ft and nft the 
normal to the homogeneous hypersurfaces of constant time 
and cft is the projection of uft into these hypersurfaces. The 
tetrad vector commutators give the affine connection coeffi-
cients r aPr via [Ek' Eft] = rrft E" and r apr A 

= ~(r aPr + r rap - r Pra)· In the normal basis Eo = n, 
Eft = eft' then [n,~] = (E;"fJ" - O;)e" and [ek' eft] 
= (EkftTn T" + o;ak - o~aft)e", where OftV = n{Jsllv) Olv=co­

variant derivative) is the expansion + shear tensor of the 
normal congruence, fJ" = E"ft"e~evilljni is the rotation rate 
of e along the normal congruence, and n TV(a k) is a relative 
tensor ( vector) determining the geometry of the spacelike 
hypersurfaces. lO 

We now analyze this quantity according to the formal­
ism of King and Ellis. 10 The reader should refer to their 
paper for the form of the main equations. Use is made of the 
Jacobi identities, the inertia and momentum density conser­
vation equations, and the Einstein field equations. They give 
an explicit algebraic relation between the vorticity and shear 
in perfect-fluid, tilted, spatially homogeneous models: 

Wa P = !(,u + ptlcosh-l/3 (Eap"n"k + o~ap - o~aa) 

X (EkpTnTV - 3apo V

k)0';, (5) 

which shows how wft is coupled to the peculiar velocity vec­
tor of the matter C k and to the shear 0';,. We will show from a 
different perspective how f is the the observer reference 
frame rotation. A specific example will show a direct rela­
tionship between fJ T and wftv. In a model of Bianchi type V 
we can take a k = ao ~ and C k = co~. The tetrad vectors are 

A a 
eo = -, 

at 

A -I( ) (a f I 3) a (I) a) e l = X t -I + (t, x ,x -2 + g t, X -3 ' 
ax ax ax 

(6) 

A Z-I~.x' (a K() a) 
e3 = ax3 + t ax2 . 

The Jacobi identities and (13) (23) field equations give 
a = Aox- I, 0"13 = .I?3(yz2)-I, 0"23 = .I~3(Xy2)-I, and es­
tablish consistency conditions to fix K = - 2f.I23 
Z (XY2)-1 dt. The conservation equations are d In (wP 
Xcosh/3)ldt = Oanddln(rsinh/3)1dt = - Z -lc2a,z. The 
Jacobi identities and (02) (13) field equations fix the triad 
rotation fJ3 = 0"12 = 0, fJ2 = - 0"13' and fJ1 = - 0"23. The 
remaining field equations and dynamics need not concern us 
here, save that they can be consistently solved as in King and 
Ellis. 10 The relative connecting vector xa between two 
points can be aligned with the reference triad vector ea. It 
evolves then according t09

: dXaldt = OabX b to first order. 
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If 0 a b is diagonal we have only expansion of the components 
ofxa. But if 0"13 = -fJ2#Oand0"23 = -111#O,thenthe 
vector itself will rotate. Hence ea will rotate with it. Equa­
tion( 5) establishes the relation between the triad rotation and 
the fluid rotation. The fluid rotation is WI3 = ~ 

(f.l + p)-Icosh -1/3 0"1. Then by the Jacobi identity and (02) 
(13) field equations fJ 2 = - 0"13 and for the triad rotation 
tensor I1l'v = EI'1TV11 "'we find fll3 = - ~ (It + p) cosh/3 W 13. 

Now if we may assume an equation of state p = rf.l, the con­
servation law gives cosh /3 = Wol- 3f.l - I - r, where Wo is a 
constant and is 

1113 = - i(1 + r) Wo/-
3f.l - rWI3 . (7) 

Now 2(1 + r) W 013 is a constant, hence the difference be­
tween fJl3 and WI3 is contained in the 1-3f.l- rterm. Neglect­
ing the effects of cosh /3 on the fluid expansion we have that f.l 
varies as 1-3 to [-6 as r ranges 0 to 1 as a first-order approxima­
tion. Then, with an allowed rescalingof WI3 so that 
2(1 + r) W 013 = 1, it is possible for 11 13 = - W 13 in certain 
circumstances. We discuss the meaning of this below. 

III. DEMONSTRATION BY AN APPROXIMATE 
SOLUTION OF EINSTEIN'S EQUATIONS 

We now consider the nature of this phenomenon within 
the context of the Maryland universe l-7 in particular with 
regard to the nature of 7ij. The initial discussion shall be 
concerned with the simplest spatial geometry of Bianchi 
type I. 

The metric is of the form ds2 = - dt Z + eZaeffdxidxj, 
where a = a(t) and/3ij is asymmetric 3X3 traceless matrix. 
The affine connection and Einstein tensors are well known. 
The connection coefficients are rijO = - r Qij = ilOij 
+ O"ij' r iOO = - r OOi = r ijk = 0, and r iOj = - 7 ij , where 

. = a lat'O"ij = (ef1)ifeiland7ij = (ef1)ifei(X The Ricci ten-
t R 0 3·· 3. 2 R 0 sor componen s are 0 = a + a + O"ijO"ij' i = 0, 

Rij = [ii + 3il2]Oij + O"ij + 3ilO"ij + [0",7 Lj , and R = 6ii 
+ 12il2 + O"ijO"ij" The field equations are 

3ilz - !O"ijO"ij = TOO , 

O"ij + 3ilO"ij + [0", 7],j = Tij - ~ijT~ , (8) 

-6ii - 9ilz - ~iP'j = TKK . 

We shall explicitly solve Eqs. (8) for a universe contain­
ing a general fluid with a magnetic field. The matrix /3ij will 
have block diagonal form wherein/323#O. The magnetic 
field will have the components Bft = B2o; + B3o!. The per­
tinent field equations read 

all +3ilO"II = 7T1I , 

a22 +3il0"22 +20"23732 = 1Tn , 

a33 +3il0"33 +20"32723 = 7Tn , 

a23 +3il0"23 + 0"22723 - 7230"33 = 1TZ3 , 
a32 +3il0"32 + 0"33732 - 73ZO"Z2 = 1T32 . 

(9) 

The trace-free stresses 1T ap may be due to viscous stresses 
and Maxwell stresses, 

1Tap = - AO"ap - !BaBp + f-zBzOaP . (10) 

Their exact form will not be important in the formal solution 
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we are seeking. Maxwell's equations and the hydrodynamic 
equations could give us the functional relations of B, U ap' a, 
etc., required. 

We subtract the second and third of Eqs. (9) from each 
other and sum the fourth and fifth ofEqs. (9). We also make 
use of the trace-free property of f3Jj and 01 = O. These give 

2U23 +000"23 -2(0"22 - 0"33)1'32 = 21T23 , 

(U22 + ( 33) +3c:i(0"22 + 0"33) = - 1T1I . 

(11) 

These can be solved completely. First let.I = e3a(0"22 - 0"33)' 
.I23 = 20"Z3e3a, Il = (1T2Z - 1T33 )e3a, and Ilz3 = 21T23e3a. Then 
the first two of Eqs. (11) are.I . + 21' 3z.IZ3 = Il and 
.2'23 - 21'32.2" = Il23, which can be combined on multiply­
ing the second equation by i = V-I into (.I + i.IZ3 ) • 
= 2i1'd.I + i.IZ3 ) + (Il + iIl23 ). The general solution is 

(.2' + i.IZ3 ) = (.I ° + i.2' ~3 )e2Jsr"dt + e2JSr"dt f(Il + Il23 ) 
X e - 2JSr"dl dt. Using this with the last of Eq. (11) for 
(0"22 + 0"33) we find for the components of the shear (super­
script zero indicates a constant): 

(12) 

2U22e3a = ~2 (1 + cos¢J) + U~3 (1 - coscfJ) - 2U~3 sincfJ 

+ coscfJ f [(1T22 -1T33)COs¢J +21T23 sincfJ ]e3a dt 

+ sincfJ f [(1T22 - 1T33)sincfJ -21T23 cos¢J ]e3a dt 

-f 1Tlle
3a dt , (13) 

20" 33e3a = 0"~3 (1 + coscfJ ) + ~2 (1 - cos¢J ) + 20"~3 sincfJ 

- cos¢J f [(1T22 - 1T33)COs¢J -21T23 sincfJ ]e3a dt 

- sincfJ f [(1T22 - 1T23)sincfJ -21T23COScfJ ]e3a dt 

(14) 

J 

2U23e3a = 2U~3COs¢J + (U~2 - u~3)sincfJ 

+ coscfJ f [(21T23COScfJ - (1T22 - 1T33)sincfJ ]e3a dt 

+ sincfJ f[(1T22 -1T33)COScfJ +21T23sincfJ ]e3a dt, 

(15) 

where cfJ = 2f1'32 dt. If viscous stresses are present it is more 
straightforward to replace the factor e3a by e3a + ,\, in Eqs. 
(12)-(15) with the contribution to 1Tap coming from the 
magnetic fields. 

We now make the solution more explicit. In the case of 
vanishing viscosity and magnetic field the evolution of the 
shear would be just O"Jj = d;je -3a. We will therefore take 
Eqs. (12)-(15) as giving the effects of viscosity and magnetic 
fields as small perturbations to the simplest possible aniso­
tropic background. Maxwell's equations would give 
B 2 9!: B ~ e - 2a and B 3 9!: B ~ e - 2a. Dimensional analysis of the 
shear evolution equations shows that 1'Jj must be close to the 
form 1'Jj 9!: rOt -I where 1'0 is a constant or very slowly varying 
function of time. Then to this order of approximation cos¢J 
= cos[21'°ln(t It 0)]. The inertial density conservation equa­

tions give that the inertia density evolves as p = pOe - 3ya, 

where the speed of sound Vs in the equation of state relating 
pressure p to the inertia density p, p = (y - 1),0, is 
Vs = (y - 1)112. Then to the lowest order (isotropic uni­
verse) e a = [(3ypol2V3)t ]2/3y, which is usually written ea 

= At 2/3y with A a constant. 
To evaluate the shear we use Eq. (13) as an example and 

evaluate the shear component U 22. It will have integrals in it 
of the form 

f Ct 2I3Ycos[21'°ln(t Ito)] dt 

which is the very first in Eq. (13) with 

(16) 

C = (A 14) X (O~' - B n. We use the gauge freedom allowed 
by general covariance to set 1'0 = !. This means that all rota­
tion and precession rates of frames or fluid components are 
scaled by the rotation rate of observer reference frames. Us­
ing the substitution x = In(t Ito), The integral passes over to 
the well-known form D fe(2/3 y + I)X COSX dx with 
D = Ct 6/3Y + I. The 0"22 shear component is then 

t - 2/y t - 4/3y + 1 

0"22 = 2A 3 (~2 [1 + cos In(t Ito)] + ~3 [1 - cos In(t Ito)] - 2~3 sin In(t Ito)} + 4A 2 

((B~)2 - (B~)2(2/3y+ 1)12 +B~B~ _ (B~f + (B~f) 
X [(2/3y + 1)2 + 1] 6(2/3y + 1) 

(17) 

or in terms of a, 

e-
3a 

[ ° ( 3ya) ° ( 3ya) 2-D . 3ya] -14Y-3/2)a[E} U22 = -2- 0"22 1 + cos u + 0"33 1 - cosu - U 23 sm 2A + e , (18) 

I 
where [E } is the constant term in the brackets in Eq. (17). 
The full set of shear terms are listed in the Appendix. The 
shear terms may be inserted into the roo Einstein equation 

(8) using either Eq. (17) or (18) above to yield information 
about the expansion. 

Since we are obviously using the small shear approxi-
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mation weaddadisturbance€toawherec<l. Then the TOO 
Einstein equation is 

li2 +2 Iii = Too - !uiju;j . (19) 

Inspection of the shear terms in the Appendix shows that the 
equation becomes 

3yt ( n = 2 • i = - t -4/y 2: (M~cosn¢J + N~SlOn¢J) 
4 n=O 

n= 1 

+ t - 10/3y + I 2: (O~ COSn¢J + P ~ sinn¢J ) 
n=O 

+ t - 4/YQ 'sin¢J cos¢J + t - 8/3 + 2R ') , (20) 

where the primed case letters are all constants. This can be 
transformed to 

i = e - (6 -3y/2)a :t: [Mn COSn (3;;) + Nn sinn (3;;) ] 

+ e - (S -3y)a :t~ [OnCosn (3;;) + Pnsinn (3;;)] 
+ e - (6 -3y/2)a Qcos ( 3;; )sin ( 3;;) + e - (4 -3y)a R , 

(21) 

2A [n = 2 M COS
n 

- IX ( n(n - 1)) 
€ = - eaa 2: n 2 2 acosx + nsinx + ---'----'-

3y n=O a + n a 

n~2 Nnsin
n 

- IX ( . n(n - 1))] + £.. 2 aSlnx - ncosx + ---'----'-
n=O a2 + n a 
2A [n = I 0 cosn - IX 

+ - eba 2: n 2 2 (acosx + nsinx) 
3y n=O a + n 

n = I P sinn - IX ] 
+ 2: n 2 2 (asinx - ncosx) 

n=O a +n 

_ 2AR e - (4 - 3y)a + 2A feaacosx sinx dx , 
3(4 - 3y)y 3y 

(22) 
where a = - (6 -3y)2A 13y, X = 3yal2A, and 
b = - (5 -4a/2)2A 13y. This completes the approximate 
solution. The expansion is altered by a complicated oscilla­
tory pattern superimposed on it in response to the shear. 
Overall, we see that the precession rate of the observer refer­
ence frames is controlled by the shear tensor strictly by the 
terms in cos In (t Ito) and sin In (t Ito), If 7 0 = 0 the effects of 
these terms vanish and there is no spin of the observer refer­
ence frame. 

I t is clear that while U II stands alone there is a great deal 
of mixing of U22' U33' and U23. The contributions due to ~3 
and U~2 affect U22 and U33 in the same way, while their effect 
on U 23 depends only on their difference. The important vari­
able is the phase angle ¢J = 2f 7 32 dt; U 22 decreases as - 2U~3 
sin ¢J while U33 increases as + 2U~3 sin¢J. One may also exam­
ine the contributions due to the inhomogeneous terms in the 
differential equations, i.e., due to the trace-free stresses. 

Consider an observer's reference triad to be a shear ei­
genvector and sight on a sample distant galaxy with position 
vector eG = De2 + d 3. Then as the shear evolves, (say) U33 
increases with respect to U 22' and we find the 3-component of 
eG increasing while the 2-component decreases. The refer-
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ence frame "rotates" toward the 3-direction. Another way of 
viewing this is that U23 decreases as the reference frame pre­
cesses with the shear tensor. Dynamically, this means that 
the evolution of the universe tends to diagonalize the shear 
tensor, so that one of the principal axes will end up aligned 
with the magnetic field. Once the reference triad is aligned 
with the shear principal directions, it rotates with their 
precession. The angle of this rotation is given by 
¢J = 2S732 dt, 732 being a measure of the rotation rate of the 
reference triad. 

Cosmological observations would be altered in an inter­
esting way by these effects. Proper motions of distant objects 
as formulated by Kristian and Sachs l7 furnish a good exam­
ple. The evolution of the image direction cosine e /L is given by 

delL 
dt 

ef' ( U /L{3 + liJ /L{3 ) 

+ r[ef'(uy{3 + liJY(3)U/Llly - ef'E/L{3] (23) 

where liJ (3 is the vorticity tensor and U/Llly is the total veloc-
/L 'd itygradient U II = () + liJ • The Newman-Penrosel en-

/L Y /LY /LY 
tities 18 give the optical scalar equations which we may use to 

find E/Lv' 
E,,,, = 0-/", - 2u,lV () • (24) 

Using Eqs. (17), (18), and (22) one finds the precession rate, 
de /L I dt as a quadrupole pattern on the celestial sphere. How­
ever, the direction cosine is the direction vector e-' in the 
observer rotation frame which is spinning, in a sense oppo­
site to the velocity as shown in Sec. II. Thus, one would 
conclude that the proper motion was much greater than it 
really was. 

If a flow, or peculiar velocity, were imparted to the fluid 

in the form U = U. >: 0 + U20 2, the TO; = 0 field equa-
/L OV/L /L • 

tions would normally constrain it so that U2 = O. Wlth a 
magnetic fieldBa = B2Da 2 + B3Da 3 present, this is not the 
case. For then we have an electric field EI = UoU2B3 and a 
Poynting vector P2 = UoEIB3' The TO; equation then reads 

W~~=~· ~~ 
The shear equations then include terms containing the 
Reynolds stresses ~;j' 

1T;/ = yp(U; ~ - D;j UK UK 13) (26) 

The conservation equations for the momentum density are 
no longer trivial and give a lowest order solution of U2 

= U~exp[ - a - (y - 1)lnply1 for nondissipative fluids. 
The Reynolds stress terms are therefore of the form 
/ypoe-3ya(U~)2e- [2-6(y-l)la, where/= + i, -1' which 
finally contains terms of the order e(3Y - 8)a or A (3y - 8) X 
t (6y - 16)13y. The additive contribution to the U22 shear com­
ponent is then of the form 

/YPo (U~f A 3y-8 (t ItoY6y -16)/3y+1 

2 - [(6y -16)/3y +1 1 
(27) 

This is a heavy contribution to the shear. 
The vorticity vector is given by liJ a = !7Jabcd Ub UClld 

where 7Jabcd is the four-dimensional alternating object. One 
finds in this case thatliJI = (U/ + Du23 • Collins 19 has shown 
that Bianchi type I models with a magnetic field can evolve 
like a Bianchi II model. Batakis20 has shown that type II 
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models can have vorticity if electromagnetic fields are pre­
sent in addition to the perfect fluid. It is almost as though the 
field endows the manifold with a spatial curvature. The pres­
ence of a spatial curvature is necessary if a perfect fluid is to 
have a peculiar velocity. The velocity then provides "curva­
ture" terms to react back on the field via Maxwell's equa­
tions. One of Maxwell's equations in this caseZI Balla 
- B aUa - 2waEa = 0 which gives BzUz = -2(U/ 
+ DU23UZB3' The equation for B3 gives B3-B3

0e -2a 
Uo -1/6 and Bl is found algebraically. Note the additional 
term Uo -1/6 which is (1 - U11t l

/
1, affecting the field's dyn­

amics because U2 =1=O. 
In more general geometries the spatial curvature of the 

homogeneity surfaces R ;j enters the field equations with the 
extratermsR */2,R;j - R */30ij ,andR */2 in the last of the 
three Eqs. (8). The TOi Einstein equation is no longer trivial, 
being 

e-a[(e-PueP)bacabc(e-P)ci - Uij(e-P)jCcaac] = T Oi , (28) 

linking the nondiagonal u,p, and group structure constants 
C a

bc to the matter currents. The group structure constants 
are given by the spatial triad commutation relations. 

In Bianchi type V spaces C 221 = C 331 = 1 and type IX 
C a

bc = Eabc (the permutation operator). 
These two types correspond to open and closed Fried­

man universes. In type V the space curvature is isotropic so 
R' - (1/3)R *o') = 0 and 1' .. affects dynamics the same I) , I] 

way as in type I. Things are more complicated in type IX 
since there (1/2)R ;j = (3e - 2a /4)( Vg - 1) and Rij - !R ·Oij 
= (3e- Za/4)aVg /apij with 
Vg = (1/3 )Tr [e4P - 2e - 2P)ij + Oij ]. 

The spatial rotation of the fluid in these cases is 

w a = e -3a Eabc [1/2C~cUdUO + ubuc ] (29) 

for a stress tensor with components TOi = (p + p)UOui . 
Equation (28) is solved for the velocity U i and then inserted in 
Eq. (29) to determine the vorticity, in terms ultimately of the 
noncommuting elements of (eP)ij and (e - p)ij' 

In type V Eq. (28) reads 3uli = poe - 3au;. hence 
Ui = (3/PO)e3au li for dust (pressure-free matter). Hence wa 

= (3/PO)EabcC~cUli/2 + (3/PO)zEabce-3aUlb (e3au lc )' In this 
case, let pij have the block diagonal form with 1312 =1= 0 so that 
1'12 replaces 1'32 in the previous discussion. Then there can 
only be spatial velocity components U I and U2 by the T Oi 

equation (u 3 = 0). The vorticity vector only has w3 =1= 0 while 
Wi = w2 = O. Then we have competition between w 12 and 1'12 
which must be disentangled if we are to understand certain 
of the observations. We have w3 = (3Ipo)u12e - a -P .. 
+ (3/po)2e3a[ul1 (un)' - udul1 ) 1 This expression may 

be used for the former expression, inserting (e3aUll)' 
= (Ul1 - 2U121"2de3a and (e3auu)' 
= (U12 - Ull1"12 + 1'12(22)e3a from the trace-free space­
space Einstein equations, Eqs. (9) with thePl2+-- ;123 
substitution. 

In type IX the T Oi equation reads !Eijke - a [e2P,u 1jk 
= Toi ' Again we restrict ourselves to the block diagonal 

form for Pij' taking 1323 =1=0 in the preceding equation and the 
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vorticity vector by Eq. (29) has only the Wi component as 
then again a rotation tensor W Z3 is mixed with a triad spin 
tensor 1'23' In solving the shear equations (9) we have to deal 
with the space curvature anisotropy. If we consider that it 
may become an additive part to the trace-free stresses,4 viz. 
Uir-Jlij - R;j + (1/3)R *Oij' then formally the effect of 
1'ij is the same on the dynamics. Certainly nothing is 
changed qualitatively in this behavior. The rotation of the 
universe has been discussed with no reference to the metric 
tensor's principal axes. 11.12 But in others4-6 the fluid rotation 
is defined by the rotation of the metric's principal axes. A 
certain portion of an observer's perception of rotation in 
proper motion and distortion measurements in these type IX 
models4-6 (and in other typesll•

12) would be in the precession 
of his reference triad as eigenvectors of the shear tensor 
(aligned with its, hence the metric's, principal directions). 

In the more general tumbling (and possibly "mix mas­
ter") models the relation of 1'ij to the dynamics and to the 
vorticity is difficult to display without making approxima­
tions. Using the results of perturbation theory4.11 the behav­
ior of 1'ij is easily calculated for comparison with wij . The 
results are in accord with this discussion. One possible inter­
pretation is that the evolving shear tensor represents a gravi­
tational wave of wavelength greater than the horizon dis­
tance; then 1'ij represents the angular momentum or spin 
tensor of that wave's circularly polarized component. 

More study of the role of magnetic fields is needed, par­
ticuarly in magnetohydrodynamic models such as those of 
Tupper and Dunn. 22 Ifwe expect a high-temperature plasma 
to conduct electricity, then certainly we should include the 
dissipative Joule heating and Ampere forces in our analysis. 

IV. CONCLUSIONS 

We have examined the rotation of an observer's refer­
ence triad in currently accepted formalism for treating spa­
tially homogeneous cosmologies. An observer's triad rota­
tion is affected by the shear dynamics through Einstein's 
equations. The quantity 1"ij = (ef3)"K(i(e - P)jJK is the triad 
rotation tensor. The role of the magnetic field is most 
important. 

Confusion can arise between an observer's triad rota­
tion and the rotation of the cosmological fluid in proper mo­
tion measurements. The observations must be very carefully 
examined, then, to be sure of the role played by the various 
kinematical quantities. The confusion varies with Bianchi 
type, as shown by the 1"ij-+UJij relations discussed. In par­
ticular a precessing shear tensor may appear to be due to a 
rotating fluid when the cause is partially a rotating quadru­
pole distortion much like a circularly-polarized long wave­
length gravitational wave. 

It may be that the upper limits on the cosmological vor­
ticity can be further reduced if a component due to the rota­
tion of our own reference triad can be identified. Other ob­
servations, such as the distortion and proper motion 
effects, 17 and number counts, may possibly allow separate 
limits to be fixed for each quantity, so that more precise 
limits, including possible lower limits, may be determined. It 
is certain anyway that 1'ij is an important entity, both in 
Einstein's equations and in observations. Most interesting 
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will be the issue of whether one group type will mimic an­
other model's behavior upon inclusion of fluid flows, electro­
magnetic fields, and magnetocurrents. For then the universe 
will be a confusing place indeed. 
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APPENDIX 

The full forms of the rate of shear tensor's a j j compo­
nents are given here. The most general trace-free stress ten­
sor 1Tjj in the spatial hypersurfaces is given by 

1Tjj = - Aaij - [ !BjBj - h.o 28jj I + yp(Uj ~ - U 28ij13) , 

(AI) 

where A, Bj , Uj , y, andp are the kinematic viscosity, magnet­
ic induction, fluid velocity, equation of state index, and iner­
tiai density. The parts of 1Tjj are the viscous stresses, Max­
well stresses, and Reynolds' stresses. We will consider 
mainly Maxwell stresses here. The formal solutions to Ein­
stein's equation for the shear are Eqs. (12H 15) in this paper. 
Using the analysis immediately following those equations 
one finds 

(A2a) 

(A2b) 

(tit )-211' (tlto)-4/31'+ I 
= ° 3 [O"zzO[I+cosln(tlto)+0"33°(I-cosln(tlto))-20"230sinln(tlto)} + -"-..:.~-.,...---U ~2 

X( [(B30)2 - (B20)2] (2/3y + 1)/2 + B2oB30 _ (B20)2 + (B30)2) 

[(2/3y + 1)2 + 1] 6(2/3y + 1 

= e-
3a 

[0" 0(1 + cos 3ya)] +0" O(l-COS 3ya)_2u 0sin 3ya +e-(41' -312/a[El 
2 22 U 33 U 23 U ' 

(t It ) - 211' (t Ito) - 4/31' + I 

= ~ 3 [a33 O[ 1 + cos 1n(t Ito) + a22°(1 - cos In(t Ito)) + 2a330sin In(t Ito)} - 4A 2 

X ((B3 0)2 - (Bz 0)2(2/3y + 1)/2 + B2 ° B3 ° + (Bz 0)2 + (B30)2) 
[(2/3y + 1)2 + 1] 6(2/3y + 1) 

= e ~ 3a {a 33 (1 + cos In ~) + a22 ° [ 1 - cos In c;: ) ] + 2a 330sin 3;:} - e - (41' - 3/2)a [ F l , 

These may be used in the TOO Einstein equations to determine 
the evolution of a in either form, depending on the desired 
type of approximation being used. 

If viscous stresses are present, then all terms should 
include a factor of e - A.t to show the effects of viscous dissipa­
tion of shear. 

1T1I = - ypU/13, 

1T22 = 2ypU/13 , 

1T33 = - ypU/13. 

(A3a) 

(A3b) 

(A4a) 

(A4b) 

(ASa) 

(ASb) 

(A6a) 

(A6b) 

(A6c) 

When Reynolds' stresses are present, say for a peculiar 
velocity U2=1=O, then the new terms in 1Tjj are 

The lowest-order evolution of p and U2 are P = poe - 31'a and 
Uz = u2oe(31'- 4)a. The Reynolds's stresses then assume the 
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form 

1T II = - !rpo( U2
0)2e(3 Y - 8)a 

= _ !rpo( U2
0)2A 3y - 8t 2(3y - 8)/3y , 

1T 22 = ~rpO( U2
0)2e(3

y - 8)a 

= ~rpO(U20)2A 3y- 8t 2(3y- 8)/3y , 

(A7a) 

(A7a') 

(A7b) 

(A7b') 

(A7c) 

The Reynolds' stress contributions to the rate of shear 
(Iij R are then easily found: 

(III R 

rpo(U20)2A 3y (t It )(6y -16)/3y + I 

3A 8[(6r - 16)13r + 1] 0 

rpo( U2
0)2A -3/2e[(9y - 24)13y + 3/2]a 

3A 8 - 8Y [(6r - 16)13r + 1] 

= 
rpo(U2

0)2A 3y (t Ito)(6Y -16)/3y + 1 

6A 8 ( [( 6r - 16)13r + 1] 2 + 1} 
= + (I22 -R [(6r - 16)/3r + 1] -I. 

(A8a) 

(A8b) 

(A9a) 

(A9b) 

(A9c) 

(AW) 

(Alla) 

(Al1b) 

The full shear tensor may then be constructed (Iij EM + (Ii/ 
for computation. 
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The full shear tensor may then be constructed (Ii) EM + (Ii) R 

for computation. 

IC.W. Misner, Phys. Rev. Lett. 19, 533 (1967). 
2c.W. Misner, Astrophys. J. 151,431 (1968). 
JR.A. Matzner, Astrophys. J. 157, 1085 (1969). 
4R.A. Matzner, Ann. Phys. (N.Y.) 65,506 (1971) (Part I); 65, 541 (1971) 
(Part II). 

5R.A. Matzner, J. Math. Phys. 11,2432 (1970). 
6R.A. Matzner, L.C. Shepley, and J.B. Warren, Ann. Phys. (N.Y.) 57, 401 
(1970). 

7T.E. Perko, R.A. Matzner, and L.G. Shepley, Phys. Rev. 0 15, 969 
(1972). 

"G.F.R. Ellis, J. Math. Phys. 8,1171 (1967). 
9G.F.R. Ellis and M.A.H. MacCallum, Commun. Math. Phys. 12, 108 
(1969). 

IOA.R. King and G.F.R. Ellis, Commun. Math. Phys. 31, 209 (1973). 
I IC.B. Collins and S.W. Hawking, Mon. Not. R. Astron. Soc. 162, 307 

(1973). 
12S.W. Hawking, Mon. Not. R. Astron. Soc. 162, 307 (1973). 
"A.J. Fennelly, Astrophys. J. 207, 693 (1976). 
14D.J. Raine, Mon. Not. R. Astron. Soc. 171, 507 (1975). 
"S.W. Hawking and G.F.R. Ellis, The Large-Scale Structure a/Space­

Time (Cambridge U. P., New York, 19731. 
I"C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (Freeman, San 

Francisco, 1973). 
17J. Kristian and R.K. Sachs, Astrophys. J. 143,379 (1966). 
J8E.T. Newman and R. Penrose, J. Math. Phys. 3,566 (1962). 
19C.B. Collins, Commun. Math. Phys. 27, 37 (1972). 
2°N. Batakis, Ph.D. Dissertation, City College of New York, August 1974; 

available from University Microfilms, Ann Arbor. 
2IG.F.R. Ellis, "Relativistic Cosmology," in Cargese Lectures in Physics, 

edited by E. Schatzman (Gordon, New York, 1973), Vol. 6, pp. 1-60. 
22B.O.J. Tupper, Phys. Rev. 0.15,2123 (1977); K.A. Dunn and B.O.J. 

Tupper, Astrophys. J. 204, 322 (1976). 

A.J. Fennelly 132 



                                                                                                                                    

JMAP A,800 1 00810 103 

On the Hoenselaers-Kinnersley-Xanthopoulos spinning mass fields 
Masatoshi Yamazaki 
Department of Physics. Kanazawa University. Kanazawa 920. Japan 

(Received 14 April 1980; accepted for publication 5 September 1980) 

The metrics of the Hoenselaers-Kinnersley-Xanthopoulos family of spinning mass solutions 
with arbitrary positive number distortion parameter {j and with twin rotation-reflection 
parameters besides mass parameter are studied. When values of two parameters are unequal or 
equal, the metrics are asymmetric or symmetric with respect to the reflection at the equatorial 
plane, respectively. The metrics for any distortion parameter {j contain no event horizon. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

On the problem of the stationary axisymmetric, asymp­
totically flat exact Einstein vacuum field Hoenselaers, Kin­
nersley, and Xanthopoulos l (H-K-X) found, through their 
study of the symmetry transformations leaving the gravita­
tional field equations invariant, a family of spinning mass 
solutions with arbitrary positive number distortion param­
eter {j and with two parameters besides mass parameter. 
They have given the solutions in the form of the Ernst com­
plex function2 E. 

The purpose of the present paper is to give the metric 
functions/, w, and r [see Eq. (4) for the definition], to clarify 
the physical meaning of two parameters A ( = a l in H-K-X 
notation) andll ( = a2 in H-K-X notation), and to study the 
property of the H-K-X metrics. This family of solutions has 
four parameters, i.e. mass parameter m, positive number dis­
tortion parameter {j, and twin rotation-reflection parameters 
A and Il. The angular momentum J about the symmetry axis 
(z axis) is 

J= ,r(A+Il) [(1l- A )sinT] 
(1 - AIl)2 
+ i2tJ + 1 - (2tJ + 3)Ap) COST] 

= m2(A + Ill! ({j(l - All) - Up)2 + (Il - A )2}-3/2 

X [til - A )2 + (1 + AIl)({j( 1 - All) - UIl) 
+ 2({j(1 - All) - UIl)2], (1) 

where the unit of distance K is 

K = m( 1 - AIll! ({j( 1 - All) - UIl)2 + til - A )2}-1/2, (2) 

and the angle T is 

tanT = (Il - A )({j(1 - All) - UIl)-1 (3) 

[consult Eqs. (33), (32), and (31) for the derivation of the 
angular momentum J about the symmetry axis (z axis), the 
unit of distance K, and the angle T, respectively]. The angle T 

is the parameter of the NUT -Geroch transformation with 
respect to the timelike Killing vector, which is necessary in 
order to have the asymptotic flatness. When A i=p or A = Il, 
the metrics are asymmetric or symmetric with respect to the 
reflection at the equatorial plane, respectively. The metrics 
with any distortion parameter {j contain no event horizon. 

In the latter half of this section the notation will be 
explained along the way to give convenient expressions of 
the gravitational field equations for sources with axial sym­
metry and angular momentum. In Sec. 2 the metric func-

tions of the H-K-X family of spinning mass solutions with 
arbitrary positive number distortion parameter {j will be giv­
en. Finally, in Sec. 3 the property of the metrics obtained will 
be studied. 

The line element is written in the form 

ds2 =f-l{e 2Y(dr + dp2) + p2 difJ 2} - f(dt - w difJ )2, (4) 

wherez,p, and ifJ are the Weyl-Papap'etrou coordinates and 
the three metric functions/, w, and r are functions of z andp 
only. Prolate spheroidal coordinates x and yare introduced 
as 

p = K(X2 - 1)1/2(1 - y2)1/2 and z = KXY, 

where the unit of distance K is given in Eq. (2) [consult Eq. 
(32) for the derivation of K]. The notations a = X2 - 1 and 
b = y2 - 1 are also introduced. The Einstein vacuum field 
equations are 

V(j-IVf + wj2p- 2Vw) = 0, (5) 

(6) 

rz - 2-Ij-2p(fz/P + flzflp) = 0, (7) 

r p + 4-Ij-2p((fz)2 + (flzf - U;,)2 - (flp)2) = 0, (8) 

where Eqs. (9) are used in advance and, for example, rz 
= arlaz. It follows from Eqs. (6) and (5) that there are po­

tentials fl and P, respectively, which satisfy 

p-2f2wy = - K-Ib -Iflx and 

p-2f2w
x 

= - K-Ia-Ifly , (9) 

f-Ifx + p-2wf2wx = - K-Ia-I(wfl)y + a-Ipy, 

f-If;, +p-2wf2wy = -K-Ib-l(w!J)x +b- Ipx'(lO) 

A, B, H, I, and G are defined by the relations 

f = AlB, fl = 2I IB, B = A + 2H + 2G, 

and 
H2 +/2 =AG + G 2. 

The Ernst E and S functions2 are E = (A + i2/)1 Band 
S = (H + il)lG. Then Eqs. (9) and (10) become 

2aA -2(H(A + 2G)x - (A + 2G)Hx) =Py, 

2bA -2(H(A + 2G)y - (A + 2G}Hy) = Px' (11) 

2aA -2(/(A + 2G)x - (A + 2G)Ix) = Qy' 

2bA -2(/(A + 2G)y - (A + 2G)/y) = Qx' (12) 

4aA -2(IHx - Hlx) = R y, 

4bA -VHy -Hly) =Rx, (13) 
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and 

0) = - K(Q + R ) + const. (14) 

Three potentials P, Q, and R are transformed linearly among 
them under the operation of three generators ofthe SUI 1,1) 
Ehlers group. Under the operation of one of three generators 
(parameter is T) A, H, I, G, P, Q, and R are transformed as 

A' =A,H' = HCOST + IsinT, 
I' = - H sinT + I COST, 
G' = G, P' = P COST + Q sinT, (15) 

Q' = - P sinT + Q COST, and R ' = R. 

This is the NUT -Geroch transformation with respect to the 
timelike Killing vector [see Eqs. (3) and (31) for detail]. Equa­
tions (11)-( 13) are the gravitational field equations for 
sources with axial symmetry and angular momentum.3 

2. METRIC FUNCTIONS 

The metric functions!, 0), and r of the H-K-X family of 
spinning mass solutions, which satisfy Eqs. (11)-(13), are 

J=A/B, (16) 

0) = - K(Q + R - 2(A + p)(1 - Ap)-I), (17) 

K = m(1 -Ap){(6(I-Ap) - upf 

+(p-Afj-I/2, (18) 

e2y =Aa6 (6- 1)/(1 _ Apf(a - b )6'+46 +4, (19) 

A = a6(a _ b )46 + 4 + A 2a36 + Ib (x + y)4.5 + 4 

+ p2a35 + Ib (x _ y)41i + 4 

_ Upa31i + I(a _ b )25 + 3 + A 2p2a51i + 4, (20) 

B = A + 2H + 2G, (21) 

H = Iicos T + /sinT, 1= - IisinT + /COST, (22) 

tanT = (p - A )(6 (1 - Ap) - Up)-I, (23) 

Ii = (!)(a - b )46 + 4 { (x + 1 )21i - (x - 1 )21l j 
+ (AlA 2a21l(x + y)4.5 + 4{ (y _ If(x + 1)21l + 2 

_ (y + 1)2(x _ 1)21l + 2j 

+ (i)p2a26(X _ y)4.5 + 4( (y + 1)2(x + 1)26 + 2 
_ ( Y _ 1 )2(X _ 1 )21l + 2} 

_ (!lApa21l(a _ b fll + 3 ((x + I fll + 2 
- (x _lf6 +2j 

+ (ilA 2p2a41l + 2[ (x + 1)21l + 4 - (x - Ifll + 4j ,(24) 

/ = _ Aa28 (a - b )28 + 3(X + yf5 + I 

+ pa28(a _ b )21l + 3(X _ y)25 + I 

+ A 2pa46 + 2(X + y)28 + 3 _ A/J,za48 + 2(X _ y)28 + 3, (25) 

G = (!l(a - b )48 + 4 {(x + 1)1l - (x - 1 )5j2 

+ (!lA 2a21i(x + y)41i+4{(y - l)(x + 1)05+ I 

- (y + l)(x - 1)05+ 112 
+ Wp2a21i(x _ y)41i +4 { ( y + l)(x + W + 1 

_(y_l)(x_l)05+ I j2 

_(!lA,ua21>(a_b)28+3{{x+ 1)1>+1_{x_l)8+1)2 

+ (l)A 2,u2a48+2!(X + 1)05+2 - (x - 1)05+ 2]2, (26) 

P = PCOST + QsinT, Q = - hinT + QCOST, (27) 

134 J. Math. Phys., Vol. 22, No.1, January 1981 

PA = 26ya8(a - b )415 + 4, 
+ U 2a 31> + Ib(x + y)4c5+4( -X + (6 + l)y) 

+ 2p2a36 + Ib(x _ y)48+4(X + (6 + 1)y) 

_ 4Ap(D + l)ya36 + I(a _ b )215 + 3 

+ U 2p2(D + 2)ya5c5 + 4, (28) 

QA = - Aa5(a - b f5 + 3(X + y)25 + I !( Y _ l)(x + 1 )25 + .. 

+ (y + 1 )(x - If5 + 1 j 
+ pa6(a _ b )26 + 3(X _ y)25 + I { ( y + l)(x + 1 )215 + I 

+ (y - l)(x - 1 fll + 1 ) 
+A2,ua35+I(x+y)25+3{(y_l)(x+ 1)25+3 

+ ( y + l)(x - 1 )21>+ 3] 
_ Apl a305+1(X_yf6+3{(y+ 1)(x+ 1)205+3 

+(y-l)(x-W'5+3j, (29) 

and 

RA = _Aa6(a_b)25+3(x+y)25+1{(y_l)(x+ 1)205+1 

- (y + 1 ){x - 1 )215 + 1 l 
+ pa6(a _ b )26 + 3(X _ y)25 + I { ( Y + l)(x + 1 fl>+ 1 

- {y - l)(x - 1 )"6 + 1 1 
+A2pa35+1(x+yf5+3{(y_l)(x+ 1)21l+3 

- (y + 1 )(x - 1)215 + 3 j 
_ Apl a3c5+1(X_y)2c5+3{(y+ l)(x+ Ifc5+3 

-(y-l)(x-lf5+3]. (30) 

The four parameters are mass m, positive number distortion 
parameter 6, and twin rotation-reflection parameters A and 
,u. 

3. PROPERTY OF METRICS 

Equations (20), and (28)-(30) show that, when x tends to 
infinity, X--oo, the leading behavior of A, Po Q, and Rare 

A_(I_Ap)2XI05+8, 

PA -2(1 - A,u){ 15(1 - A,u) - Up jyx105 + 8 + Ox 108 +8, 

QA -2(1 - Ap}(,u - A )yX lOc5 +8 + Ox 105 + 8, 

RA-2(I-Ap}(A +f.1)xlOc5+8. (31) 

In order to have the asymptotic flatness, i.e., in order to have 
the vanishing metric function 0) = - K(Q + R ) + const 
when x tends to infinity, the NUT -Geroch transformation 
with respect to the timelike Killing vector given in Eqs. (15) 
is introduced, on the one hand, to eliminate yx 101> + S terms 
from QA = (- hinT + QCOST)A, and the integration con­
stant in Eq. (14) on the metric function 0) is used, on the other 
hand, to eliminate x 1015 + 8 terms from RA. Therefore one gets 
T, Q, and 0) given in Eqs. (3), (27), and (17), respectively. 

The unit of distance K is defined to be the inverse of the 
coefficient of the term - 2m/x in the leading behavior 

/-1 - 2m/Kx (32) 

for x __ 00. Then K given in Eq. (2) comes from Eqs. (16), 
(20)-(26), and (32). The angular momentum J about the sym­
metry axis, the z axis, is defined to be the coefficient of the 
term 2b /KX in the leading behavior 

0) -J2b /KX (33) 
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for x ....... 00. Then J given in Eq. (1) comes from Eqs. (17), (18), 
(23), (27H30), and (33). 

Equations (20), (24H26), and (28H30) on the metric 
functions A, ii, i, G, P, Q, and R show that the y-dependence 
of A, ii, G, Q, and R is always via the factors, i.e., (I" - A. )y 
multiplied by the even power of y, and that the y-dependence 
of J and Pis not via these factors. When the parameter A. is 
not equal to the parameter 1", the metrics with arbitrary dis­
tortion parameter D are asymmetric with respect to the re­
flection at the equatorial plane y = O. When A. = 1", the 
NUT -Geroch parameter". vanishes and the metrics with 
arbitrary distortion parameter D are symmetric with respect 
to the reflection at the equatorial plane of symmetry y = O. 
From this and from Eq. (1) defining the angular momentum 
J about the z axis, the parameters A. and I" are named as twin 
rotation-reflection parameters. 

Equations (7) and (8) on the metric function r become 

r .. = - bA -2(a - b )-l(x(aK + bL) - yaM), 

and 

ry = - aA -2(b - a)-l(y(bL + aK) - xbM), 

where K, L, and M are defined as 

and 

K = (H .. )2 + (lx)2 - (Gx )2 -AxGx, 

L = (Hy)2 + (ly)2 - (Gy )2 - AyGy, 

M=2HxHy + 21"Jy -2GxGy -AxGy -G .. Ay. 

(34) 

K, L, and M are invariants of the NUT -Geroch transforma­
tion with respect to the timelike Killing vector given in Eqs. 
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(15). K, L, and M of the H-K-X family of solutions with 
arbitrary distortion parameter D do not vanish except in the 
case of A. =1" = O(K :;-fO, andL =M = o when A. =1" = 0). 
By contrast, M of the Kerr-Tomimatsu-Sato family of spin­
ning mass solutions with arbitrary positive integer distortion 
parameter D always vanishes. 3 Both aK + bL and M are fac­
torized by A. From Eqs. (34) we obtain the metric function r 
given in Eq. (19). 

The proper area ~ of the surface x = 1 is 

~ = 41rK f ( -e2Yw2)112 dy. (35) 

It follows that w(x = 1) - finite and e2Y(x = 1) - O. The prop­
er area ~ with arbitrary distortion parameter D vanishes. 
Therefore the H-K-X family of spinning mass solutions 
with arbitrary positive number distortion parameter D con­
tains no event horizon. 

ACKNOWLEDGMENTS 

The author wishes to thank C. Hoenselaers, W. Kin­
nersley, and B. C. Xanthopoulos for making available their 
solutions prior to pUblication. 

Ie. Hoenselaers, W. Kinnersley, and B. C. Xanthopoulos, J. Math. Phys. 
20,2530 (1979). 

2F. J. Ernst, Phys. Rev. 167, 1175 (1968). 
3M. Yamazaki, J. Math. Phys. 19,1847 (1978). 

Masatoshi Yamazaki 135 



                                                                                                                                    

JMPPA,800337 

On stationary axially symmetric Einstein-Maxwell scalar and Brans-Dicke­
Maxwell fields 

T. Singh and L.N. Rai 
Applied Mathematics Section, Institute o/Technology, Barnaras Hindu University, Varanasi 221005, India 

(Received 27 September 1979; accepted for publication 30 November 1979) 

A particular type of exact solutions of Einstein-Maxwell massless scalar field equations 
corresponding to stationary axially symmetric fields is presented here. The solutions are linear 
combinations of static fields with constant coefficients. Further, by a proper choice of conformal 
transformation the solutions have been transformed to the Brans-Dicke fields coupled with 
source-free electromagnetic fields. Finally these solutions have been transformed to a general 
form through unit transformations. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

The study of scalar meson fields has attracted the atten­
tion of many workers. Brahmacharyl considered the mas­
sive whereas Bergmann and Leipnik2 considered the mass­
less scalar fields coupled to spherically symmetric 
gravitational fields. Janis et al. 3 have further considered the 
problem from the point of view of singularities and Gau­
treau,4 Singh,5 and Buchdahl6 have extended the study to the 
case of nonspherical Weyl and plane symmetric fields. Later 
on the workers in the field, with a few exceptions (Stephen­
son7), have directed their efforts to the study of massless 
scalar fields coupled to gravitational and electromagnetic 
fields (Refs 8-11). The generalization of the Reissner-N6rd­
strom solution in the presence of a massless scalar field was 
obtained by Penny. 12 Janis et al. 13 obtained the solutions of 
the Einstein scalar and Brans-Dicke field equations for stat­
ic space-time and also gave a procedure to generate static 
solutions of the coupled Einstein-Maxwell scalar field equa­
tions and the Brans-Dicke scalar tensor theory (Brans and 
Dicke I4

). Recently, the solutions of axially symmetric Ein­
stein-Maxwell scalar field equations have been given by Eris 
and GUfses l5 and the Brans-Dicke-Maxwell fields have 
been studied by Singh and Rai. 16 

In Sec. 2 we obtain solutions to the stationary axially 
symmetric gravitational field coupled to massless scalar and 
source-free electromagnetic fields following the method first 
introduced by Lewis 17 to obtain the solutions for the axially 
symmetric gravitational fields. Using Weyl-like canonical 
coordinates we give here a special class of solutions obtained 
from the linear combinations ofWeyl's static fields. IS The 
solution admits a very simple interpretation, similar to 
Arbex and Som (Refs. 19 and 20), that an observerin canoni­
cal space (r,(),z) describes the static fields of the canonical 
space (r' ,() / ,z/) using a reference system which rotates with 
constant angular speed n whose measure is given by In I < 1. 
Although some of the steps are parallel to Arbex and 
Som, 19.20 we have written the steps in full because of certain 
changes due to corrections of the calculation errors of these 
papers. For vanishing rotation one gets the static field. Ac­
cording to Dicke,21 by a proper choice of conformal factor 
and scaling the metric as well as the field quantities suitably, 
the Brans-Dicke-Maxwell scalar fields coupled with 

source-free electromagnetic fields reduce to the Einstein­
Maxwell massless scalar fields and vice versa. Thus, in Sec. 3 
we have obtained solutions for Brans-Dicke-Maxwell 
fields. Further, in Sec. 4 we have used the unit transforma­
tions given by Morganstern22 and the above solutions have 
been transformed to a more general form. Some concluding 
remarks are given in Sec. 5. 

2. SOLUTIONS OF THE FIELD EQUATIONS 

We consider a stationary axially symmetric space-time 
where the sources of the geometry are massless scalar and 
source-free electromagnetic fields. The field equations are 

with 

R~ = -K[V:I'V·v+E~], (2.1) 

E;; = - Fl'a F va + !8~F pAFp).' 

gl'vV:IH' = 0, 

F;~l'=O, 

Fil'v;aJ = 0, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where V is a scalar field and the semicolon denotes covariant 
derivative. 

We take the stationary axially symmetric line element 
in the form 

ds 2 = J dt 2 - e2t/'(dr + dz2
) - I dcp 2 +2m dcp dt, (2.6) 

where/, Z/;, I, and m are functions ofronly. We shall number 
the coordinates r,z,cp,t as 1,2,3,4, respectively. On account of 
the stationary character of the field we can take the surving 
componentsofFl1V tobeF 31

( = - F 13)andF41
( = _ F14) 

only. Then from Eqs. (2.1) and (2.2) it follows that 

(2.7) 

One can now introduce Weyl-like canonical coordinates23 

such that 

JI+m2=r. (2.8) 

If one makes a linear transformations of the coordinate dif­
ferentials 17 such as 

dt = dt / coshu - dcp 'sinhu, 

d¢ = dcp / coshu - dt / sinhu, (2.9) 
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with 
f = F cosh2u - L sinh2u, 1= L cosh2u - F sinh2u, 

(2.10) 

m = ~(L - F) sinh2u, 

the metric (2.6) transforms into 

ds2 = F dt ,2 - e 2"'(dr'l + dz2) - L dcp ,2 (2.11) 

in Weyl's canonical system. 
In general, the transformation (2.9) is purely local. In 

our case, we choose u as constant. Now let 

coshu = rand sinhu = rl1, 
where rand 11 are constants such that 

r = (1 - 112)-1/2. 

From Eqs. (2.8) and (2.10) we have 

f I + m2 = r 2 = FL. 

We now choose 

F=e 2a and L=r 2e- 2a, 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where a is a function of r only. Then Eq. (2.10) takes the 
form 

f = r 2(e2a - f1 2r 2e -2a), 1= r 2(r 2e -2a _ 11 2e2a), 

m = r 211 (r 2e - 2a - e2a). (2. lOa) 

The field equations may now be explicitly written as 

nPII - tPl -2aI(1 - ral) 

= ~K [e-2"'V~1 +~(F4IF41 +F3IF31)], 
(2.16) 

nPII + tPl = - V ( - g) K (F41F41 + F 3IF31 ), (2.17) 
2 

y 2 ~ [1 - ra 1(1 + 112)] 
ar 

= _ ~ K (F 41F41 -F3IF31 ), (2.18) 
2 

y2~ [ra l(1 +11 2)] = V (_g) K (F41F41 -F3IF31 ), 
ar 2 

(2.19) 

- (y 211) ~ [(1 - 2ra l )] = ~ KF41F31, (2.20) 
ar 

a --
(r 211) - [(1 - 2ra l)] = V ( - g) KF 31F41 , (2.21) 

ar 
r = k - n logr, (2.22) 

k and n being constants of integration. From Eqs. (2.20) and 
(2.21) one obtains 

F31 F 
- F41 = ;1 =f3, 

41 

where /3 is a constant. 
We consider now two cases: 

(i)f3 = 1/11 

(ii) /3 = 11. 

(2.23) 

(2.24) 

Case (I) f3 = 1/11: In this case the observer in canonical space 
(r,cp,z) describes the pure static magnetic field in canonical 
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space (r',cp' ,I') using a reference frame which rotates with 
angular speed 11. 

From Eq. (2.4) we have 

V ( - g) F31 = A, (2.25) 

where A is a constant. 

From Eqs. (2.20), (2.21), (2.23), and (2.25) we have 

2a[ al] ( K)A2 
e all + -; = -"2?' 

which on integration gives 

e2a = {(r)1 +1> _a(r)l-bj2, (2.26) 

where a and b are constants of integration satisfying the 
relation 

a = A 2K 18b 2y 2. (2.27) 

From Eqs. (2.17), (2.20), (2.21), and (2.25) one obtains 

1 a a nPll+tPl= - --[(1-2ral)]= -(ral), 
2 ar ar 

which on integration gives 

tP = a + B logr + D, (2.28) 

Band D being constants of integration. 
Using the value of a from Eq. (2.26) in Eq. (2.16), we get 

B = (b 2 - Kt - 1 ). (2.29) 

Substituting a in expression (2. lOa), we have 

f = r 2 [ ( (r) I + I> _ a(r) I - I> j2 

_ 112r 2{ (r)1 + I> _ a(r)1 - b 1-2], 

1= y 2 [r 2 {(r)1 + I> _ a(r)1 - I> j-2 

_ 112{ (r)1 + I> _ a(r)1 - I> 12], 

m = r 211 [r 21 (r)1 + b - a(r)1 - I> j-2 
_ I (r)1 + b _ a(r)1 - b j2], (2. lOb) 

and from Eqs. (2.26), (2.28), and (2.29) 

e2'" = r'l[I>' - (Kn'/2) -I) I (r)1 + b _ a(r)1 - b j2. 

Case (it) f3 = f1: In this case the static field in the ca­
nonical space (r',cp , ,I') is a purely radial electrostatic field. 
From Eq. (2.4) one gets 

V ( - g) F41 = B, (2.30) 

where B is a constant. Equations (2.20), (2.21), (2.23), and 
(2.30) yield 

On integration we get 

e2a = [(r)d + c(r) - d 1-2, 

where c and d are integration constants satisfying the 
relation 

(2.31) 

(2.32) 

c = B 2K 18d 2y 2. (2.33) 

From Eqs. (2.17), (2.20), (2.21), and (2.30) one obtains 

1 a a nPll + tPl = - - [(1 -2ra l)] = - - (ra l ), 
2 ar ar 
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which on integration gives 

t/J = - a + M logr + N, (2.34) 

where M and N are constants of integration. 
Substituting the value of a from Eq. (2.32) in Eq. (2.16), 

we get 

(2.35) 

Substituting a in expression (2. lOa), we get 

f = r 2 [ 1 (r)d + c(r) - d 1-2 - {J 2r 21 (r)d + c(r) - d 12], 
1= r 2[r 21 (r)d + c(r) -d 12 - {J 21 (r)d + c(r) - d 1-2], 

m = r 2{J [r 21 (r)d + c(r) - d 12 - 1 (r)d + c(r)-d 1-2], 
(2.1Oc) 

and from Eqs. (2.32), (2.34), and (2.35) 

e2.p = r 2Id '-(Kn'12)ll(r)d + c(r)-d 12, 

when n = 0, the solutions (2. lOb) and (2.lOc) immediately 
go to the solutions of Arbex and Som19

•
20 (with some correc­

tions), which further reduces to Lewis' solution17 when A 
and B are set equal to zero. 

3. SOLUTION FOR BRANS-DICKE-MAXWELL SCALAR 
FIELDS 

As pointed out in the Introduction, the Brans-Dicke 
scalar electromagnetic fields are conformal to the coupled 

zero-mass scalar and source-free electromagnetic fields of 
Einstein's gravitational theory. A similar result in the case of 
vacuum Brans-Dicke fields has been established by Peters24 

and Tabensky and Taub. 25 It has been shown that the con­
formal transformation 

ex [ y"2v ) - <P 
P (W+~)1/2 - BO' 

(3.1a) 

(3.1b) 

where <PBO and g ftv are the quantities occurring in the 
BO 

Brans-Dicke theory, reduces the Brans-Dicke vacuum 
fields to zero-mass scalar fields of Einstein's gravitational 
theory and vice versa. The above transformation works again 
when the source-free electromagnetic field is also present in 
addition to the scalar fields. 

In this case we consider a new stationary axially sym­
metric metric 

ds2 = 1 dt 2 - e2.p(dr 2 + dz2) - T dtP 2 +2 iii d¢ dt, 
(3.2) 

withf, If, T, and iii as functions of r only. After conformal 
transformation we get the values off, If, T, and iii. 

(i) For pure static magnetic field, we consider the solution (2. lOb). Applying the conformal transformation (3.1a) and 

(3.1 b), we obtain 

<P = ex {Y2(k - n 10gr») (3.3a) 
BO p (w + ~)1/2 ' 

_ __ _ {-Y2(k-nlogr»)_2 Ib'_(Kn'!2)-l ll ()I+b_ ()I- bI2 gll - g22 - - exp r r a r , 
(w + ~)1/2 

- = -ex { - Y2(k-nIOgr») • .2[r21(r)I+b_a(r)l-bl-2_{J21(r)l+b_a(r)l-bl2], 
g33 P (w + ~)lt2 r 

- = ex { - Y2(k - n logr) )r2[I(r)1 +b _ a(r)l-b 12 _ {J 2r ZI(r)1 +b _ a(r)l-b 1-2], 
g44 P (w + ~y/2 

g" ~ g" ~ <Xp! -~~ D,:logr) ) fa [r'l (rj'+' - a(r)' -, j-' - 1 (r)' , '- a(r)'-' j']. (3.3b) 

(ii) For purely radial electrostatic field, we consider the solution (2.lOc). Applying the conformal transformation (3.1a) 
and (3.1b) we obtain 

138 

<P = ex {Y2(k - n 10gr») (3.4a) 
BO p ( 3)1/2 ' w+ 2 

- - [-Y2(k-nlogr») 2[d'-(Kn'/2)ll()d+ ()-dI2 gll=g2Z=-exp 12 r r cr , 
(w +~) 1 

{ 
- Y2(k - n logr) ) d d 2 

g33= -exp (W+~)lt2 r[r 21(r)d+ c(r)-dI2-{J21(r) +c(r)- 1-]' 

g = exp{ - Y2(k - n logr) )r[ 1 (r/ + c(r) - d 1-2 _ {J 2r 21 (r)d + c(r) -d 12], 
44 (w + ~)1/2 
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g- =g- =exp[ -V2(k-nlogr)j_.2{J[r 2{(r)d+ c(r)-d]2_{(r)d+ c(r)-d]-2]. 
34 43 (UI + ~)1/2 r . (3.4b) 

Let us now consider a static axially symmetric line element 

ds2 = Edt 'Z - eZ"'(dr 2 + d~) - L dtP '2, (3.5) 

with E, if, and [ as functions of r only. After conformal transformation we get the values of F, if, and i. 
(i) For pure static magneticfield, we consider the solution corresponding to Eq. (2.11). Applying the conformal transfor­

mation (3.1a) and (3.1b) we get 

ct> = ex [Y2(k - nIOgr)] 
BD p (UI + ~)1/2 ' 

(3.6a) 

- - [-V2(k-nIOgr)]2 Ib'_(Kn2/2)_ll{()I+b ()'- b I2 gl1=gn=-exp 2 r r -ar , 
(UI + ~)lt 

- [-V2(k-ntOgr)]Z{()I+b ()I-bj-2 g33 = - exp I Z r r - a r , 
(UI +~) I 

- _ [-V2(k-ntOgr)]{()I+b_ ()I-b]2 g44 - exp I 2 r a r . 
(UI +~) I 

(3.6b) 

(ii) For purely radial electrostatic field, we consider the solution corresponding to Eq. (2.11). After conformal transforma­
tion we get 

ct> = ex [V2(k - n 10gr)] 
BD p (UI + ~)IIZ ' 

(3.7a) 

- _- _ [-V2(k-nIOgr)]2 Id'_(Kn'IZ)I{()d ()-dj2 gl1 - g22 - - exp 12 r r + c r , 
(UI +~) I 

g = - exp r2{(r)d +c(r)-dj2 - [ - Y2(k - n logr) ] 
33 (UI + ~)1/2 ' 

- [ - Y2(k - n 10gr)] {( )d ( ) _ d 1-2 g44 = exp I 2 r + cr. 
(UI +~) I 

(3.7b) 

when {J = 0, the solution in case (i) reduces to a Brans-Dicke analog of the axially symmetric magnetic field given by Ghosh 
and Sengupta.26 For {J = 0, the solution of case (ii) becomes an analog of the solution for a static, cylindrically symmetric 
radial electrostatic field obtrained by Mukhetjee,27 Bonnor,28 and Raychaudhuri. 29 

4. GENERAL FORM OF THE SOLUTIONS 

We consider, without loss of generality, the scalar ct> as a specific functionA, viz., ct> = ct>oA, in the original Brans-Dicke· 
equations and subsequently scale the length, time, and reciprocal mass by the common factor [A (x)] (I - 8)12; then 

- - A 1-0-gij-gij = gij' 

ct>_rP = ct>oA 0, 

where 8 is a parameter. 
We consider the stationary axially symmetric metric 

ds2 = j dt '2 - eZ"'(dr Z + dr) - i dtP 2 + 2 m dtP dt, 

wherei, ¢, i, and m as functions of r only. After unit transformation we get the values ofi, if;, i, and m. 
(i) For pure static magnetic field, application of the unit transformation (4.1) on the solution (2.1 Ob) yields 

ct>_iii = ct>oA 0 = ex [ Y28 (k - n logr) ] , 
p (UI + ~)1/2 

where 

A 
[ 
Y2(k - n 10gr)] = exp ----'--:-:;-':::....:.. 

(UI + ~)1/2 
and we have assumed ct>o = 1 for simplicity. Thus, the solution in the present case is given by 
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;p = ex [v'28(k - n logr) j 
p ( J)1J2 ' liJ + 2 

- _- _ [-v'28(k-nIOgr)j 2[b'-(Kn'I2)-ll{()I+b ()I-bI2 gll - g22 - - exp 12 r r - a r , 
(liJ + ~) 1 

_ [ - v'28(k - n IOgr)j g33 = - exp (liJ + ~)1J2 y2[r 2{ (r)1 + b - a(r)l- b 1-2 - IJ 2{ (r)1 + b _ a(r)l- b 12], 

_ [ - v'28(k - n IOgr)j g = exp y2[ {(r)1 + b _ a(r)l- b 12 _ IJ 2r 2{(r)1 + b _ a(r)1 - b 1-2] 
44 (liJ + ~)1/2 ' 

(4.3a) 

_ _ [ - V28(k - n IOgr)j 
g34 = g43 = exp (liJ + ~)1/2 y2IJ [r 2{ (r)1 +b - a(r)1 - b 1-2 - {(r)1 +b - a(r)1 - b 12]. (4.3b) 

(ii) For purely radial electrostatic field, through similar steps the solution (2.1 Oc), after unit transformation, turns into 

;p = ex [ v'28 (k - n logr) j (4.4a) 
p ( 3)1/2 ' liJ + '2 

- _- _ [-V28(k-nIOgr)j 2{d'-(Kn'I2)}{()d ()-dI2 gll - g22 - - exp 12 r r + c r , 
(liJ + ~) 1 

_ [ - v'28(k - n IOgr)j 
g33 = - exp (liJ + ~)1/2 y2[r 2{ (r)d + c(r) - d 12 - IJ 2{ (r)d + c(r) - d 1-2], 

_ [ - v'28(k - n IOgr)j 
g44 = exp (liJ + ~)1/2 y2[ {(r)d + c(r) - d 1-2 - IJ 2r 2{ (r)d + c(r) - d 12], 

_ _ [ - v'28(k - n IOgr)j 
g34 = g43 = exp (liJ + ~)1J2 y2IJ [r 2{ (r)d + c(r) - d 12 - {(r)d + c(r) - d 1-2]. 

Let us again consider a static axially symmetric line element 

dr = Fdt,2 - e~(dr2 +dr) -l d,p,2, 

(4.4b) 

(4.5) 

,'with E, ;fi, and l as functions of r only. Under unit transformation we get the values of E, ;fi, and l. 
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(i) For pure static magnetic field, we consider the solution for Eq. (2.11). Under unit transformation (4.1), we get 

;;; _ [ v'28 (k - n logr) j 
'Y - exp , 

(liJ + ~)1/2 

- _= _ [-v'28(k-nlogr)j 2[b'-(Kn'I2)-11{()I+b ()I-bI2 gll - g22 - - exp 12 r r - a r , 
(liJ + D 1 

= [ - v'28(k - n IOgr)j 2{()1 +b ()I-b 1-2 g33 = - exp 1 2 r r - a r , 
(liJ + ~) 1 

= _ [-v'28(k-nlogr)j{()I+b_ ()I- bI2 g44 - exp 1 2 r a r . 
(liJ + ~) 1 

(4.6a) 

(4.6b) 

(ii) For purely radial electrostatic field, in a similar manner the solution for (2.11), after unit transformation, turns into 

ci> = ex [ v'28(k - n logr) j (4.7a) 
p (liJ + ~)1/2 ' 

- __ _ [-v'28(k-nlogr)j 2[d'-(Kn'/2)1{()d+ ()-dI2 gll-g22--exP 12 r r cr , 
(liJ + ~) 1 

- [-v'28(k-nlogr)j 2{()d ()-dI2 g33 = - exp 1 2 r r + c r , 
(liJ + D 1 

- [-v'28(k-nlogr)j{()d ()-dl-2 g44 = exp 1 2 r + cr. 
(liJ + 1) 1 

(4.7b) 

J. Math. Phys. Vol. 22, No.1, January 1981 T. Singh and l.N. Rai 140 



                                                                                                                                    

If we put () = 1, we get the solutions of Sec. 3. 

5. CONCLUDING REMARKS 

We have considered only two classes of exact solutions 
of the Einstein-Maxwell scalar and Brans-Dicke-Maxwell 
fields corresponding to the observer's two modes of descrip­
tion of the static field-either the static axially symmetric 
magnetic field (2. lOb) or the static axially symmetric radial 
electrostatic field (2.lOc). Of course, another class of solu­
tions may be obtained whenp is different from [J. In this case 
the solution would correspond to the observer's descriptions 
of the static axial magnetic field as well as the radial electro­
static field. 
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A formulation of the equivalence principle in quantum field theory is introduced. The quantum 
equivalence principle yields implementable Bogolyubov transformations. In this way we find a 
theory for a scalar field in curved space-time where particle creation is finite for every value of the 
coupling constant. In the particular case of conformal coupling the initial conditions of positive 
and negative frequency wave functions coincide with the ones of a first order WKB 
approximation. The coefficients of the Bogolyubov transformations are exactly computed and the 
created energy density is also finite. 

PACS numbers: 04.60. + n, 11.10. - z 

1. INTRODUCTION 

The problem of quantizing a scalar field on a curved 
background has been treated in several ways. We will con­
sider only two of these techniques: 

(1) the "in-out" theory and 
(2) the Green's function general theory. 
Although the first one can be considered as a particular 

case of the second one, this last theory is older because it was 
always considered as the natural way to generalize the field 
formalism to curved space-time. If one can find some natu­
ral generalization of the flat space Green's functions: 
..1 (x - x') and ..1\ (x - x') to curved space-time, one can also 
find the positive and negative frequency parts of the field and 
construct a reasonable quantum theory. One can find a 
straightforward generalization of ..1 (x - x'), that we shall 
call G (x,x'), but it can be shown (cf. Ref. 1) that it is not 
always possible to find an unique generalization of 
..1\(x - x'); i.e., G\(x,x') (unless space-time is static). The dif­
ficulty can be overcome if we suppose that each Cauchy sur­
face S of the universe (that normally is a globaly hyperbolic 
manifold) has its own G \S}, (x,x'), and therefore it has its own 
splitting into positive and negative frequency solutions, i.e., 
its own representation of the C.C.R. This implies the exis­
tence of a Bogolyubov transformation between the positive 
and negative frequency wave functions of two Cauchy sur­
faces. This implies also that particles are created and/or an­
nihilated when we go from one surface to another. This is a 
reasonable phenomena because if the gravitational field (the 
curved background) is not static there must be a variation on 
the number of particles. One the contrary if the gravitational 
field is static G\(x,x') is unique and the particle number is 
constant. 

The problem is to find a way to define the correct 
G \S)(x,x') for each Cauchy surface. In our opinion the solu­
tion must fulfill two necessary conditions: 

(1) It must be based on physical principles. 
(2) The number of particles created must be finite, i.e., 

the Bogolyubov transformation between the different opera­
tor algebras must be implementable. 

Since canonical quantization based on diagonalization 
of the instantaneous Hamiltonian yields nonimplementable 
Bogolyubov transformations (cf. Refs. 2 an 3) a lot of work 
has been done in the "in-out" theory where the quantum 
fields are studied in some particular universes which are as­
ymptotically static. In the "in-out" asymptotic states of 
these universes G it(out)(x,x') is unambiguously defined and 
the Bogolyubov transformation among them can be comput­
ed yielding the number of particles created. The restricted 
theory can be considered fairly satisfactory in many cases (as 
in the Hawking effect). 

But the real universal is not asymptotically static. 
Moreover if we restrict ourselves to the "in-out" theory we 
shall never be able to see how the particle creation reacts in 
the universe evolution, i.e., to formulate a cosmology that 
takes into account the quantum phenomena . 

For this reason we have tried to find a solution in the 
general case. Our point of view is that this solution must be 
based on the two cornerstones of general relativity: covar­
iance and equivalence so we have developed a covariant for­
malism in the sense that the quantization is defined through 
covariant objects like the G (x,x') and G\(x,x'). (Therefore, it 
is not an analogy of canonical quantization in a privileged 
coordinate system.) If some coordinates (as t) seem to be 
privileged it is because they have some physical meaning 
(e.g., the proper time of a fluid of particles that fills the uni­
verse). We base our solution on a version of the strong equiv­
alence principle that we call the quantum equivalence princi­
ple. The strong equivalence principle states that in every 
point of space-time there exists a system of coordinates 
where the inertial-gravitational forces vanish. In this system 
space-time behaves locally as if it were flat. We suppose that 
the biscalar G\(x,x') behaves like ..1\(x,x') when x-x'. How­
ever this condition cannot be imposed when x-x' along ev­
ery direction, and at every point, in space-time (cf. Ref. 1). So 
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we demand that G \S)(x,x') behaves like .::1](x,x') when x-x' 
on the Cauchy surface S. This is our quantum equivalence 
principle that allows us to define the G\S)(x,x'). 

With these tools we find a self-consistent answer to our 
problem. 

The nicest features of our solution are the following: 
(1) It is implementable for every value of the coupling 

constant (we even have found a general class of implement a­
ble theories that contain ours; cf. Sec. 5) so the particle cre­
ation is finite. 

(2) In the case of conformal coupling ( t = D the 
boundary conditions of our positive and negative frequency 
wave functions coincide with the boundary conditions of 
similar functions found with a first order WKB approxima­
tion. Therefore, our particle model at each time is an exact 
solution of the Klein-Gordon equation that satisfies at that 
time the boundary conditions of a first order WKB approxi­
mation. This model combines two important features of the 
flat space free particles. In fact flat space wave functions are 
solutions of the Klein-Gordon equation and are a first order 
WKB approximation, of course, in flat space the first order 
WKB approximation turns out to be exact. 

(3) The coefficients of the Bogolyubov transformation 
can be exactly computed directly from the wave function 
with really simple formulas [cf. Eq. (6.21)]. 

(4) The most logical generalization to our theory of the 
energy of the field in flat space-time, namely 

E= l(TO
O ) dO", 

where S is a Cauchy surface and dO" is the element of area in 
S, is also finite in the case of conformal coupling (cf. Sec. 7). 

The generalization of our method to fields with higher 
spin .as well as to the case of a curved spatial metric will be 
considered elsewhere. The cosmological implications of the 
particle creation predicted by our model will be the subject of 
a subsequent publication. 

2. DEFINITIONS AND NOTATION 

In this Section we state well-known results, that will be 
useful later on, using the notation of Ref. 1. We will work in a 
space-time V4 endowed with a Robertson-Walker metric, 

ds2 = dt 2 - a 2(t )/iapdxadxP, a, (J = 1,2,3, (2.1) 

that we shall call an expanding universe even in the case 
where a(t) is not monotonically increasing. DaP is Kron­
ecker's function. 

We will study the quantization of a neutral scalar field 
f/J (x), that is, a real valued function on V 4 that satisfies the 
Klein-Gordon equation 

(2.2) 

where Ll = - gijViJj is the Laplace operator, Il is the mass, 
and 

R - 6 ( ii (0)2) . da - -+ -- , a=-
a a2 dt 

is the curvature scalar. The coupling constant t can take any 
real value. The case t = 0 is the "minimal coupling" and 
t = i is the "conformal coupling." 
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We want to generalize the notions of positive and nega­
tive frequency solutions ofEq. (2.2), from flat space-time to 
V4 , using the kernels G (x,x') and G](x,x'), i.e., the general­
izations of the usual kernels 

1 J sinw (xo - X'D) 
.::1 (x-x')= -- --~p---

(21T)3 wp 

Xexp[ - ipa·(x - x')d 3p] , (2.3a) 

A ( , 1 J coswp(XO _X'D) 
~]x-x)= --

(21T)3 Wp 

xexp[ - ipa,(x - x')d 3p] , (2.3b) 

where 

P = Ip21, wp = (1l 2 + p2)]/2, a = const. 
We remark tht the real physical lengths are a(t)x a and 

that the physical momentum pa is canonically conjugated to 
these physical coordinates. We shall call k a the momentum 
conjugated to xa that is related to the pa as k a = a(t )pa. 

G (x,x'), the generalization of the commutator 
..1 (x - x'), has been found a long time ago by Lichnerowicz 
(cf. Ref. 4) for all globally hyperbolic manifolds. In particu­
lar for our V4 with metric (2.1). This G (x,x') has locally all 
the properties of the ..1 (x - x'); i.e., it is real and 

G(x, x') = - G(x, x'), (..1 x -1l2 
- Rt)G(x, x') = O. 

(2.4) 

It provides too the solution of the Cauchy problem for 
Eq. (2.2) with Cauchy data: f/Js, ¢s on a Cauchy surface S, 

f/J (x') = 1 [G (x', x)¢s(x) - f/J (x)niJiG (x, x')] dO" . (2.5) 

G (x,x') satisfies the boundary conditions 

G(x, x') = 0 if x, x'ES, (2.6) 

niJiG(x, x') = Ds(X, x') if x,x'ES, (2.7) 

where Ds(X,X') is the dirac D on the surface Sand n i is the 
unitary vector normal to S pointing towards the future. 

The support x' G (x, x') lies in the interior of the light 
conoid with vertex x. There is a unique and well defined 
G (x,x') that fulfills all these conditions.4 

On the contrary there are infinitely many G,(x,x') that 
generalize..1,(x,x') having its usual properties, i.e., such that 
G, is real and 

G,(x, x') = G](x', x) , (2.8) 

(Ll x -1l 2 
- tR )G](x, x') = 0, (2.9) 

G(x,x') = L[ (J~y G](X',Y))G1(X,y) 

- G](x',y) ~ G](X,y)] dO"y . 
Jty 

(2.10) 

Since G (x,x') and G] (x,x') define the solutions of positive 
and negative frequency (cf. Ref. 1) there are infinitely many 
possible quantizations, each one corresponding to a particu­
lar choice of G](x,x'). (This phenomenon is the ambiguity 
first stated by Parker.5

) 

Our point of view (as it was introduced in Ref. 6) is that 
there exists a different G~S)(x,x') for each Cauchy surface of 
V4 (in particular a different G\T)(X,X') for each surface 
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t = r = const of V4 ]. These different G 1 produce different 
definitions of positive and negative frequency and cause par­
ticle creation or annihilation when we go from one time r to 
another r'. The G ir)(x,x') must be defined by reasonable ini­
tial conditions based on physical principles. 

The functions ¢ (x), G (x,x'), and Gj(x,x') can be ex­
panded as follows: Let us introduce an inner product in the 
space of complex solutions of Eq. (2.2), 

(u, v) = il[(J;U*)V - u*(J;v)]n; dO". (2.11) 

If u and v are solutions of the Klein-Gordon equation (2.2), 
the inner product (2.11) is independent of the Cauchy sur­
face S on which the integration is performed. This inner 
product is Hermitian so (u,u) is real number, but it is not 
positive defined. Then we can classify the complex solutions 
ofEq. (2.2) aspositive, if (u,u) > 0, negative, if (u,u) <0, and 
degenerated if (u,u) = O. 

Let 10k Ju10~ ) be a base of the space of complex solu­
tions ofEqs. kER is a set of three continuous parameters that 
label the solutions [as we said we reserve symbol p for the 
usual momentum as in Eq. (2.3)]. This base will be called an 
orthonormal base if 

(0k ,0h ) = -o(k-h), 

(0~, 0~) = o(k - h) , 

(0k,0~) =0, 

(2.12) 

where o(k ) is Dirac's distribution. So vectors 0~ are positive 
and vectors 0k are negative. We can go from one orthonor­
mal base to another via a Bogolyubov transformation. We 
can develope ¢ (x), G 1 (x,x'), and G l(X,X') on the orthonormal 
base, 

¢(x)= I[ak0k(X)+ak+0~(x)]d3k, (2.13) 

G (x, x') = J [0k (x)0~ (x') - 0k (x')0~ (x)] d 3k , (2.14) 

G1(x, x') = f [0k(X)0~(x') + 0k(X')0~(x)] d 3k. (2.15) 

But while Eq. (2.14) is invariant under Bogolyubov 
transformations because G (x,x') is unique (and can also be 
verified directly) Eq. (2.15) is not invariant, therefore G j (x,x') 
depends on the base 10k ) u 10~ J we use. We shall call the 
subspace of positive (resp. negative frequency) solutions the 
space spanned by the 10: J (resp. 10k 1). It can be easily 
shown that if we know G1(x,x') we can find the subspaces of 
positive and negative solutions and vice versa (cf. Ref. 1). 

As 0k can be defined by its Cauchy data on a surface 
t = r = const [that we shall ca1l0tl(x), 0rl(x)], the G \rl(x,x') is 
defined by its Cauchy data and so are the subspaces of posi­
tive and negative frequency. Then we must search for rea­
sonable 0tl, 0rl, or equivalently for reasonable G \rl(x,x') and 
(d / dt )G \rl(x,x') at each time r, in order to have the base of the 
subspace of positive (resp. negative) frequency solutions 
[that we shall call 10~(rl J (resp. 10tl j)] well defined at each 
time r. Once we have these bases we can develop ¢ (x) at two 
different times: 
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¢ (x) = f [a~r)0~rl + a
k
+ (r)0~(rl] d 3k, 

¢ (x) = f [a~r')0~r') + a
k
+ (r')0~(r')] d 3k . 

(2. 16a) 

(2. 16b) 

The base functions at times rand r' are related by a 
Bogolyubov transformation 

0~r) = ak0~r') + I3k0~(r') , 

0~(r'l = a~ 0~1r') + 13~ 0r') , 
lak 12 - l13k 12 = 1 . 

(2.17) 

The corresponding annihilation and creation operators 
are related by 

a~r') = a k at) + 13 ~ a~( r) , 

a~(r') =13ka~rl + a~a~<r). 
(2.18) 

(2.19) 

Let us assume that at time r the universe is in the vacu­
um state at that time 10) (r) , i.e., 

N (rlIO) «r) (rlIO) 0 
k <r) = a k a k (r) = . (2.20) 

Then the mean number of particle density in mode k at 
time r' will be 

(rl (OINt'lIO)(r) = Irl (Ola~(r'la~r')IO)(r) 
= l13k 12. (2.21 ) 

This implies that the average number of particle density 
at time r' is 

N(r') 

= f d 3k Ir) (OINt'liO)(r) = I d 3k Il1k 12 . (2.22) 

So if the universe is in the vacuum state at time r the 
necessary and sufficient condition in order that the average 
number of particles at time r' is finite is that 

fl13k 12 d 3k < 00 • (2.23) 

This is also the necessary and sufficient condition in 
order that the Bogolyubov transformation (2.18), (2.19) is 
implementable.7 So we must search our boundary conditions 
among the ones that produce a finite average number of par­
ticles from the vacuum or equivalently yields an implemen­
table Bogolyubov transformation. 

3. THE QUANTUM EQUIVALENCE PRINCIPLE 

We shall prove that the solution of our problem can be 
based on an adequate interpretation of the strong equiv­
alence principle. One of its versions states that at every event 
of space-time there exists a coordinate system where all 
gravitational forces vanish. We assume that locally in such 
an event (that can be taken as the origin of coordinates) and 
in such a system of coordinates there is a box of side 2p (our 
laboratory) and a time interval2e (the length of our experi­
ment) where, since there is no gravitational field, we can use 
flat space-time quantum field theory. This statement is only 
approximately true but becomes more and more correct as 
e, p-O. We shall call this assumption the "quantum equiv­
alence principle" and we shall study its consequences. 
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Therefore, we shall place our space-time laboratory 
with its time axis parallel to the curves x a = 0 = contant 
t = variable of the above mentioned coordinate system and 
with its plane t = 0 tangent to the t = 0 = constant, x a 

= variable surfaces. The covariant derivative of the curve x a 

= 0, t = variable vanish at the origin so it is locally a geode­
sic. In this way we are sure that there are no gravitational 
forces and we locally have a free falling laboratory, that we 
shall call a Galilean laboratory. 

Let s be the space-time interval between 0 and an event 
x placed outside the light conoid of 0 but inside our laborato­
ry and our experiment's time. Based on our principle we can 
say that when e, p-o 

GiOI(O,x) =.1 I (s), (3.1) 

whre .1 1(s) is the flat space.d I [Eg. (2.3.2)] that, because of 
Lorentz invariance is only a function of s, the length of the 
universal interval between 0 and x. We shall see how we can 
deduce from Eq. (3.1) the correct initial conditions for G\-r) 
(in the case T = 0 because of our particular choice of the 
origin). We restrict ourselves to the system of coordinates 
where the metric takes the form (2.1). Then we have a spheri­
cal spatial symmetry and we can consider only the coordi­
nates (T,R ) of event x, where Tis the time interval between 0 
and x, and R = [xi + x~ + x~ ] 112. Of course T < e, R <po 

Let us computes = s(O,x) using a straight line from 0 to 
x in the laboratory coordinates.8 We have: 

rT ((R 2 )IIZ 
S = Jo (a 2dr - dt 2)1/2 = Jo ? a2(t) - 1 dt. (3.2) 

Afterwards we shall take T -0 leaving R #0 constant, 
so we can develop the square root, and we obtain 

R iT 1 TiT dt s= - a(t)dt- -- --
T 0 2 R ° a(t) 

1 T3 iT dt 
(3.3) - 8 R 3 ° a\t) . 

We shall also need: 

~ = ~ (Ta(T) - (a(t)dt J 
aT T2 Jo 

1 ((T dt T ) 
- 2R Jo a(t) + aCT) - .... (3.4) 

When T -0 we can compute the limits of Eqs. (3.3) and 
(3.4), 

lim s = Ra(O) , lim ~ = !Ra(O) . 
7-·0 T~O aT 

(3.5) 

Now we need to compute d.d lids. From Eq. (2.3b) it follows 
(notice that because of Lorentz in variance .d I is only a func­
tion of s) 

/1 2 Hl 1)(i/1S) /12 H\ll(i/1s) 
.11 = - -1m = -Re (3.6) 

41T illS 417' /1s 
so we have that 

/12 • H ~1)(iIlS) 
- -Rel----

417' Ils 

= - L Re (_2_H\1)(iIlS) - ~Hbl)(iIlS») 
411' ( Ils? Ils 
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Therefore, 

d.1 1 2 A /1
2 

I [H(I)(' )] --=-- .--m ° IllS. 
ds s 41TS 

(3.8) 

From (3.1), (3.5), (3.6), and (3.8) we have that when T-o, 
GI(O, x) = .d t(Ra(O)) , (3.9a) 

aGI(O, x) = _ a(O) {.d (Ra(O)) 
aT a(O)· 

+ L Im[H~I(i/1Ra(O))]} . 
811' 

(3.9b) 

These equations are only true for e.-o, p-o. e-o is al­
ready taken into account as we have taken T -0. p.-o im­
plies that Eqs. (3.9) are only valid for R-o. 

We really want to find the boundary conditions of 
G iOl(O,x) on the whole surface t = T = O. Now we know that 
these conditions are given by Eq. (3.9) when R.-o (i.e., for 
small spacelike distances between 0 an x) if we want to satisfy 
the quantum equivalence principle. Therefore, when R is 
large this principle tells us only the first term in an expansion 
of the boundary condition in powers of R, but nothing about 
the other terms. 

Nevertheless the 3-surface t = constant x" = variable, 
are spatially flat and can be considered crowded with Gali­
lean laboratories. All points of this 3-surface are in free fall 
following the geodesics XU = constant t = variable, so we 
can consider each 3-surface as a huge quasi-Galilean labora­
tory. Certainly we can say that Eq. (3.1) is valid in our quasi­
Galilean laboratory, because its only difference with a real 
Galilean laboratory is that it is expanding. So instantaneous­
ly we can assure that both (3.9a) and (3.9b) are satisfied, 
because the expansion of the quasi-Galilean laboratory has 
been taken into account through the definition of Eq. (3.2) 
and the computation of the time derivatives Eq. (3.4). 

So let us adopt an extended version of the quantum 
equivalence principle and state that Eqs. (3.9) are valid in all 
the 3-surface t = 0, XU = variable. So we forget the limit 
p.-o and we adopt (3.9) as the initial conditions that 
G \r)(x,x') [G (~)(O,x) with our particular choice of the origin] 
must satisfy on the 3-surface, i.e., we neglect, for the mo­
ment, all the terms in the expansion ofG1 and (d IdT)G., but 
the first ones, In fact: As we are dealing only with a first 
order theory, then we can suppose that all the neglected 
terms are of higher order. (This statement can be rigorously 
proved in the context of the exact theory.) 

Of course, to make sure that (3.9) are allowed initial 
conditions we must prove that they satisfy Eq. (2.10), as we 
shall see further on. 

4. POSITIVE AND NEGATIVE FREQUENCY SOLUTIONS 

To find an expansion of the initial conditions (3.9) that 
yields to definition of positive and negative frequency solu­
tions it is necessary to expand the last term in the rhs ofEq. 
(3.9b). To do so we take Eq. (3.6) and compute; 
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d.:1 l 2 J.l2 H~ll(iJ.ls) J.l2 (d H~II(iJ.lS)} 
-- = --Re + - --Re---

dJ.l J.l 41r J.ls 41r dJ.ls J.ls 
d . (3 (4.1) an usmg .7) we get 

d.:1 1 = _ Llm[Hb11(iJ.ls)]. (4.2) 
dJ.l 41r 

Ifwe call H = a(O)/o(O), i.e., the Hubble coefficient, we have 

HJ.l2 d 
- - 1m [H~I(iJ.ls)] = HJ.l2 -2 .:11 (4.3) 

81r dJ.l 
so the initial conditions (3.9) become: 

G \T)(X, x') = .:11 , (4.4a) 

dG\T)(X,X') _ _ H.'A +H. 2~ A 

- ""'I J.l d 2 ""'1' 
dt J.l 

(4.4b) 

jf x,x'ES (7), i.e., the surface t = 7 = constant. Now it is easy 
to find the expansion of all the terms in (4.4). 

First we try to solve Eq. (2.2) by separation of variables 
tP (x) = tPk (t )e ~ ik·x . (4.5) 

The differential equation for tPk (t ) is 

~k(t) + 3~~k(t) + (J.l2 + SR + k 2/a2)tPk = O. (4.6) 

From Eq. (2.3b) we know that .:11(X,x') and its derivative are 

.:11(x,x') = (21ra)~3f coswdt - t') 
Uik 

Xexp[ - ik(x - X'/)t d 3k, 

= _ (21ra)-3 f (COSWk(t - t') 

2 w~ 
(4.7) 

sinwk (t - t ') ) + (t- t') 
Wk 

X [exp - iko(x - x/)/a] d 3k, 

where Wk = (J.l2 + a-2k2)1/2 and we have changed variable 
of integration from p to k = ap, and the physical lengths ax 
for the coordinate variables x. 

When t = t I = 7 we have: 

(4.8) 

(21ra)-3 f exp[ - ik.(x - x')/a] d3k. 

2 w~ 

As we have solved (2.2) by separation of variables the 
initial conditions for the 0k will be in general: 

0I.T1(T,X) =Ake- ik.x , ~I.TI(T,x)=Bke-ikox, (4.9) 

where Ak and Bk are arbitrary numbers. In this way we can 
find all possible and negative frequency splittings. But as 0tl, 
0:(TI will be used to define the G and G l through Eqs. (2.14) 
and (2.15) we can multiply the 0k by a complex number of 
unit modulus, ei9

, without any changes in G and G I' As the 
kernels define the subspaces of positive and negative fre­
quency solutions, these subspaces will also be invariant un­
der this change. So we can take the Ak as a real number 
without any loss of generality. 

Then the GI(x,x') at S (T) will be [cf. Eq. (2.15)] 
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GI(x, x') = f {A ~exp[iko(x - x')] 

+ A ~ exp[ik.(x' - x)] j d 3k . (4.10) 

If we make the change k a -+ - k a in the first term, 
nothing will change because the A k are real functions of k2 

due to the spherical spacelike symmetry, so 

GI(X'XI)=2fA~eXp[ -ik.(x-x/)] d 3k. (4.11) 

Then to satisfy (4.4a) we must have 

Ak = (21ra) ~ 3/2(2wk) - 1/2 • (4.12) 

The derivative of GI(X,x') at S (T) will be 

!!.- GI(x, x') = f(B ~Ak + AkBk ) 
dt 

xexp[ - iko(x - x')] d 3k, (4.13) 

where we have used the same argument to perform the 
change k a-+ - k a

• If we put 

Bk = a k + ibk , (4.14) 

where a k and bk; are real numbers and we try to satisfy Eq. 
(4.4b) using Eq. (4.12), we have 

a = - H(21ra)-3/2(2wk)I/2 (_1_ + ~ L). (4.15) 
k 2Wk 4 w~ 

Finally, to satisfy Eq. (2.10) it is necessary and sufficient 
that in expansions (2.14) and (2.15), the base {0:(TljU{ 0tlj 
fulfills Eqs. (2.12). 

But 

(0:(TI, 0~(TI) 

= ia3 f[ (:t 0t)0:(TI- 0tl :t 0~(TI] d 3x 

=ia3(BkAh -AkB~)fexp[ -ixo(k-h)] d 3x 

= (21rafi(BkAh -AkB~)o(k - h). (4.16) 

So to satisfy Eq. (2.12) we must have 

Ak (Bk - B ~) = - i(21ra)-3 , (4.17) 

therefore 

bk = - (21ra)-3/2(Wk/2)1/2. (4.18) 

From (4.12), (4.15), and (4.18) we can state the initial 
conditions of the negative frequency solutions of mode k: 

(4.19) 

(4. 19b) 

The positive frequency solutions will have, of course, 
the complex conjugated initial values. 

Now we will prove that with these initial conditions the 
Bogolyubov transformation (2.18), (2.19) is implementable 
for all real values of the coupling constant S. 
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5. IMPLEMENT ABILITY 

To prove the implementability of our theory we use the 
rigorous results on the estimation of the error in the WKB 
approximation due to Olver.9,10 Olver's results have pre­
viously been used by Fulling I I to prove the implementability 
of his model. 

Let us make a change of variable t---+rJ and of the field 
ifJ---+¢ in order to put Eq. (4.6) in the standard form: 

rJ = faCt 't l dt' , (5.1) 

ifJk (t) = a-I(t )¢k (t) . (5.2) 

We emphasize that these changes have only a math-
ematical purpose and have little to do with the physics of the 
problem. 

With these changes Eq. (4.6) becomes 

¢;: + !k2 + a2 [1l 2 + (5' - DR 1 J¢k = 0, (5.3) 

where 

¢~ = d¢k . 
drJ 

Now we can use Olver's theory in the equation 

d 2¢ 
drJ2 + k 2p(k, rJ)¢ = 0 (5.4) 

[cf. Ref. 9, p. 800, Eq. (4.7), Theorem IV, and Ref. 10], where 
p(k,rJ) is a strictly positive C 2 function ofrJ. We identify Eqs. 
(5.3) and (5.4) making 

p(k, rJ) = 1 + k-2a2 [1l 2 + (5' - i)R 1 

a2 

= k2 [ wz + (5' - VR 1 . (5.5) 

We see that p(k,rJ) > 0 for k large enough. 
This is the only case in which we are interested since we 

must prove (2.23). 
Equation (5.4) has the following solution,9 

¢(k, rJ) = (2k t ll ]J-1/4 

X [exP( - ik 1'7pI/2drJ') + ~(k, rJ)] (5.6) 

and its derivative, 

~~ = - i (~ y12pl/4 [exp( - ik 1'7p1/2 drJ') 

- :k p-3/2 :~ [exp( - ik 1'7p1/2 drJ) + ~] 
X +it5(k,rJ)] , 

t5{k )_ ~~_1_ 
,rJ - k drJ pl/2 ' 

F 
I~I ,1151 <exp - -1, 

k 

F(k, rJ) = lP- lJ4 P I drJ' . 1
'7 d2 -1;4 

o drJ2 

But asp{k,rJ) has the form 

p{k, rJ) = 1 + k -2ft(rJ) , 

where 
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(5.7a) 

(5.7b) 

(5.8) 

(5.9) 

(5.1O) 

(5.11) 

from Eqs. (5.8) and (5.9) we can easily deduce 

1~1,lt5l,k -lp - 3/2
1 ~~ I = O(k -3) (5.12) 

where k---+ 00 • 

Now let ¢(O) (k,rJ) and t/f;)(k,rJ) be the solution ofEqs. 
(5.4) that satisfies the following initial conditions: 

i~2¢'(0)(k, 0) = k 1/21T'1/4(k, 0) , 

~2t/f;)(k,~) = k -1/21T-1/4(k,~), 

(5.13) 

(5.14) 

where ~ = f~a(t ')-1 dt', and where 1T(k,rJ) and 1T'(k,rJ} are 
functions to be determined later on in such a way that the 
Bogolyubov transformation between the ¢(O), ¢*(O) and the 
¢(;) ¢-(;) is implementable. We assume that 1T(k,rJ} is always 
different from zero and that 1T- 1/4 and 1Trl/4 remain bounded 
when k---+ oo . 

Let the functions ¢(k,rJ) and ¢*(k,rJ) be the solutions of 
Eq. (5.4) that satisfy the following initial conditions [cf. Eqs. 
(5.6) and (5.7)]: 

~2¢(k, 0) = k -1/2p-1/4(k, O}, 

i~2¢'(k, O} 

(5.15) 

= k 1/2pI/4(k, 0) (1 - :k p - 3/2(k, 0) dP:~ 0) ) . 

(5.16) 
Notice that9 

~(k, 0) = 15 (k, 0) = 0 . 

So we have 

¢(o)(k, rJ) =A ~O)¢(k, rJ) + B ~O)¢*(k, rJ) . (5.17) 

We must compute A ~O) and B ~O) in such a way that the 
initial conditions (5.13) are satisfied. We obtain 

A ~O) = ~ [ (1T(k, 0») -1/4 
2 p(k,O) 

X (1 + :k p-3/2(k, 0) :~ (k, 0») 
+ (1T'(k, 0) )114] , 

p(k,O) (5.18) 

B ~O) = ~ [ (1T(k, 0») -114 

2 p(k,O) 

X (1 __ 1_' p-3/2{k,0) dp (k, 0») _ (1T'(k, 0) )1/4] . 
4k drJ p{k, 0) 

In a similar way 

(5.19) 

Therefore, to satisfy the initial conditions (5.14) at rJ = ; we 
have 
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A ~o = + [ (;::: ~D -1/4(1 + :k p(k, S)-3/2 :~ (k, t)) 

+ (1T'(k, t) )114] 
p(k,t) 

x expik L>/2(k, 1]) d1] + 0 (E) + 0 (6), (S.20) 

B<f) 

= ~ [ (1T(k, t») -1/4(1 _ _ i p(k, ty3J2 dp (k, t») 
2 p(k, t) 4k d1] 

_ (1T'(k, ;»)1/4] 
p(k, ;) 

xexp( - ik Itpl/2(k, 1])d1]) + o (E) + 0(8). 

- _ 2i{ [1T'(k,;)lp(k,t)]1/4 [1T(k,;)lp(k,;)-1 /4] } 
flk - [1T(k, O)lp(k, 0)]-1/4 [1T'(k, O)lp(k, 0)]1/4 

Now, between if!~0) and if!t;) there must be a relation like 
Eq. (2.17) (with 7'--0,7-+;) so 

if!~1:) = ii k if!~O) + 13k if! :(0) . 

Then we must have: 

A 10 = A ~O)iik + B :(O){3k , 

B ~o = B ~O)iik + A ~(O){3k . 

(S.21) 

(S.22) 

(S.23) 

We can compute ii k and{3k from this system. Its deter­
minant is 

Llk = (1T(k, 0») -1/4( 1T'(k, 0) )114. 
p(k, 0) p(k, 0) 

(S.24) 

Therefore, 13k is 

. (1;2 {[1T(k,t)IP(k,t)]_1/4 [1T'(k,;)IP(k,;)]1/4} 
xsmk Jo p (k,1])d1]+2 [1T(k,0)lp(k,0)]-1/4 - [1T'(k,0)lp(k,0)]1/4 

'" d ) ( d) Xcosk Ip'/2(k, 1]) d1] + o (E) + 0(6) + o (k_Ip-3/2(k, 0) * (k, 0) + 0 k-1p-3/2(k, t) * (k,;) . (S.2S) 

A sufficient condition in order that our Bogolyubov I Now it is easy to verify that our initial conditions (4.19) 
transformation (2.18), (2.19) be implementable is that are included in this general class of boundary conditions 
I 13k 1= O(lIk 3/2 + E), €> 0 when k- co . from all possible implementable theories. In fact if we make 

In fact, from Eqs. (S.2) and (S.21) we have the transformations (S.I) and (S.2) we have: 

a(t)t/J~I:;) = iika(t)t/J1°) + {3k a(t)t/J ~(O) (S.26) if!~'1I(1]) = (21T)-3/2[2a(1])Wk ]-1/2, 
(S.33) 

where 7 is such that t = S;a-I(t ') dt '. Comparing with Eq. 
(2.17) (with 7' = 0) we have 

a k = iik , flk = 13k . (S.27) 

Therefore, if Pk behaves like 0 (k - (3/2 + EI) when k-+ co, 

the integral (2.23) is convergent, 

flPk 12 d 3k = 41T 1'" IPk 12k 2 dk < co . (S.28) 

From Eq. (S.12) we see that there is no problem with the 
last four terms of Eq. (S.2S). Now let 1T and 1T' be written as 

1T(k, 1]) = p(k, 1])Q4(k, 1]) , (S.29a) 

1T'(k, 1]) = p(k, 1])Q '4(k, 1]) . (S.29b) 

Then in order that IPk I behaves like 0 (k - (3/2 + EI) we 
need 

I 
Q (k, O)Q '(k, O)Q (k, 1])Q '(k, 1]) - 1 I = 0 (_1 _) , 

Q (k, 1])Q '(k, 0) k 3/2 + E 

(S.30a) 

I Q (k, O)Q '(k, 0) - Q (k, 1])Q '(k, 1]) I = 0 (_1 _) . 
Q (k, 1])Q '(k, 0) k 3/2 + E 

For example if for some constant e> 0, 

Q(k, 1]) = e + P(k, 1]), 

Q '(k, 1]) = ± lie + P'(k, 1]) , 

IP(k, 1]) I =0(1Ik 3/2+<), 

1P'(k, 1]) 1=0 (11k 312 + E), (S.32b) 

(S.30a) and (S.30b) will be satisfied. 
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(S.30b) 

(S.31a) 

(S.31b) 

(S.32a) 

dif!~:1]) = (21T)-3/2[ _ i (a(1]~Wk y/2 
- [2a(1])Wk ]112 f12:vt) ] . 

We can write k 1/2 pI/4(k,1]) as 

k 1/2p I/4(k, 1]) = (awdI/2[ 1 + w
k
- 2( S - ~)R ]1/4 

and 

(S.34) 

(awk )1/2 = k 1/2p1/4[ 1 - a2(S - i)R Ik 2p]1/4 . (S.3S) 

So if we put the initial conditions (S.33) in the form ofEq. 
(S.14), 

_ (2 )6 (1 _ 2 (S - i)R ) 1T-p 1T a 2 ' 
kp 

1T--- I-a 1---, p ( 2 (S - DR) ( if12 H )4 
- (21Tt k 2p 2wi' 

Then in the notation of Eqs. (S.29) and (S.31) 

e = (21T)3/2 , 

(S.36a) 

(S.36b) 

(S.37a) 

(S.37b) 

I 1 [( z(S-iIR )1/4( if1ZH) ] P = -- I-a 1- -- -1 , 
(21Tf/2 k zp 2wi 

(S.37c) 

and it is now straightforward to see that (S.32a) and (S.32b) 
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are satisfied, so our transformation is implementable and we 
have the creation of a finite number of particles for every real 
value of the coupling constant S. 

Remarks: 
(1) If we choose the naive initial conditions 

G \Ti(x, x') = Ll1(x, x') , (5.38a) 

~ G(TI(x x') = 0 
dt I' , 

(5.38b) 

the Bogolyubov transformation is not implementable (this 
was proven in Refs. 2 and 3). These initial conditions are 
widely used (see Ref. 6 for example). They were thought to be 
the most natural generalization of the flat space-time condi­
tions, besides these conditions diagonalize the Hamiltonian. 
But if we compare Eq. (5.38) with the present initial condi­
tions (4.4) we see that in (5.38) the expansion of the universe is 
neglected [i.e., to obtain (5.38b) we make H = 0 in (4.4b)]. 

(2) Ifwe eliminate the term 

- (21Ta)-3/2(2wk)1/2(,u2/4w~)H 

in (4. 19b) [or equivalently, the second term in the rhs ofEq. 
(4.4b)] we have Fulling's initial conditions (cf. Ref. 11) that 
yields a implementable theory. But it seems to us that there is 
no physical reason to adopt these initial conditions. (As a 
matter offact, Ref. 11 anticipates that all the initial condi­
tions differing in terms -k -3 are essentially equivalent. So 
we can say that the quantum equivalence principle picks the 
right one.) 

(3) Ifin Fulling's theory we choose the vacuum state 10) 
as the state of the universe at time t = 0 and we use the time 
evolution a(t) = aot q we arrive a the Mamaev, Mostepan­
enko, and Starobinskii theory (cf. Ref. 12) that is, of course, 
also implementable, but in our opinion also deserves the 
same criticism. The initial condition of these theories are 
only conditions that resemble the flat space ones in coordi­
nates 1] and field ¢. But the change of coordinates and the 
change offield are only made for mathematical convenience, 
and we think that a theory cannot be based on this 
resemblance. 

6. COMPUTATION OF a AND P WITH CONFORMAL 
COUPLING 

From now on we shall only study the conformal cou­
pling, i.e., we make 5 =~. Then we can have an idea of the 
relevant phenomena predicted by the theory in the easiest 
way. Besides, in Sec. 7 we shall see that there is a good phys­
ical reason to prefer the conformal coupling: The energy is 
also finite. 

From Eq. (5.5) we see that in this case 

p(k, 1]) = 1 + ,u2a2(1])/k 2 = (a2/k2)w~ . (6.1) 

We first remark that with this p, Eqs. (5.15), (5.16) 
become 

¢(k, 1]) = (2awd- 1/2 , 
(6.2) 
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-(k,1])= -I - 1- -- , d¢ . (aWk )1I2( i,u2H) 
d1] 2 2w~ 

i.e., exactly the boundary condition (5.33) if we disregard the 
unimportant factor (21Ty3/2. Therefore, in the conformal 
coupling case the boundary conditions (5.33) obtained from 
the quantum equivalence principle are the boundary condi­
tions that we would find if we take the first approximation of 
the WKB method [multiplied by (21Ty3/2]: 

¢(7il(k,..i) = (21Ty3/2(2k yl/2p- 1/4exp ( - ik 1'>/2 d1]l) , 

(6.3) 

[cf. Eq, (5.6) with €(k".i ) = 0] and its first derivative 

dtf}T/1 (k ..i) 
d..i ' 

= (21T)-3/2( _ i) (!5-.)1I2pI/4(1 _ _ 1_' p-3/2 dP) 
2 4k d..i 

Xexp( - ik )iAp1/2 d1]/) (6.4) 

[cf. Eq. (5.7) with €(k".i ) = 8 (k".i ) = 0]. 
Therefore our particle model at each time is an exact 

solution of the Klein-Gordon equation that satisfies, at that 
time, the boundary conditions of a first approximation of the 
WKB method. This model combines two important features 
of the flat space-free particles. In fact, their wave functions 
are solutions of the Klein-Gordon equation and the WKB 
approximation, only that in that case the first approximation 
turns out to be exact. 

Let us define9 the following new variable x, and field W: 

(6.5a) 

(6.5b) 

(we modify the definition of Win Ref. 9 with a new constant 
factor (2k )1/2 for our convenience). Then Eq. (5.4) becomes 

d 2 W 
dx2 + [k 2 - f(k, x)] W = 0, (6.6) 

where 

f(k, x) = [4P d 2p _ 5 (dP )2]/16P = _ p-3/4 ~ p-l;4 
d1]2 d1] d1]2 

1 ,u
2
k

2 
( 5,u2 )n = -2 -4- 2- -2 -2 -q 2, (6.7) 

W k W k 

where q is the deacceleration parameter 

q = - (ii/a)H-Z . 

It follows from (6.5b) and (5.6) that 

W(k, x) = e - ik" + €. 

Moreover from (5.7b), 

8(k, 1]) = ~ ~ _1_ 
k ax pIll 

and since (6.5a) implies 
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aE 

al1 
we have 

0= ~~. 
k ax 

(6.10) 

(6.11) 

Now we are ready to find a k and 13k . As we have shown, 
function (6.9) multiplied by (21Tt3/2 satisfies our boundary 
condition (5.33) at 11 = 0. Therefore, A ~o) = (21Tt3/2 and B ~o) 

= ° in (5.17). 
Then from Eqs. (5.19), (5.22), and (5.23) we have 

¢~1)(A ) = (21Tt3/2 [ak ¢(k, A ) + 13d,*(k, A )] . (6.12) 

This function must also satisfy the boundary condition 
(5.33) at A = 11. So we have 

a k [exp( - ikx) + h ] + 13k [exp(ikx) + h *] 

= 1 - [ak (exP( - ikx) + ~ ~:) 

- 13k exp( ikx) - ~--( 
. dh *) 

k dx 

- ~ [akexp( - ikx) + h ] + 13k [exp(ikx) + h *] 
. 2H ] 
2wi 

= [(1- ~ jt~~)]. (6.13) 

That yields the system 

(e ~ikx + E)ak + (e ikx + E*)13k = 1 , 
(6.14) 

(e ~ikx + ~ :; )ak - (e
ikx 

- ~ ~:)13k = 1 . 

Now, let us observe that the Wronskian ofEq. (5.4) is a 
constant, which we can find with the initial conditions (6.2), 

¢ d¢* _ tP* d¢ 
drJ d1] 

= _ 2 + Ee'x + E*e~'x + __ e'x i( 'k 'k iaE'k 
2 k ax 

- ~~e-iXk+ ~-..!.... _ ~~ =i. (6.15) . a * . • a . a *) 
k ax k ax k ax 

So we have that 

. a . a * ikx .... ~ ikx I E ixk I E ~ ikx 
Ee +t:'e + --e - --e 

k ax k ax 

+ iE* ~ _ iE aE* =0. (6.16) 
k ax k ax 

Now if we compute the determinant ~ k of the system 
(6.14) and use (6.16) we find 

~k=-2. 

Therefore, a k and 13k are 

ixk 1 ( * i aE*) a =e + - E ---
k 2 k ax ' 

13k = - + (E - ~ ~;). 
Again using (6.16) we can easily verify that 

(a k )2 - (13d = 1. 
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(6.17) 

(6.18a) 

(6.18b) 

These are very simple formulas, but the real nice thing is 
that we can even compute directly the a k and 13k from the 
function W. 

From Eq. (6.8) we have 

E = W _e~ikx, 

aE dW 'k ~ikx -=--+le , 
ax dx 

that, with Eq. (6.l8), yield 

a
k 

= ~ (w* _ .!..- dW.) 
2 k dx ' 

1 ( i dW) 
13k = - "2 W - k dx . 

(6.19) 

(6.20) 

(6.21) 

We also have an integral representation ofak and13k' In 
fact, the recurrence relation of the sequence of approxima­
tions of E is [cf. Ref. 9, Eq. (2.26)] 

1 LX En(k, x) = - sink (x - y)f(k,y) 
k 0 

Xkn~l(k,y)+e~ikY]dy, n;;;d. (6.22) 

If we take the limit n-. 00 , since the sequence converges 
uniformly, we have the exact integral equation 

E(k, x) = ~ rsink (x - yif(k, y) [E(k, y) + e ~ iky
] dy. 

k Jo 

Then from Eqs. (6.18) and (6.19) we have 

a k =eikx (1 - ~ ikXe~illw*Gde), 

13k = .!..- ~kx rkX 
e ~ illWG de , 

2 Jo 
where the integration variable is e = kx and 

(6.23) 

(6.24) 

(6.25) 

G(k,x)=k~:r(k,x)= _L 2- _L _q 2, 1 2( 5 2 )n 
2 Wk 2 wi 

(6.26) 

7. THE ENERGY DENSITY 

Of course energy is not a well-defined notion in curved 
space-time. Strictly speaking, energy is the zero component 
of the momentum, a global4-vector that we cannot define in 
this case. 

The best thing we can do is to compute the (0,0) compo­
nent of the energy-momentum tensor of the field, obtained 
from the Lagrangian that corresponds to the field equations 
(2.2) and integrate in at = constant surface. The (0,0) com­
ponent of the energy-momentum tensor is given by13,14 

!(at t/J)2 + 6sHt/Ja t t/J + ~ (Vt/J)2 
2a 

+ ! jt2t/J 2 + 3sH2t/J 2 - ~f jtlaj(t/Jajt/J). (7.1) 

The total energy density operator at time t = 7 will be 

E(7) = iT °0 dO' , (7.2) 
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where du is the area element of the Cauchy surface, S, 
f = 7 = etc. 

where we have taken the usual prescription of normal 
ordering. 

As before, we assume that at time 7 the universe is in the 
vacuum state 10) (1")' The mean value of the energy density at 
time 7' will be, in the conformal case ( t = ~) 

(;-)<0/E(7')10)(1") = Jd 3ke(k)/PkI 2
, 

where 

'M. Castagnino, J. Gen. ReI. Grav. 9,101 (1978). 

(7.4) 

2M. Castagnino, A. Yerbeure, and R. Weder, Phys. Lett. A 48,99 (1974). 
3M. Castagnino, A. Yerbeure, and R. Weder, Nuovo Cimento B 26,396 
(1975). 

4A. Lichnerowicz, Inst. Haut. Et. Sc. Publ. Math. No. 10(1961), p. 1. 
'L. Parker, Phys. Rev. 133, 1057 (1969). 
6M. Castagnino, These d'Etat, Universite de Paris (1974), Part II to be 
published in Math. Notae. 

7We shall use the work "implementable" in the large sense. Strictly speak­
ing the Bogolyubov transformation would be unitarily implementable if 
the k spectrum would be discrete as in the case of a compact spatial geome­
try (or a normalization of the base functions in a box). As the present 
theory can be generalized to this kind of geometry we keep the word "im­
plementable" to avoid the invention of a new one. 

HOf course in this way we only have a first approximation of the geodesic 
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Using Eq. (2.13) and the boundary conditions (4.19) we 
obtain 

2wi 

iH (I + L _ 6:)]0·(1")a·(1") 
2 2wi ~ k -k' 

To derive (7.5) we have used (2.18), (2.19), and (7.3). 
Clearly 

(7.3) 

(7.6) 

for some constant C. It follows from (5.25), (5.29), (5.31), and 
(5.37) that 

18k I = O(kI3 ). k-+oo . 

Then in the conformal case the integral (7.4) is conver­
gent, and then the energy of the created particles in finite. 

distance (measured along the four-dimensional many-fold geodesic, not 
along the Cauchy surface geodesic). Therefore all the following formulas 
must be considered only as a first approximation. We shall give the exact 
theory elsewhere. 

9F.W.J. Olver, Proc. Cambridge Philos. Soc. 57, 790 (1961). 
IOF.W.J. Olver, Asymptotics and Special Functions (Academic, New York, 

1974). 
"S.A. Fulling, "Remarks on Positive Frequency and Hamiltonians in Ex­

panding Universes," preprint, Texas A & M University (1978). 
12S.G. Mamaev, Y.M. Mostepanenko, and A.A. Starobinskii. Sov. Phys. 

JETP 43,823 (1976). 
13N.A. Chemikov and E.A. Tagirov, Ann Inst. Henri Poincare A 9, 109 

(1978). 
"B.S. Dewitt, Phys. Rep. 19, 295 (1975). 
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An important magnitude in percolation theory is the critical probability, which is defined as the 
supremum of those values of the occupation-probability p, for which only finite clusters occur. In 
1964 Sykes and Essam obtained the relationP~)(L) + P~')(L *) = 1, whereL andL * are a pair of 
matching lattices and P~) denotes the critical probability (site-case). The proof was not complete, 
but based on certain assumptions about the mean number of clusters. Though Sykes and Essam 
suggested that the above relation holds for all mosaics (i.e., multiply-connected planar graphs) and 
decorated mosaics, we have constructed a counterexample. Subsequently, for a more restricted 
class of graphs, an alternative derivation of the Sykes-Essam relation is given, this time based on 
the usual assumption that below the critical probability the mean cluster size is finite. The latter 
assumption is also used to prove for some nontrivial subgraphs of the simple quadratic lattice S, 
that their critical probability is equal to P ~)(S ). Finally, for a certain class of lattices, sequences of 
numbers are constructed, which converge to the critical probability. In the case of the site process 
on S, the number with highest index we found, is 0.5925 ± 0.0002, which seems to be a reasonable 
estimate of p~J(S). 

P ACS numbers: 05.50. + q, 02.50.Cw 

1. INTRODUCTION 

Percolation problems arise in many branches of science 
and engineering. Concerning physics, the most interesting 
example is the dilute ferromagnet, where the concentration 
of magnetic particles is p and the concentration of nonmag­
netic impurites is I - p. Below a certain value of p, the so­
called critical concentration Pc, there are only finite clusters 
of magnetic particles and therefore no spontaneous magne­
tism occurs at any temperature. On the other hand, if p > Pc , 
spontaneous magnetism will occur below a certain 
temperature. 

Generally, percolation can be described mathematical­
ly as follows. A graph G consists of abstract points, called 
vertices (or sites or atoms) and connections between some of 
these points, called bonds. These bonds may be oriented, in 
which case they connect in only one direction, or nonorient­
ed. In this paper we only deal with nonoriented graphs, i.e., 
graphs of which all bonds are nonoriented. 

With the graph G we now relate a so-called random 
coloring as follows: Each vertex of G has, independently of 
all other vertices, a fixed probability p of being colored black, 
and q = I - p of being colored white. For such a realization 
ofthis random coloring we distinguish two section-graphs of 
G, one, called Gb , containing all black, and the other, Gw , 

containing all white vertices of G. 
Percolation theory studies the properties of G band G w • 

Especially, in the case that G is infinite, we are interested in 
the critical value Pc of p, above which infinite black clusters 
appear. 

A related model is that in which the bonds ofG, instead 
of the vertices, are randomly colored. This model and the 
model above are known as the bond- and the site-percolation 
process respectively. It appears that the site process is the 
more general one, because the bond process on a graph Gis, 
in a certain sense, equivalent with the site process on the 

covering graph G c of G. Therefore, quite often certain re­
sults are proved for the site- and then translated to the bond­
case. 

In 1964 Sykes and Essam I published some interesting 
results for two-dimensional percolation processes. We shall 
use much of their terminology. A more general introduction 
to the subiect is to be found in. e.g., Refs. 2 and 3. 

Remark: In this article we shall only deal with lattices 
which are mosaics or decorated mosaics. 

One of the main results of Sykes and Essam is the 
relation 

(1) 

where Land L * are a pair of matching lattices and P ~S) de­
notes the critical probability for the site-percolation process. 
This relation follows from the fact that the mean number of 
black L clusters per vertex differs from the mean number of 
white L * clusters per vertex by a finite polynomial ifJ (p) 
(where p is, as it will be throughout this article, the probabil­
ity of a given vertex being black), in formula: 

k (p;L ) = k (1 - p;L *) + ifJ (p). (2) 

Now Sykes and Essam derive (1) immediately from (2) 
by the assumption (which has not been proved) that in the 
domain O<p< 1 the function kis singular atP~') and nowhere 
else. 

Next they remark that the triangular lattice Tis self­
matching, which implies, by (1), that: 

(3) 

and that (3) more generally holds for any lattice of which all 
faces are triangular. However, it is easy to construct such a 
lattice for which (3) is not true, as follows. 

Figure 1 (a) shows a sequence of triangles Ao, A I' A 2,", 

each of which (except Ao) has six vertices on its perimeter, 
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FIG. 1 (a) Lattice. consisting ofa sequence of nested triangles Ao. A" A2 ... •• 

(b) The lattice obtained by triangulation of the lattice in (a). It appears that 
the critical probability (site-case) of this lattice is. in contrast with the 
Sykes-Essam relation. not ~ but I. 

one at each comer and one at the center of each of its edges. 
The fully triangulated graph G in Fig. 1 (b) is obtained 

by drawing a bond in every nontriangular face of Fig. l(a). 
Considering the site-percolation process on G, we note 

that, ifp < 1, for each i > ° the probability of the event that all 
six vertices of Ai are white is q6 > 0. Further, we observe that 
any pair of the triangles with odd indices A I' A 3, As,. .. , has no 
common vertex, hence the number of white vertices on the 
perimeter of one of these triangles is independent of that on 
the others. But then it follows from a well-known law of 
probability theory that there is with probability 1 at least one 
such Ai of which all six vertices are white. It is obvious that 
such a triangle blocks all possible black walks starting in one 
of the comers of A 0' This is the case for every p < 1, so we 
may conclude that for this graph, which obviously is a mosa­
ic, P~s) = 1, so that (3) and therefore (1) does not hold. 

In Sec. 2 relation (1) will be derived for a restricted class 
oflattices in a way that is totany different from that of Sykes 
and Essam. The proof is based on the following assumption: 

Assumption I: If p < P ~S) then the mean number of ver­
tices that can be reached from a given vertex via black walks 
(i.e., the mean size of black clusters) is finite. 

Though not proved, this assumption is not unusual. It is 
even the main idea behind the method of estimating the criti­
cal probability by means of cluster-size expansion (see 
Domb, Sykes4

). 
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It will appear that, besides (1), the assumption has. other 
interesting consequences. In Sec. 3, e.g., we .shall use It to. 
prove for a certain class of subgraphs of the sImple quadratIc 
lattice S, that their critical probability is the same as for S 
itself. In Sec. 4 assumption 1, combined with a theorem of 
Hammersley, leads to another mathematical approach of a 
method to estimate the critical probability for certain lat­
tices. This method is rather similar to the renormalization 
group method used by Reynolds et al. 5

•
6 

2. AN ALTERNATIVE DERIVATION OF: 
P';J(L) + P';YL .. ) = 1. 

We shall first discuss some definitions and arguments 
which lead to Lemma 1. Then we are ready to prove (1) for 
certain lattices. 

Let v be a vertex of some graph G. 
N n( v) denotes the set of all vertices of G that can be 

reached from v in n or fewer steps. 
Further we define: 

BO(v) =N°(v) = Iv}, 

B n(v) = N"(vl\Nh - l(v). 

We shall call B n(v) the sphere with center v and radius 
n. Now consider the site-percolation process on G of which 
every vertex is colored black with probability p and white 
with probability I - p. Let S (PiV) be the mean number of 
vertices that can be reached from v by black walks, and de­
note by Sn(P;v) the mean number of such vertices which lie 
in B n(v), n = 0,1,2,.··. It is clear that 

S(PiV) = f Sn(P;v). (4) 
n=O 

Further let Pn (p;v) be the probability of the event that 
at least one vertex outside N n(v) can be reached from v by a 
black walk. 

Every walk from v to a vertex outside Nn(v) obviously 
visits some vertex of B n(v) and the probability that at least 
one vertex of the latter kind can be reached from v by a black 
walk is not larger than Sn (p;v), so that 

Pn(PiV) <Sn(P;v); (5) 

this, combined with (4) and assumption 1 gives: 

Lemma 1: If P < p~s), then !-;: = oPn (PiV) < 00. 

For reasons of simplicity we shall first study as an ex­
ample the site-process on the simple quadratic lattice S, for 
which with the help of Lemma 1 we shall prove (1). After­
wards the results will be generalized. Because for this lattice 
the functionsSn , S, andPn do not depend on v, we shall omit 
this parameter. 

For P < P ~s)(S), it follows, by Lemma 1, that the series 
!- Pn(p) converges and so, for some MEN and positive real 
number r: 

f Pn (p)=r<1. (6) 
n=M+1 

Denote by Woo ' W, and C the events that the vertex ° = (0,0) belongs to an infinite white S • cluster, that all ver­
tices (0,0), (0, -1), ... ,(0, - M) are white, and that the vertex 
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° is black or surrounded by a black S circuit, respectively. 
From the matching-property (see Appendix 1 of Ref. 1 

for a proof) it follows that either Woo or C occurs. We also 
note the following: !fall vertices (0,0), (0, -1), ... ,(0, - M) 
are white, then the event C can only occurifthere is a black S 
walk from a vertex on the Yaxis below (0, - M) to a vertex 
on the Yaxis above 0. Further, for each positive n, all vertices 
on the positive Yaxis lie outside Nn«o, - n», so that the 
probability of the event that at least one of these vertices can 
be reached from (0, - n) by a black walk is smaller than 
Pn(p)· Therefore, iff or events EI and E2 Pr{EI IE2 1 denotes 
the conditional probability of E 1, given E2, it follows for 
p<p~I(S): 

Pr{CIWI< ! Pn (p)=r<l, (7) 
n=M+ I 

and hence 

Pr{ Woo I>Pr{ WI Pr[ WOO IWI 

= qM+ 1(1 - Pr[ C I WJ»qM+ 1(1 - r»O. (8) 

So we have proved that, for p < P ~I(S), there is a positive 
probability that a given vertex belongs to an infinite white S * 
cluster. In other words, if p < P ~I(S), then 1 - p > P ~I(S *). 
This immediately yields, by taking p = P ~SI(S ) - E, with E 

positive and arbitrarily small: 

P~)(S)+p~I(S*)<;1. (9) 

Fisher,? generalizing Harris' method,8 proved that for a cer­
tain class of lattices, to which S belongs, P ~b '(L ) 
+ P~bl(L DI> 1, where L D is the dual lattice of L and p~1 
denotes the critical probability for the bond-percolation pro­
cess. This result can be extended to the site-case, so that we 
have, forS, 

P~I(S) + P~)(S*»I, (10) 

which, combined with (9), yields the wanted relation: 

P~S)(S) + p~s)(S *) = 1. (11) 

When we call two vertices VI and V2 equivalent if, for all nand 
p, Sn(P;v\) = Sn(P;v2), then we can generalize the above re­
sult as follows: 

Theorem I: Let L be a lattice which has only a finite 
number of classes of equivalent vertices and which possesses 
a pair of orthogonal symmetry-axes. Then 

P ~')(L ) + P ~s)(L *) = 1. 

The proof of Theorem 1 is similar to that of the special 
case of the simple quadratic lattice (see also Fisher7

). 

3. SOME NONTRIVIAL SECTION-GRAPHS OF S WITH 
CRITICAL PROBABILITY fX;J(S). 

In this section it will first be shown that p~s)(S (~1T» 
= P~s)(S), where S(!1T) denotes the quadrant of Swith ver­

tex-set {(n,m)ln,m>O I. Analogously S *q1T) will denote the 
quadrant of S * with the same vertex-set as S C!1T). 

From the matching-property (see Ref. 1) it follows that 
the vertex ° = (0,0) belongs to an infinite white cluster of 
S *(~1T) ifand only if there is no black walk inS (!1T) from some 
vertex (n,O) to some vertex (O,m),n,m>O. It is trivial that the 
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probability of the latter event is smaller than the probability 
of the corresponding event for S, which, in the case that 
p < p ~)(S), can be proved (in a similar way as in Sec. 2) to be 
smaller than 1. So we have that, for p <p~s)(S) (which, by 
(11), is equivalent with 1 - P > P ~S)(S *), 
1 - p>p~s)(S *(!1T». Hence it follows that 

p~S)(S *G1T»<;P~s)(S *). (12) 

On the other hand, becauseS *(~1T) is a subgraph of S *, it 
is clear that the critical probability of the first cannot be 
smaller than that of the second; hence 

p~S)(S*(!1T» =p~s)(S*). (13) 

The analog of (13) for S is obtained by changing the roles 
of SandS*. 

In the same way we can prove the following theorem: 
Theorem 2: Let u be a positive real number and let S' be 

a connected subgraph of S containing the section-graph of S 
with vertex-set 

! (n,m)I°<;n;O<;m<;un), 

then 

p ~l(S ') = p ~S)(S). 

Remark: It is noted that similar results hold for many 
other lattices, particularly for the triangular and the honey­
comb lattice. 

4. ESTIMATES OF THE CRITICAL PROBABILITY 

In this section for a certain class of lattices we shall 
construct sequences of numbers which converge to the criti­
cal probability. As in the last two sections, we shall first take 
as an example the simple quadratic lattice S. 

Let K (n) be the so-called "box" with (n + 1) X (n + 1) 
vertices (see Fig. 2). 

By the upper, the lower, the left, and the right side of 
K (n) we mean the sets l (O,n ),(1 ,n ), ... ,(n,n)!, 
[(O,O),(I,O), ... ,(n,O) I, {(O,O),(O, 1), ... ,(O,n), and 
! (n,O),(n, l), ... ,(n,n) J, respectively. 

4~----__ ~----~----__ ~----. 

3a-----~----~~----~------

2~----__ ~----~----__ ~----9 

1--------~----~------~----. 

o 1 2 3 4 

FIG. 2. The box K (4) of the simple quadratic lattice. 
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r.. 8 r.. 

6 7 

5 

4 3 2 

C 
1 

FIG. 3. Example ofa coloring of the box in Fig. 2. In this example the event 
B4 and not W: occurs. The numbered vertices mark a black Swalk from the 
lower to the upper side. 

Let Bn(Wn) be the event that there is a black (white) S 
walk, entirely lying in K (n), from the lower to the upper side 
of the box. 

Analogously B ~(W~) denotes the event that there is a 
black (white)S * walk, entirely lying inK (n), from the left to 
the right side. 

Further we define: 

!n(P) = Pr(Bn J;f~(p) = Pr(B~J. (14) 

From this definition and the fact that the probability 
that a vertex is white is 1 - p, it follows that 

Pr( Wn J =!n(1 - p); Pr( W~J =!~(1- p). (15) 

Because of the matching-property either Bn or W~ 
takes place (see e.g., Fig. 3). Hence, by (14) and (15): 

!n(P) = l-/~(I-p). (16) 

It will be shown that, for p < P ~S)(S), the sequence!n (p) 
tends to zero. Analogously, if p < P ~S)(S *), then!~( p) tends 
to zero. For this we shall first state a stronger version of 
Lemma 1. 

Consider the site-percolation process on a graph G. Let 
v be a vertex ofG. Define the following functions [withB n(v) 
as defined in Sec. 2]: En (p;v)== the mean number of vertices 
in B n(v) that can be reached from v by at least one black walk 
of which all vertices, except the last one [which, of course, is 
in B n(v)], are in Nn - I(V). Further, 

Fn(P) sup En(P;v). 
v 

In the case that G is a so-called medium9 the following 
holds: If, for certain nand p, Fn (p) = A < 1, then, for each 
nonnegative integer m and each vertex v: 

Fm(P;v) <A [mini, (17) 

where [min] denotes the integer part of (min) and with 
P m(P;v) as defined in Sec. 2. This theorem, which is due to 
Hammersley,1O was formulated and proved by him for the 
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bond-case, II but it is easily seen that also the above site­
version holds. 

Now if the medium G contains only a finite number of 
classes of equivalent vertices (equivalent used in the same 
sense as in Sec. 2), then it follows from assumption 1 that in 
the case that p is smaller than the critical probability, for 
each vertex v, I.;;; = oEm (p;v) < 00. Hence, (because of the 
finite number of equivalence classes) in that case there will be 
some n such that Fn (p) < 1. Next, application of Hammers­
ley's theorem leads to the following lemma: 

Lemma 2: If p < P ~s)(G), then there exists a A (p) < 1, 
such that for all m and all vertices v: 

Pm (p;v) < A m(p). 

Remark: If, in Hammersley's theorem, [min] would be 
replaced by (min), then Lemma 2 follows trivially from the 
above reasonings (take A (p) = A lin), with A as in Hammers­
ley's theorem). The presence of the ( ]-function makes only a 
slight change of the proof necessary. 

We are now ready to prove the statement about the 
limiting behavior of In (p): From the definition it is clear that 
In (p) is smaller than the probability of the event that there is 
a black S walk, not necessarily lying entirely in the box K (n), 
from some vertex (i,0) to some vertex (j,n) (O<J,j<.n). Fur­
ther, for each i andj, the vertex (j,n) lies outside 
N n - I ( (i,O)!) so that, for p < P ~S)(S), it follows from Lemma 2 
that 

!n(P)<' i Pn- I (p;(i,O»«n +1)A n- l (p), (18) 
;=0 

so that!n (p)-O for n-oo. 
Of course the same arguments hold for S *, i.e., if 

p < P ~S)(S *) then, for n_ 00 , 

!~(p)-O. 

But, from (11), p < P ~S)(S *) is equivalent with 

1.00 

i 0. 75 

0.50 

0.25 

0.00 

0.0 0.2 0.4 0.6 0.8 
~ 

FIG. 4. The functionfn(p) for n = 5 and n = 20. 
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1 - P > P ~S)(S). Hence, by combining (16), (18), and (19), we 
have the following theorem. 

Theorem 3: Denote by In (p) the probability ofthe event 
that there is a black S walk, which connects the lower and the 
upper side of the box K (n ) and which does not leave this box. 
Then, for n---+ 00 

In (p)-o, forp<P~)(S), 

In (p)---+I, forp>P~S)(S). 

Of course, by symmetry, an analogous theorem holds 
for S*. 

Remark: The substance of this theorem is already men­
tioned in earlier papers, e.g., by Reynolds et al. 5.6 (who show 
even more, namely that the "unstable" fixed points of the 
In's converge to the critical probability), but our proofis new. 
Their theory is based on scaling-arguments, which are very 
interesting but rather heuristic. On the other hand, our ap­
proach does not give insight in the theory of critical expo­
nents. The interested reader is also referred to work by 
Kirkpatrick. 12 

Though Theorem 3 says nothing about the limiting­
behavior of In (p) in the case that p = P ~S)(S), we do have the 
following theorem: 

Theorem 4: Let r be any real number in the open interval 
(0,1) and let gn :[0,1]---+[0,1] be the inverse function of In , 
then: 

This theorem follows from Theorem 3 and the fact that 
every In(P) is continuous (it is a polynomial) and increasing 
inp, while, for each n,fn(O) = 0 and In (1) = 1. 

Every polynomialln is computable (because for every n 
there is only a finite number of ways in which the vertices of 
B (n) can be colored black and white); hence Theorem 4 in­
deed provides sequences of numbers which converge to the 
critical probability. Unfortunately, even for rather small n, it 
takes very much time to calculate In. For various values of n 
and p, estimates of In (p) are made by Monte Carlo simula­
tions (see e.g., Fig. 4). These values lead to estimates ofgn (r). 
Though every number between 0 and 1 is allowed, we made 
the most natural choice and took r = !. 

TABLEt 

f.,(p) 0.590 0.591 0.592 0.593 0.594 0.595 

0.454 0.560 
80 ± ± 

0.009 0.009 

nl 
0.433 0.462 0.495 0.527 0.533 0.567 

120 ± ± ± ± ± ± 
0.012 0.012 0.012 0.012 0.012 0.012 

0.405 0.450 0.477 0.526 0.539 0.584 
160 ± ± ± ± ± ± 

0.012 0.012 0.012 0.012 0.012 0.012 
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FIG. 5(a) The box K (2) of the covering-lattice of S. (b) Unit-cell of the 
lattice in (a). 

(a) 

(b) 

Linear interpolation in the intervals [Pn.1 ,Pn.2]' where 
Pn.1 (Pn.2) is the largest (smallest)p in Table 1 such that the 
uncertainty region of In (p) lies entirely below (above) ~ (that 
is:P120.1 = 0.591,P120.2 = 0.593;Pl60.1 = 0.592, -
PI60.2 = 0.593), yields: 

gso(D = 0.5922 ± 0.0003, 

g12o(!) = 0.5922 ± 0.0003, (20) 

g160(D = 0.5925 ± 0.0002. 

The results (20) give the impression that the last value, 
0.5925 ± 0.0002, is a reasonable estimate for the critical 
probability. This estimate is within the uncertainty region of 
the less precise result of Sykes et al., 13 who obtained P ~)(S) 
= 0.593 ± 0.002, and a little smaller than the estimate of 

Reynolds et al.,6 who found 0.5935:t.: g::ig. 
Finally it should be remarked that analogs of Theorems 

3 and 4 hold for many other lattices, specifically for those 

FI G. 6. By drawing one diagonal in each face of the simple quadratic lattice, 
we obtain this lattice, which is isomorphic with the regular triangular 
lattice. 
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which have a pair of orthogonal symmetry-axes and are reg­
ularly built up of rectangular unit-cells (see e.g., Fig. 5). In 
these cases we take for K (n) the box consisting of n X n unit­
cells. 

Remarkable cases are those of the lattice in Fig. 5, 
which is the covering-lattice of the simple quadratic lattice, 
and of the triangular lattice T, which is isomorphic with the 
lattice formed by drawing one diagonal in each face of the 
simple quadratic lattice (see Fig. 6). 

From the self-matchingness of these lattices and the 
symmetry of their boxes it follows that in these cases I" (p) 
= I~(p), which, by (16), yields for all n andp: 

(21) 

and hence 

(22) 

But, for these lattices, ! is exactly the value of Pc (S), so 
thatl" (p) is constant at the critical probability. 

From (22) it also follows that, for all n 

(23) 

So if we take r = ! then, for these lattices, Theorem 4 yields 
an exact result. 

Added in proof In Sec. 4 a theorem of Hammersley is 
used to prove that, for 
p <P~')(S), lim,,~cc (n + 1)p" ~ dp;v) = 0 and hence 
lim" ,= I,,(p) = 0 [see Lemma 2 and (18)]. It is possible to 
derive this result directly, i.e., without using Hammersley's 
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theorem, namely as follows: P" (p;v) (see definition in Sec. 2) 
is obviously decreasing in n. Further, if p < P ~i(S), then, by 
Lemma I (Sec. 2), l: Pn (p;v) < 00. Hence, if p < P ~)(S), then, 
with [n/2] denoting the integer part of n!2: 

" O<,nP" (p;v) < 2 I Pm (p;v)---+O, for n---'> 00. 

nl2 
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A solution is given for the (inverse) problem of determining the scattering laws for a multigroup, 
anisotropically scattering medium, in terms of the boundary fluxes corresponding to finite slabs. 
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I. INTRODUCTION 

The problem of determining the scattering law for a 
medium by measuring and processing the results of one-di­
mensional experiments has been considered in a number of 
recent articles. 1-15 In much of this work, the angular fluxes 
on the boundaries of and within the system must be mea­
sured to obtain a solution. From the experimental point of 
view, it is preferable to have to measure only the incident and 
outgoing fluxes. Pahor's solution I does require just the mea­
surements of these boundary fluxes, but his solution is ap­
proximate and applicable only for thin slabs. 

Siewert9
•
10 and McCormick, II however, have recently 

derived exact solutions for one-group, anisotropic scattering 
problems in a finite slab, in which only the boundary fluxes 
need to be measured. Siewert's first solution [Ref. 9, Eq. (12)] 
is based on the assumption of a two-term (linearly anisotro­
pic) scattering law, and is derived by manipulating Chandra­
sekhar's X and Y functions. 16 Siewert lO later extended this 
result to a three-term scattering law and reduced the deriva­
tion to direct manipulations of the transport equation. 
McCormick II then found a solution for a general (N + 1)­
term scattering law. McCormick's analysis makes use of azi­
muthally asymmetric fluxes and leads to a linear "triangu­
lar" system of equations, whereas Siewert's analysis makes 
use of only the azimuthally symmetric flux and leads to a 
nonlinear set of equations. In spite of these differences, 
McCormick's analysis II is similar to that of Siewert,1O and 
both analyses give the same result for isotropic (N = 0) 
scattering. 

More recently, Siewert and Maiorino l2 and McCor­
mick l3 have solved inverse problems for Rayleigh-scattering 
atmospheres. Also, McCormick and Sanchez have studied 
various numerical solutions ofinverse transport problems, 14 

and have developed solutions for more general inverse 
problems. 15 

In this note we consider multigroup transport in an ani­
sotropically scattering, finite slab medium. We require that 
the number G of energy groups and the number N + 1 of 
Legendre moments in the scattering law are given and finite, 
and that the total cross sections for each group are known. 
(Actually, it suffices to know the total cross section for only 
one group.) We then derive linear equations from which the 
scattering laws can be determined by performing G 2(N + 1) 
slab geometry experiments and measuring only the bound­
ary angular fluxes. Our method is similar to that of Siewert 10 

"IResearch performed under the auspices of the U.S. Department of 
Energy. 

and McCormick, II although we do not make use of the azi­
muthally asymmetric fluxes, as McCormick did. (If we had 
followed McCormick's treatment of the azimuthally asym­
metric fluxes, the number of necessary slab experiments 
would be reduced to G 2, but the algebra would become more 
difficult. Such a solution could be less sensitive to experi­
mental error; however we shall not develop this solution 
here.) Finally, we show that our solution reduces to the ap­
propriate parts of McCormick'sll and Siewert'slO solutions 
for the special cases of one-group scattering with an (N + 1)­
and a three-term scattering law, respectively. 

II. ANALYSIS 

We shall consider forward transport problems of the 
following form: 

J.l ~ "'(X,J.L) + ..!'·"'(x,J.l) 
ax 

N 

= ! L Pn(,u)Cn''''n(x), o<x <a, 
n=O 

"'n(x) = fl Pn(J1:)"'(x,J.l')dJ.l', 

",(O,J.l)=fL(J.l), 0<J.l<1, 

"'(a,J.L) = fR (J.l), - 1 <J.l < 0. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Here Pn (J.l) are the Legendre polynomials,..!' is a known 
diagonal G X G matrix, Cn are unknown G X G matrices, and 
the angular and incident fluxes "', fL' fR are G X 1 vectors. 
We shall also consider adjoint transport problems of the 
form 

a 
- J.l - ","'(x,J.l) + "''''(X,J.L)·..!' 

ax 
N 

= ! L Pn ( J.l )"'~(x),Cn' 0 < x < a, 
n=O 

"'~(x) = f I Pn (J.l')"''''(x,J.l') dJ.l', 

"'*(O,J.L) = f!(J.l), - 1<J.l <0, 

",*(a,J.l) = f1; (J.l), ° <J.l< 1. 

In these equations, "'''', f!, and f1; are 1 X G vectors. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

To begin, we multiply Eq. (2.1) on the left by ~*I ax 
and integrate over J.l. This gives 

JI J.l( ~ "'*) . ( ~ "') dJ.l + JI ( ~ "'''') . ..!'.", dJ.l 
-1 ax ax -1 ax 

(2.9) 
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Next we multiply Eq. (2.5) on the right by a,jIlax and inte­
grate over Il. This gives 

- I~ I Il( ! ~*). ( ! ~) dll + I~ I ~*.I{ ! ~) dll 

= ~ n~o ~~,Cn' ( ! ~n). (2.10) 

Now we add Eqs. (2.9) and (2.10) and get 

d II diN - ~*.I.~ dll = - - L ~~,Cn '~n . 
dx -I dx 2 n=O 

(2.11) 

Finally, we integrate Eq. (2.11) over O<:;x<a to obtain the 
main result: 

I~ I ~*(O,Jl).I.~(O,Jl) dll - I~ I ~*(a,Jl)·I.~(a./l) dll 

= ~ f [~:(O),Cn '~n (0) - ~:(a),Cn '~n (a)]. (2.12) 
n=O 

This equation relates the boundary values of any pair of 
forward and adjoint angular fluxes to the unknown matrices 
Cn , O<n<N. There are G 2(N + 1) unknowns in these matri­
ces, and there is no restriction on the boundary conditions 
given by Eqs. (2.3), (2.4), (2.7), and (2.8). Thus, if boundary 
conditions for G 2(N + 1) distinct pairs of forward and ad­
joint problems can be prescribed such that the outgoing an­
gular fluxes and the incident adjoint angular fluxes can be 
measured by experiment, then Eq. (2.12) would provide a set 
of linear G 2(N + 1) equations for the same number of un­
knowns. These unknowns could then be determined by solv­
ing this linear system. [It is clear that if only one total cross 
section were known, then the remaining cross sections and 
the scattering law could be detemined by performing 
G 2(N + 1) + G - 1 experiments.] 

As an example, let us consider an experimental situa­
tion in which measuring devices are situated on both sides of 
a slab, and beams of neutrons are incident on one or both 
sides of the slab. Then for G 2(N + 1) different incident angu­
lar fluxes, one can measure the outgoing angular fluxes, and 
thereby obtain G 2(N + 1) distinct sets of angular fluxes de­
fined on the boundaries of the slab. In order to make use of 
these functions in Eq. (2.12), it suffices to obtain just one 
solution of the adjoint problem (2.5H2.8) which can be mea­
sured experimentally. Such a solution exists if we prescribe 

",;(0,Jl) = 1, - 1<1l <0, 1 <g<G, (2.13) 

",;(a,ll) = 1, o <,Lt< 1, l<g<G. (2.14) 

Then ~* has the following physical (and measurable) inter­
pretation at x = 0 and for 0 <Il<:; 1: 

",;(O./l) = the total current exiting the slab due to a unit 

incident beam at (0,Jl) in groupg. (2.15) 

Also, 

~*(a,Jl) = ~*(O, -Il), - 1 <J.l < O. (2.16) 

To verify this, we consider the following forward trans­
port problem for a function 'II(X,Jl;go./lo): 

a N 
Il-'II+I.'II=~ L Pn(Il)Cn,'IIn, (2.17) 

ax n=O 
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'lin (X,go,llo) = f~ I Pn(Il')'II(X,Il';go,llo) dll', (2.18) 

'IIg(O./l;go./lo) = 1l- 1 8( Il, - J.lo)8gg., 0 <Il< 1, (2.19) 
'II g (a,Jl;go,llo) = 0, - 1 <Il < O. (2.20) 

Multiplying Eq. (2.17) on the left by the solution '11* of the 
problem (2.5), (2.6), (2.13), and (2.14), and integrating over Il 
and x, we easily obtain 

t/Ji.(O,Jlo) = gtl {f Iltf/g(a./l;go./lo) dll 

- [11ltf/g(O./l;go./lo) dll}, 

1 <go<G, 0<1l0<1. (2.21) 

This verifies the interpretation (2.15), and Eq. (2.16) follows 
by symmetry. 

Thus, suitable boundary values of ~* can be determined 
by performing the same type of experiments for the forward 
angular flux as described earlier, measuring the outgoing 
currents, and then introducing these currents into Eq. (2.21). 

The above formulas simplify if the matrices Cn are a 
priori known to be symmetric. Then for any solution ~(X./l) 
of the forward transport equation, a corresponding solution 
of the adjoint equation is 

~*(X,Jl) = ~T(X, -Il), (2.22) 

where T denotes "transpose." Since the Legendre polynomi­
als satisfy 

Pn( -Il) = (- 1j"Pn(Il), 

then Eq. (2.22) and (2.23) give 

~~(x) = ( - l)n~!(x). 

With the choice of~*, Eq. (2.12) reduces to 

f ~T(O, -1l)·..!'·~(0,1l) dll - f ~T(a,Jl).I.~(a,ll) dll 

N 

(2.23) 

(2.24) 

= l L (- l)n[~!(O),Cn'~n(O) - ~!(a),Cn·~n(a)]. 
n=O 

(2.25) 

In this situation, only the forward angular fluxes on the 
boundary need to be measured. 

In the special case of one-group scattering and the 
changeofnotation..!'ll = CT, (en)ll = CTCn , Eq. (2.25) reduces, 
after dividing out CT, to 

f t/J(O, -1l)t/J(0,Jl) dll - f t/J(a, -1l)"'(a,Jl) dll 

N 

= l L (- l)ncn [tfn(O) - tfn(a)]. (2.26) 
n=O 

This equation has been derived by McCormick, II and for the 
special case N = 2 was derived earlier by Siewert. 10 
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The algebraic theory of thermodynamics developed in a previous paper is extended to include the 
algebraic structure that arises from the introduction of a physical body into the theory. The 
extension is based on very general definitions of both the thermodynamic states of a body and 
subsystems of that body. The algebraic analysis, which includes bodies in nonuniform states, 
shows that the set of all thermodynamic states of a body has the same algebraic structure as the set 
of thermodynamic states and that composite systems are induced by the algebraic structure of 
thermodynamic states. The analysis also justifies a variational treatment of thermodynamic 
bodies in uniform as well as nonuniform states. The variational calculation includes all 
conventional methods of calculation as special cases and helps to illuminate the origin and 
interpretation of the electrochemical potential. 

PACS numbers: 05.70 - a 

INTRODUCTION 

Thermodynamics has long enticed scientists from di­
verse disciplines to its service with the twin attractants of 
utility and simplicity. While the utility was always there in 
abundance, the proffered simplicity was often evanescent. I 
examined the mathematical structure of thermodynamics in 
a recent paper! with the intent of stripping it of those as­
sumptions and notions which are inessential for its develop­
ment and which only seem to obfuscate the underlying sim­
plicity. It proved possible to construct an algebraic theory of 
thermodynamics which was devoid of partitions, composite 
systems, and the zeroth law of thermodynamics, indepen­
dent of any particular brand of mechanics, and had a global 
character in the set of thermodynamic states. Surprisingly, it 
was never necessary to mention what is the essence of any 
physical theory: a physical body to which the theory is ap­
plied. In this paper I shall remedy this hiatus in the theory 
and focus on the algebraic structure that arises when this 
aspect of a physical theory is brought into play. 

The inclusion of a physical body in a thermodynamic 
analysis can complicate the theory considerably because it 
forces one to choose a suitable definition for the thermody­
namic states of such a body. This inevitably makes the theory 
dependent on the structure of that body to some extent. Tra­
ditionally thermodynamic states of bodies have been taken 
to be uniform over the body. The chief virtue of such a defini­
tion is that it effectively makes the states of the body coincide 
with the abstract set of thermodynamic states, a fact I al­
luded to in my first paper (p. 1595). The greatest deficiency of 
such a definition is the restriction it imposes on the applica­
bility of thermodynamic analysis to real world problems. 
Physical bodies in the real world are seldom in uniform 
states and this is especially true when electromagnetic and 
gravitational fields are present. More often bodies exhibit 
large gradients in properties and it would be advantageous to 
be able to treat bodies in such nonuniform states by thermo­
dynamic analysis. The primary purpose of the analysis de­
scribed in this paper is to extend the algebraic analysis of the 
first paper to include nonuniform states within the scope of 
thermodynamic analysis. The algebraic approach will be 
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global relative to the thermodynamic states of a body and it 
will lead to results which will be applicable to bodies which 
can be characterized as being in local equilibrium states. 

The paper will not be confined only to working out the 
algebraic details associated with the introduction of a body 
into the formalism. Some space will also be devoted to the 
development of a continuum realization of the algebraic for­
malism. There are three objectives which will guide this de­
velopment. One objective is to give a more equitable treat­
ment of constitutive relations in deriving a realization of the 
first law. The second objective is to demonstrate that the 
formalism contains conventional thermodynamics as a spe­
cial case. The final objective is to use the formalism for the 
thermodynamical treatment of systems in the presence of 
electromagnetic and gravitational fields and thus to shed 
some light on the origin and interpretation of the electro­
chemical potential and the related gravitational function. 

This paper will rely heavily on the results contained in 
the paper which preceded it and I shall presuppose a knowl­
edge of that paper's contents. The notation to be used here 
will be identical to that used there insofar as that is possible. 
When it becomes necessary to refer to a specific result from 
the first paper, such as an equation or a theorem, the refer­
ence will be preceded by the letter A. For example, Theorem 
A.1.42 is Theorem 1.42 from that paper. 

Since the publication of the first paper I have found 
some minor typographical errors and these are corrected in 
the Appendix. Also to be found in the Appendix is the proof 
of an extended version of Theorem A.I. 42 from the first 
paper. 

I. ALGEBRAIC CONSIDERATIONS 

As in the first paper, I shall adopt the approach of sub­
dividing the algebraic analysis into two parts. The first of 
these will be devoted to developing those algebraic ideas 
which are necessary for a complete thermodynamics but 
which were not needed in my previous paper. The treatment 
is largely confined to establishing an order on a collection of 
the partitions of a given set. In the second portion of this 
section I shall look at the enriched structure of algebraic 
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thermodynamics that is a consequence of a physical body's 
presence and the interaction of the body's algebraic struc­
ture with the algebraic structure on ~. 

A. Some algebraic preliminaries 

Partitions of sets will play an important role in the fur­
ther development of those aspects of algebraic thermody­
namics to be examined in this paper. A partition of a non­
null set is any collection of its disjoint, non-null subsets 
whose union is the given set. There is a direct connection 
between equivalence relations and partitions because every 
equivalence relation on a set induces a partition of that set 
and conversely. Several cases of partitions induced by equiv­
alence relations were described in the first paper. Here we 
shall be concerned, not with the origin of a particular parti­
tion, but with the relationship of one partition to another. 
The partitions themselves will arise in a natural way from the 
thermodynamic discussion. We shall now begin to establish 
an order structure on a collection of partitions. 

Definition 1.1: Let X be a nonempty set and P(X) a col­
lection of its partitions. Define relations 'p and = p on P(X) 
by the prescription that if PI = {PI(a)la8l JEP(X) and 
P2 = {P2(A )IAEA JEP(X) then (1) PI'pP2 iff V a8l 3 some 
AEA such that PI(a)CPz(A ), and (2) PI = PP2 iff PI CP2 and 
P2 CPl' If PI 'PP2 then PI is said to be a refinement of P2 or 
P 2 is said to be a coarsening of PI' If PI = pP 2 then PI is said 
to be equal to P2• 

Figure 1 shows the Venn diagrams of three partitions of 
a given set. The partition PI is obtained by further partition­
ing the elements of the partition P2 and therefore PI is clearly 
a refinement of P2• On the other hand, the partition P3 is 
neither a refinement of PI or P2 nor are they refinements of 
P3• Ifweanticipate that (P(X), 'p' = p) will be shown to bea 
partially ordered set, then we realize that P(X) will not neces­
sarily be a chain, that is, 'p may not be a linear order on 
PIX). 

Theorem 1.2: The triplet (P(X), 'p' = p) is a partially 
ordered set and PI = P2 iff PI = PP2 iff PI 'PP2 and P2'pPI· 

Proof The relation = p is an equivalence relation on 
P(X) because it is obvious from its definition that = p is 
nothing more than the usual equivalence relation of set equa­
lity. That is, PI = PP2 iff PI = P2• The relation 'p is (1) re­
flexive because P\(a)CPI(a)Va8l and thusPI,pPI. It is (2) 
antisymmetric for, suppose that P1'pP2 and P2'Pp\. Then 
this~Va8l 3someAEAsuchthatPI(a)CP2(A )andVAEA 3 
some a'8l such that P2(A )CPI(a') and so we see that 

FIG. I. An example of three partitions of a set X illustrating PI <'PP2 and 

P2 i. p P3 • 
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P\(a)CP2(A )CPI(a'). But then P\(a)CP\(a') and 
P\(a)nP\(a')#0which~P\(a') = P\(a)becauseP\ is a parti­
tion of X and therefore P\(a)CP2(A )CP\(a') = P\(a). Thus 
weseethatP\(a) = P2(A )andthereforeP\ CP2• Inexactly the 
same way we see that VAEA 3 some a'8l such that 
P2(A )CP\(a') and Va'8l 3 some A 'EA such that 
P\(a')CP2(A '). Now 
P2(A )CP\(a')CP2(A ')~P2(A )nP2(A ')#~P2(A') 
= P2(A )~VAEA 3 some a'8l such that 

P2(A) = P\(a')~P2CP\, But since p\ CP2 and P2CP\ we 
haveP\ = P2~P\ = pP2. The relation 'p is also (3) transi­
tive for suppose p\ 'PP2 and P2'pP3• This implies that 
[Va8l3 someAEA such thatP\(a)CP2(A)] and [VAEA 3 
someyifsuch thatP2(A )CP3(y)]~Va8l 3 someyifsuch 
that P\(a)CP3(y)~P\'PP3' There still remains the simple 
chore of proving the converse of the antisymmetry property. 
PI = PP2 iff PI = P2 iff p\ CP2 andP2CP\ iff [Va8l 3 some 
AEA such that PI(a) = P2(A )~P\(a)CP2(A )~P\'PP2] and 
[VAEA 3 some a8l such that 
P2(A) = P\(a)~P2(A ) CP\(a)~P2<pP\], If this result is com­
bined with the antisymmetry property, then p\ 'PP2 and 
P2<pPI iff p\ = pP2. 

Corollary I.3: Let (P(X), 'p' = p) be a partially ordered 
collection o~ partitions of X and define a relation < p on PIX ) 
by.PI <pPzlff p\<PP2 and p\ #pP2. Then (P(X), <pI is a 
stnctly ordered set and < p is the strict order induced by <p 
and = p' 

Proof The proof is an immediate consequence of the 
preceding theorem and Theorem A.1.21(1). 

As a general rule, it is not necessary for a partially or­
dered set to have either a largest or a smallest element nor is 
it necessary for its subsets to possess upper and lower 
bounds. But in the case of the triplet (P(X), <p, = p) it is easy 
to show that each subset possesses both an upper and a lower 
bound and may contain a smallest or a largest element. 

Theorem 1.4: Let (P(X), 'p' = p) bea partially ordered 
collectionofpartitionsofX,Po = {X J,andPo = {{xllxEX J. 
Then (1) P 0 is an upper bound for every subset ofP(X), (2) Po is 
a lower bound for every subset ofP(X), and (3) P(X) contains a 
maximal element. (4) If po, PoEP(X) they are the largest and 
smallest elements, respectively, of P(X). 

Proof The collection P(X) can be regarded as a subset of 
the collection of all partitions of X and clearly, Po and P 0 are 
partitionsofX. BecauseeverysubsetX' of X satisfies X ' CXit 
is true that p\,ppoVPIEP(X) and therefore po is an upper 
bound for P(X) and each of its subsets. The elements of the 
partition Po are one element sets and there can be no further 
refinement of Po. Hence, Po<pp\ V P\EP(X) and therefore Po 
is a lower bound for P(X) and each of its subsets. Since every 
subset of P(X) has an upper bound then every chain of P(X) 
has an upper bound and, by Zorn's lemma A.1.25, P(X) con­
tains a maximal element. Clearly if Po, pOEP(X) they are the 
smallest and largest elements of P(X). 

The next two results explore the relationship between 
comparable elements of the partially ordered set (P(X), 'P' 
= p). Specifically, I shall show that if P \ is a refinement of P 2 

then every element of P 2 is expressible as a union of elements 
of PI' This is equivalent to the statement that every refine-
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ment of P2 can be generated by partitioning the elements of 
P2• A similar result will also be obtained for the situation 

where PI 'PP2 and PI 'pP~. 
Theorem 1.5: Let (P(X), 'p' = p) be a partially ordered 

collection of partitions of X, and PI <pP2• If 
PI = {PI(a)la8:! I and P2 = {P2(...1. )I...1.EA I then, V...1.EA, 
P2(...1. ) = Uo E.<1(A)PI(a) where.1:::).1 (A. )==:{ ala8:! I and 
PI(a)CP2{...1.)1 #0. 

Proof From P I<pP2 and the definition of;;;;;.p given in 
Definition 1.1 (I) it follows that.1 (A. ) #0. From the definition 
of.1 (A. ) it follows that uoE.<1 (A) P\(a)CP2{...1.). Next suppose 
3xEP2(...1. ) and X~OE.<1 (A )PI(a). But since PI is a partition 
xEPI(a') for some a'8:! and because PI <pP23 a A. 'EA such 
thatPI(a')CP2{...1.') and thereforexEP2{...1. '). Hence, 
xEP2 (...1. )nP 2(...1. ') # 0 and becauseP2 is a partition it follows that 
P2(...1.') = P2.(...1. )=>PI(a')CP2{...1.') = P2{...1. )=>a'8:! (A.) 
=>XEUoE.<1(A)PI{a) and henceP2(...1. )CUO E.<1(A)PI(a). Thus we 
have established that P2{...1. ) = UoE.<1 (A)PI(a). 

Corollary 1.6: Let (P(X), <p, = p) bea partially ordered 
collection of partitions of X, PI <PP2 and PI <PP3 where 
PI = {PI(a)la8:! I, P2 = {P2(...1. )I...1.EA } and 
P3 = {P3(y) I yET }.If.1 (A.) = {ala8:!andPI(a)CP2(...1.)} and 
.1 (y) = {a la8:! and PI(a) CP3(y)} then 
P2(...1. )nP3(Y) = UoE.<1 (A)ruI(y) PI(a)V...1.EA and yET. 

Proof By Theorem 1.5 P2{...1.) = Uo 'E.<1(A)PI(a') and 
P3(y) = ~o"E.<1 (y)PI(a"). By applying the distributive law for 
set intersections we see that P2(...1. )nP3(Y) 
= P2 (...1. )n(uo "E.<1 (y)PI(a")) = Uo"E.<1 (ydP2(...1. )nPI(a")) 
= Uo'EA ( .. \)uo"E.<1 (y) (PI{a')nPt!a")). But PI is a partition and 

PI(a')nPI{a") = 0 unless PI(a') = PI(a") and therefore 
P2(...1. )nP3(Y) = UoEA (A)ruI (y)PI(a). 

I shall require some algebraic properties of real valued 
functions and their integrals for some of the discussions to be 
given later in the paper. Those properties which I shall need 
are generally available in numerous textbooks on abstract 
algebra, real analysis, and measure theory, but for conve­
nience I shall simply list, without proof, the few properties 
which I will use. The proofs ofthe measure theoretic results, 
for example, can be found in the textbook by Royden.2 

Theorem J.7(a): Let (R, +,', <, =) be the extended 
real number system with the usual order and /(X, R ) be the 
collection of all real valued function on a set X. Extend addi­
tion, multiplication, and order from R to /(X, R ) in a 
pointwise manner. Thus iff, g, he/IX, R ) then 

(1) h =f + g iffh (x) =f(x) + g(x)VxEX, (2) h =fgiff 
h (x) = f(x)·g(x)VxEX, (3)f<gifff(x)<g(x)VxEX, and (4)f = g 
ifff(x) =g(x)VxEX. Then (/(X,R ), + ,', <, = ) is a paritally 
ordered ring and f = g iff f<g and g<f. 

Theorem I. 7(b): Suppose B is a £T-algebra of subsets of X, 
that is, B is a collection of subsets of X which is an algebra of 
sets and is closed under a countable union of the elements of 
B. Further, suppose that v: B_R is a real valued function on 
B. The triplet (X, B, v) is a complete measure space iff (1) 
v(E);;;.OVEEB, (2) v(0) = 0, (3) if {E;EBliEN} is a disjoint se­
quence in B then v(u;: IE;) = ~r= 1 v(E;}, and (4) if EEB, 
v(E) = 0 and A CE, then AEB. The function v is called a 
measure. 

Theorem 1.7(c): Supposef, gE/(X, R ) are measurable 
with respect to B and denote the integral off over EeB with 

163 J. Math. Phys., Vol. 22, No.1, January 1981 

respect to the complete measure space (X, B, v) by f E f dv. 
Then (1) ifj;;.O then f E f dv;;;'O and also f E f dv = 0 ifff = 0 
almost everywhere with respect to v, that is, everywhere ex­
cept on a set of v-measure zero. (2) Suppose E is the union of a 
disjoint sequence {E;EB liEN} in B and either j;;.0 or fis 
integrable over E. Then f E f dv = ~k = 1 f EJ dv. Iff and g 
are integrable over E and rl , r2ER then (3) f E(r/" + r~) dv 
= r l f E f dv + r2 f E g dv, and (4) iff<g almost everywhere 

then f E f dv<f E g dv. 
Theorem I. 7(d): Suppose me/IX, R ), m;;;.O and define a 

function,u:B-Rby,u(E) = fE m dvVEEB. Then,uisamea­
sure and is absolutely continuous with respect to the mea­
sure v since v(E) = O=>,u(E) = O. 

We can now draw an interesting conclusion about 
chains of integrable functions in/IX, R) with these facts at 
our disposal. 
tions, integrable over XEB with respect to a complete mea­
sure space (X, B, v), and let G: IflfE/(X, R) andJinte­
grable }_R be a map defined by G (f) = f x J dv. Then G I Cis 
an order isomorphism and G (rJ + r~) = rIG ( fl + r,G (e"l. 

Proof We begin by establishing a preliminary result 
which depends only on the fact that C is a chain. Obviously 
f<g=>f<g almost everywhere andf = g=>f = g almost ev­
erywhere. To establish the converse supposef = g almost 
everywhere andf #g. Butf #g=>f <g or g <f=>f <g almost 
everywhere or g <f almost everywhere =>f # g almost every­
where which is a contradiction. Thusf = g ifff = g almost 
everywhere. Finally, supposeJ<g almost everywhere and 
fig. Butfig=>g</:=?gq almost everywhere=>f = g almost 
everywhere =>J = g=>J<g. Hence, we have thatf<g ifff<g 
almost everywhere. Weare now ready to establish the prop­
erties of the map G. The relation G (r J + r~) 
= riG (f) + r2G (g) is an immediate consequence ofTheorem 
I. 7(c.3). Now f = g=>J - g = 0 and therefore 
o = G (0) = G (f - g) = G (f) - G (g). Hence, 
f = g=>G (f) = G (g). Conversely, suppose G (f) = G (g). Then 
o = G (I) - G (g) = G (I - g) and also 
o = G (g) - G (f) = G (g - f). But C is a chain and therefore 
f<g or g</:=?g - j;;.O or f - g;;;.O and by Theorem I. 7( c.l) 
g - f = 0 or f - g = 0 almost everywhere iff f = g. Thus, 
G (I) = G (g) ifff = g and G I C is a 1-1 function. We still need 
to establish that G I C is a homomorphism. By Theorem 
1.7(c.4)f<g ifff<g almost everywhere=>G (I)<G(g). Con­
versely, suppose G (I)<G (g) andfig. But since C is a chain 
fig=>g</:=?G (g)<G(I) and thus G(I) = G(g) ifff=g 
=>f<g· Therefore,J;;;;;.g iff G (1)< G (g) and G I C is an order 
isomorphism. 

Corollary 1.9: Let C and Gbe as in Theorem 1.8. IfChas 
a maximal element, it is unique, is the largest element of C, 
and the map, 8: C-/(X, R ) defined by 8 (g) = g - JO

, where 
fO is the maximal element, is an order isomorphism and 
G 11m 8 is an order isomorphism. 

Proof Suppose r and gO are maximal elements of C. 
ThenJo<gO orgOq0=>gO =Jo orJo = gO and thus if a maxi­
mal element exists it is unique. We know that gqO or 
(j'0,g=>g = f0=>gqO)VgEC and therefore gqOVgEC and 
henceJo is the largest element. Now 8 (gl)<8 (g2) iff 
gl - fO<g2 - fO iff gl <g2' From this it follows that 
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o (g.) = 0 (g2) iff o(g.) <0(g2) and 0 (g2)<0(g') iff gl <g2 and 
g2<gl iff gl = g2' Hence, 0 is an order isomorphism. Now 
G [o(g.)]<G [0(g2)] iff G (gl - fO)<G (g2 - fO) iff 
G(gl) - G((0)<G(g2) - G((0)iffG(gI)<G(g2)iffgl<g2.From 
this it follows that G [o(g.)] = G [0(g2)] iff gl = g2' Thus the 
range of G lImo is order isomorphic to C which, as was just 
shown, is order isomorphic to Imo and thus Imo is order 
isomorphic to the range of G lImo. 

From the foregoing it should be clear that if we were to 
define a map 8: 1m G I C-+R by 8 [G (g)] = G (g) - G ((0) then 
we have the situation depicted in Fig. 2 and the relationship 
(G 11m 0 )00 = 8 0 ( G I C). Of course, the set 1m 0 is order 
isomorphic to the 1m 8 by virtue of the order isomorphism 
G 11m 0. We have that 1m 0 = ! 0 (g) = g - fOlgEC,J° maxi­
mal in C J and it is clear that /j (g)<OV gEC and 0 (g) = ° iff g is 
the unique maximal element of C. Similarly, we have 
Im8 = ! 8[ G (g)] IgEC,J° maximalin C J and by isomorphism 
8 [G (g)] <OV gEC and 0 [G (g)] = ° iff g is the unique maximal 
element. To clarify the relationship between the set 1m /j and 
the set 1m 8 we observe that 8 [ G (g)] = G (g) - G ((0) 
= G (g - fO) = G [o(g)] and using the definition of G this 

becomes 

8[lgdv] = lO(g)dv. 
Thus we have here a situation similar to that encountered in 
the calculus of variations. The set C is analogous to the space 
of competing functions while 1m /j is analogous to the space 
of admissible variations. Note, however, that the analogy is 
not exact. In the calculus of variations both the space of 
competing functions and the space of admissible variations 
are required to be subsets of a normed linear space over R 
and the space of admissible variations also must be a normed 
linear space over R. These conditions were not necessary for 
Corollary 1.9 and Theorem 1.8. 

B. Algebraic thermodynamics of extended 
thermodynamic systems 

We are now in a position to extend, in a relatively simple 
and direct manner, the algebraic theory of thermodynamics 

GIC 1m GIC 

Im(Gilm bl = 1m b 

R 
fIX. Rl 

FIG. 2. Interrelationship among the isomorphisms of Theorem 1.8 and 
Corollary 1.9. 
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from a theory constructed only onI to a theory which takes 
into account not only I but also the physical body which is 
to be described by the rules of thermodynamics. It is the 
combination of body and states which is the essence ofphys­
ical theory. That is, in a physical theory we are dealing with 
two primitive, and hence undefined, abstract concepts: the 
notion of a body and the notion of states. Weare constrained 
to learn about the properties of the two only by studying 
their combination. A nonpedestrian analog is easily con­
structed from a set of automobiles and a collection of road­
ways for those automobiles together with their synthesis into 
traffic. Certainly, in this example, we could study separately 
the automobiles and the roadways. But the analog to phys­
ical science in this example is what can be learned about 
automobiles and roadways by studying only their combina­
tion in traffic. Thus a physical theory may be though of as an 
amalgamation of the mathematical structure of the body 
with the mathematical structure of those states used to de­
scribe the body. The explicit inclusion of the body in the 
formalism of the theory is essential if the theory is to be a 
physically meaningful one for it is precisely the behavior of 
the body that we seek to describe by the mathematics. With­
out a body a theory cannot have a physical expression and so 
would be devoid of physical meaning even though names 
with a physical connotation were given to elements of the 
mathematical structure. All tests of a physical theory are 
performed by carrying out measurements on the body. In 
this sense the introduction of a body can be interpreted as a 
realization of the abstract theory of states. 

To begin the development we must first introduce the 
body and define the manner in which it is to be described 
thermodynamically. 

Axiom 1.10: There exists a set U called the universe. 
Definition 1.11: Any subsetBC Uis called a body in the 

universe. A body is said to be a thermodynamic body iff 3 a 
function (f: B-+I. The function (f is said to be an extended 
thermodynamic state (or simply a thermodynamic state) of 
B. The collection of all thermodynamic states of B, namely 
the set of all I-valued functions on B, /(B, I ), is called an 
extended thermodynamic system. 

The body B will not vary but will remain fixed for the 
balance of the paper and we can simplify the notation a little 
by suppressing B as a label. Henceforth, /(I ) will be used in 
place of /(B, I ). From Definition 1.11 we see that the ther­
modynamic state of a body is specified by assigning a ther­
modynamic state to each of its points. This pointwise defini­
tion of a state of B immediately suggests the pointwise 
extension of relations on I to relations on /(I). That is, the 
relations on I can be used to induce relations on /(I ) in 
exactly the same way that the relations on R were used to 
induce relations on /(X, R ) in Theorem I. 7(a). This proce­
dure will be applied to the relations induced by a collection 
of simple processes (Definitions A.1. 17 and A.1. 31). 

Definition 1.12: Define relations on /(I ) as follows: V (f, 
(f'E/(I) (1) ~ (f' iff (f(b)~ (f'(b )VbEB, (2)(f = ,-xl (f' iff 
(f(b) =j9 (f'(b )VbEB, and(3)(f<<B (f' iffoib )VbEBwhere,%l is 

either 9 or .sf. 
A great advantage to this natural pointwise extension of 

mathematical structure is the fact that the relations on /(.2' ) 
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inheri t all the properties of the corresponding relations on I. 
For example, we know that Vx, x'EI, x = SF'X' iff x<SF'X' 
and x' <.of'x. But then from this we see that u = SF' u' iff u(b ) 
=.of' u'(b )VbEB iff u(b )<.of'u'(b) and u'(b )<SF'u(b )VbEB iff 

u<.of' u' and u' < SF' u. In a similar way all the algebraic struc­
ture of I is passed on to /(I ) intact and we may restate all 
theorems for I as theorems for /(I ) without the necessity 
for reproving them in the new context. We must only make 
sure that the definitions in I and /(I ) are compatible and 
use similar notation. As an example, we used [x] as the nota­
tion for the equivalence classes of = SF' in I; in /(.2' ) the 
equivalence classes of = SF' could be written as [u]. For com­
pleteness and clarity I shall restate the theorems and defini­
tions from .2' as theorems and definitions for /(.2'). Accom­
panying each restated theorem or definition will be the 
number of its counterpart in I shown in parentheses. 

Definition 1.13: (Definition A.1. 34) A process P on B is 
a map from B to the set of all processes on I, P: B--+! P IP a 
process on.2' J. A process P on B is said to be (1) a physical 
process or 91-process iffPElmP~Pis a 91-process on.2', (2) 
an adiabatic process or an d -process iff PElmP~P is an d­
process on.2', (3) a reversible process or a 91n91*-process iff 
PElmP~P is a 9 n91 *-process on .2', and (4) a reversible 
adiabatic process or an d nd*-process iff PElmP~P is an 
dnd*-process on.2'. 

Theorem 1.14: (Theorem A.1.36) The relations -'! • 
= .w' :::' ,and =~)' are equivalence relations on /(.2' ) and, 

furthermore, (1) each equivalence class of = .w ( = y)' ) is a 
subset of some equivalence class of ~ ( ? ) and (2) the relation 
f! possesses only one equivalence cIass, namely /(I ) itself. 

Definition 1.15: (Definition A.1. 37) If cr"! u', then u and 
u' are said to be adiabatically equivalent. The equivalence 
classes of·! are called the adiabatic components and denot­
ed by r A , AEA and A is an index set. If u = SF' u', then u and 
u' are said to be adiabatically equal. The equivalence classes 
of =w are denoted by [u], UE/(.2' ). 

Theorem 1.16: (TheoremA.1. 38)Thetriplet V(.2'), <.w, 
= "') is a nonbranching partially ordered set whose maxi­

mal chains partition the adiabatic components. For each 
UE/(.2' ), [u] is a subset of some maximal chain, and V u, 
u'E/(I j, u = .w u' iff u<",u' and u' <",u. 

Theorem 1.17: (Theorem A.1.39) Let 
Y = I[u] I uEA.2' ) I be the collection of equivalence classes of 
the relation = '" on A.2' ). If = is the equivalence relation of 
ordinary equality in Y and if[u]< [u'] iff U<"IU', then (Y, 
<. =) is a nonbranching partially ordered set whose maxi­
mal chains partition Y. Let r = ! r).IAEA I be the coIlec­
tion of adiabatic components of /(.2' ) and Y). 
= ![u]luif). I. Then (1) ! Y).IAEA I is a partition of Y. (2) 

the maximal chains of Y partition Y)., and (3) 
C(f = ! [u] IUEC, C a chain in /(.2') J is a maximal chain in Y 
iff C is a maximal chain in /(I ). 

Corollary U8: (Corollary A. 1.40) There exists a 1-1 cor­
respondence between the maximal chains in Y and the 
maximal chains in /(.2' ). 

Definition 1.19: (Definition A.I.4I) Let C be a chain, not 
necessarily maximal, in V(.2'), <.,;. = ",). A thermodynam­
ic body B is said to be in an equilibrium state with respect to 
C iff its thermodynamic state is a maximal element of C. 
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Only Definition 1.13 and Definition 1.19, in the string of 
theorems and definitions following Definition 1.12, contain 
new ideas. The others are mere restatements of results for .2' 
in the context of /(I ). Definition 1.13 introduces the new 
idea of a process on B by relating it to processes on .2'. which 
were previously defined, while Definition 1.19 defines an 
equilibrium state for a body. I have elected to define relations 
on /(.2' ) as extensions of relations on .2' rather than define 
them by means of processes on B which would be analogous 
to the procedure used to define relations on.2'. Consequent­
Iy. we must establish the relationship between processes on B 
and relations on /(I ) by a theorem. The definition of an 
equilibrium state for B given in Definition 1.19 does not men­
tion the previous definition of an equilibrium state of a chain 
in.2', Definition A.I.4I, and this naturally raises questions 
about their consistency. The following theorems deal with 
these two matters. 

Theorem 1.20: (Definition A.1.31 and Definition A.1.17) 
If u, u' E/(.2' ) then (1 )u< dJ u' iff u~ u' and P a !!lJ -process on 
B, (2) u = .1IJ U' iff u~ u' and P a !!lJn!!lJ*-process onB, and 
(3) u- .~I u' iff u~ u' and P a !!lJu!!lJ *-process onB where!!lJ 
is either 9 or d. 

Proof To establish (1) we need only observe that u<.?! u' 
iffu(b )<.%J u'(b )VbEBiff u(b )~l u'(b WbEB and P(b) a!!lJ­
process on .2' iff u~ u' and P a !!lJ -process on B. I used in 
succession Definition 1.12, Definition A.I.3I, and Definition 
1.13. Analogous proofs hold for (2) and (3) if Definition A.I. 
17 is substituted for Definition A.I.31. 

Definition 1.21: Let C be a subset of /(I ). The collection 
of subsets of.2', C(f (C), induced by C is defined by 
C(f(IC)=! C(b )lbEB I, where C(b )={xlx = u(b) and UECJ. 

Theorem 1.22: Let C be a subset of /(.2'). Then C is a 
chain in /(.2'). < .,;. = .,,1 ) iff C(f (IC) is a collection of chains in 
(.2', <.c,l, = .w)· 

Proof We know that C is a chain iff V u l , U2EC, a l <.,;a2 
ow2<,; U 1 iffu1(b )<4 a2(b )ow2(b »u1(b )VbEBiffC (b lisa 
vhain in.2' VbEB. 

Theorem 1.23: (Theorem A.1.42, see Appendix of this 
paper) Let C be a chain in V(.2'), <,I = 4) and C(f (IC) be the 
induced collection of chains in.2'. Then E is an equilibrium 
state of B with respect to C iff E(b I is an equilibrium state of 
C(b )VbEB. Further, E(b ')E[E(b )]nC(b IVb'EB such that 
C(b') = C(b). 

Proof By Definition 1.19 E is an equilibrium state of B iff 
it is maximal in C iff E<.w u ~ = .w EVUEC iff E(b) 
<.",u(b )~(b) = .,yE(b )VbEBand VUECiffE(b lisanequilib­
rium state ofC(b )VbEB. IfC(b') = C(b) then the maximal 
elements at b ' coincide with the maximal elements at b. that 
is. [E(b ')]nC(b') = [E(b )]nC(b )andbytheversionofTheorem 
A.1.42 given in the Appendix of this paper E(b ')E[E(b )]nC (b ). 

I have already pointed out that the basic algebraic 
structures of(A.I). <.if' =.w) and (.I, <.,y, = .,,1) are identi­
cal by virtue of the definition of relations on /(.I ) as 
pointwise extensions of relations on.2'. This made it possible 
to transfer a number of results from.2' directly to /(.I). But 
certainly the two partially ordered sets are not identical in all 
of their properties. What is the precise relationship between 
these two sets? The next theorem demonstrates that /(.I ) 
contains an order isomorphic copy of.2' embedded in it. 
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Theorem 1.24: The partially ordered set (.I, ';;;sf" =.w) 
is order isomorphically embedded in V(.I), ';;;sf" =.w)' 

into 

Proof Define a function h:.I-/(.I ) by the prescription 

that h (x) = U where U is the constant function on B whose 
range is the one element set {x]. Then, obviously, h (x,)';;;.w 
h (x2 ) iff u'';;;sf' U2 iff u,(b )';;;d u2(b )VbEB iff x, 
';;;.w x 2• Hence, h is an order homomorphism because it satis­
fies Definition A.1. 23( 1). The second condition of Definition 
A.1. 23 is redundant because = sf' satisfies Theorem A.1. 
21 (1). This redundancy was pointed out in the first para­
graph following Definition A.1.23(1). Each OElm h has only 
one preimage and therefore h is 1-1 and an isomorphism. 

The partially ordered set V(.I ), .;;; sf" = sf' ) can be given 
some additional structure, not possessed by (.I, ';;;sf" =.w), 
by coupling the known structure of.I with the one funda­
mentally new algebraic element accompanying the body B, 
namely the thermodynamic states of B. The specific compo­
nents I shall use are the partition of.I into chains, established 
in the first paper, and the preimages of these chains for the 
thermodynamic states of B. This combination will enable us 
to define some partitions of /(.I ) which, in tum, will help in 
the analysis of the structure of /(.I). The ultimate objective 
is a better understanding of the maximal chains in /(.I ) and 
their relationship to the maximal chains in.I. 

Theorem 1.25: Let cr; = {Ca laELl I be a partition of.I 
into chains and define a relation =,(, , called .I-chain equiv­
alence, on I(.I) by U'=Y;' U2 iff u,- '(Ca) = u 2- I(Ca )VaELl. 
Then =(, is an equivalence relation on /(.I ) and its equiv­
alence classes are denoted by (u) 'C . If u, = '6 U 2 then u, and 
U 2 are said to be .I-chain equivalent with respec to cr;. 

Proof The proof is a trivial consequence of the defini­
tion of the relation =(, . 

Theorem 1.26: The equivalence classes (u) 'f' are chains 
in/(.I). 

Proof Suppose u, = f, U 2 and bEB. Then because 
u l I(Ca ) = u; I(Ca)VaELl we know VbEB that u,(b), 
u2(b )ECa for some aELl and thus VbEB, u,(b) and u2(b) are 
comparable. Hence, u,(b ).;;;,,; u 2(b) or u2(b ).;;;,," u,(b )VbEB 

iff u 1';;;4 U2 or u2.;;; .,,; u I' 
Definition 1.27: Let P(.I )= { CCf I CCf a partition of.I into 

chains I be the collection of all partitions of.I into chains, P (, 
= { (u)(, IUE/(.I) I be the partition of /(.I) induced by the 
relation of .I-chain equivalence where CCf EP(.I ), and 
PV(..r ))= {Pi, I CCf EP(..r) I the collection of all partitions of 
/(..r ) induced by the relation of ..r~chain equivalence. 

Theorem 1.28: In the partially ordered sets (P(..r), ';;;p, 

= p) and (P(,t'(.I)), ';;;P. = p) we have that CCf';;;p CCf' iff 
P, ';;;pP(,.iff'(u).(,. C(U).(,'VOE/(..r). 

Proof The theorem will be established by first showing 
that CCf';;;p CCf' iff (u)'( C (u)'C' VUE/(..r) and then demon­
strating that (u)(, C (u)c' VUE/(..r) iff Py; ';;;pP~,. Let 
CCf = {CalaELljandCCf'= {CAI,1EA J.ThenbyTheoreml.S 
CCf';;;p cr; '=>CA = UaELl (A I Ca and using a property of inverse 
set functions we see that V,1EA, U-I(CA) = u-'(UaELlIA I Ca) 
= uaEillA IU-'(Ca ). From this result and the definition of 

chain equivalence given in Theorem 1.25 we find that 
u l _, U 2 iffu l- I(Ca) = U2-I(Ca)VaELl=>UaELlIAlul-I(Ca) 
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= UaELlIAluZ-'(Ca)=?u'- I(CA) = u2- '(CA)V,1EA=?u,=.(" 
u2• But if U'='C U2=?u'- '(f' U2 then each equivalence class of 
- Y': meets only one equivalence class of =.(,,, and therefore 
(u),(, C (u),c' VOE,I'(.I). Conversely, suppose (u).(, 
C (u),c' VOE,I'(.I) and CCf J;"p cr;'. Now cr; J;"p cr;'=>3 some 
aELl such that carL C A V,1EA. But clearly, 3 some ,1EA such 
that CanCA "p/J because cr;' is a partition of..r. Therefore, 
since Ca rL CA, 3XECa such that XECA =>3,1 'EA such that 
XECA, and therefore CanCA, ,p/). Thus, we have 
A (a) = (,1I,1EA and CanCA #0] is a set with a least two 
members and Ca CUAEA lal CA' Suppose A., A. 'EA (a) and as­
sume B has at least two elements. Then we can always parti­
tion B so that B = B A uB A' and B A nB A' = 0. Define two ther­
modynamic states, u, and u2, of B such that u,- I(CanCA) 

= BA #0, ul-'(CanCA,) = BA, #0 and uz-'(CanCA) = B. 
Then it follows (see Fig. 3)thatul- '(Cal = B = U z- I(Ca) and 
u l- '(Ca,) = 0 = uz- '(Ca, )Va'ELl and a' #a. Consequently, 
U'="U2 ' But U1-I(CA) =BA #B andu2-

I(CA) =B and, 
therefore, u, # 'C:' U2' Thus U1E(Uz) '6 and Ul~(UZ) 'f,' and 
hence (U2)\1' rL (U2)'(,' which contradicts (u) (, C (u).(" 
VOE/(..r). Therefore it follows that (u)y; C (u)'(" 
V OE,I'(..r )=>cr; ';;;p cr;' if B has at least two elements. Suppose 
B = {bo] has only one member. Then the elements of /(..r ) 
can be labeled by the image of bo, that is, j'(..r ) 
= {ux lux:B-.I and ux(bo) = xj = {ux IxE.!' j. A pair of 
functions in /(.I ) will then be .I-chain equivalent iff they 
map bo into the same chain, that is, Ux ='(f Ux' iffx, X'ECa for 
some aELl. In this notation we have the translation (u)., 
C (u)'(f' VOE/(.I) iff Vx, x'E.!', Ux' ='C ux=>ux' ==;'("Ux • 

Thus VaEd we know that x', XECaECCf iff Ux ' 'c ux=>ux' 
='(f'Ux iffx',xECAECCf'forsome,1EA. Therefore, VaEd 3 
some ,1EA such that Ca C C;.. iff cr; ';;;p CCf'. Hence, regardless 
of the cardinality of B, (u) 'C C (u) '(;" -.:::::;.CCf ';;;p CCf' and thus 
cr;';;;p CCf' iff (u)'(f C (u) '6' VUE/(.I). To complete the proof 
of the theorem suppose that (u) 'r:; C (u) .(," VOE/(..r). But 
then this => that VOE/(.I)3 some U'E/(.I), namely u' = u, 
such that (u),(;, C (u')'c' and, by Definitions 1.1 and 1.27, 
p,t: ';;;PP'C" Conversely, we know from the definition of.;;;p 
that P6 .;;; pP '(;" iff V UEj'(.I ) 3 some u' EJ'(.I ) such that (u )(. 
C (u')(". But then by the properties of equivalence relations 
OE(U) 'f,' =>OE(U')f,' ::::::;.u=·c u'-.:::::;.(u)c' = (u')(' and thus 
P, ';;;pP ,.=>(u) (, C (u')." = (u)(" VUE/(..r). 

FIG. 3. Definition offunctions 0',: B-+.I and 0'2: B-+.I used in proof of 
Theorem 1.28. 
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Corollary 1.29: The partially ordered sets (P(.I), <p, 
=p),(PV(.I)),«p, =p)and([(a)'6'I'6'EP(.I)}, C, =), 
where ue/(.I ), are order isomorphic. 

Proof From Theorem 1.2 and 1.28 we see that Ctf = Ctf' 
iff '6' = p Ctf' iff «J <p Ctf' and Ctf' <p Ctf iff P'6' <pP '6" and P '6" 
<pP'6' iff P'6' = pP'6" iff P'6' = P'6'" Similarly, '6' = '6" iff 
'6' = p Ctf' iff '6' <p '6" and Ctf' <p Ctf iff (a) '6' C (a) '6" and 
(a) '6" C (a) '6' iff (a) '6' = (a) '6'" It follows that the func­
tions 8: P(.2' l---+PV(.2' )) and 8 u : P(.2' l---+ [ (a) '6' I Ctf EP(.2' )} de­
fined by 8 ('6') = P'6' and 8u (Ctf) = (a)'6' are order isomor­
phisms because they are order homomorphisms by 
Definition A.1.23 and are 1-1. 

Corollary 1.30: Consider the partially ordered sets 
(P(.2'), <p, = p),(PV(.2')), <p, = p)and({ (a) '6' l'6'EP(.2')}, 
C, =). Let Ctf° = {CAI...tEA and CA a maximal chain in.2'} 
and «J ° = {{x)xE.I}. Then (1) Ctf°('6' 0) is the largest (small­
est) member of P(.2' ), (2) P '6'0 (P'6'.) is the largest (smallest) 
member of PV(.2')), and (3) (a)'6'O (a)'6'o) is the largest 
(smallest) member of { (a) '6' I Ctf EP(.2' ) }. 

Proof The set '(;J ° is a member of P(.I ) because, by Theo­
rem A.I.38, the maximal chains partition.I. Then for any 
chain CC.2' 3 some...tEA such that CC CA and therefore if 
'6" = [Ca lae.::i } EP(.I )weseethat '6" <p Ctf°VCtf 'EP(.I) and, 
by Definition A.1.24, Ctf° is the largest element of P(.I). The 
set Ctf ° is also a member of P(.I ) because its members are one 
element chains of.I which partition.2'. By Theorem 1.4'6' ° is 
the smallest element of P(.I ). The balance of this corollary is 
a consequence of the isomorphism expressed by Corollary 
1.29. 

There is an important ramification of Corollaries 1.29 
and 1.30. From these corollaries we see that a chain in P(.2' ) 
induces a nested collection of chains in V(.2'), < '6" = '6' ). 
For example, ifCtf I <p Ctf 2<P Ctf 3<P'" is a chain in P(.2' ) then a 
correspondingchainin/(.2' lis (a) '6', C (a) '6', C (a) '6', c···. 
But Ctfi ° is the largest member of P(.2' ) and so the largest chain 
we could find in such a nested sequence would be (a) '6'0. Is it 
possible that (a) '6'0 is a maximal chain in /(.2' ) or, equiv­
alently, is P '6'0 the partition of /(.2' ) into maximal chains? We 
have no assurances that this is the case. For while P(.2' ) is the 
collection of all partitions of.2' into chains this is not neces­
sarily true of the relationship between PV(.2' )) and /(.2' ). It is 
true that every element of PV(.2' )) is a partition of /(.2' ) into 
chains but we have not shown that every such partition is a 
member of P((.2')). The conjecture about the maximal chains 
in 1'(.2' ) is valid and is proven in the next theorem. 

Theorem 1.31: Let-Ctf° = [CAI...tEA } be the partition of 
(.2', <.of' = .0/) by its maximal chains and C a maximal chain 
ofV(.2'), <d' = d)' ThenC = (a) 'co forsomeaE/(.2' ) and 
Pr,oEPV(.I)) is the partition of /(.I) into maximal chains. 

Proof By Theorem 1.26 we know that (a) '6'0 is a chain 
and hence a subchain of some maximal chain in /(.I ), that is, 
(a) 'co cc. But (a)'6'O is an equivalence class and therefore 
ue(a) '6'0 and therefore ueiC. Now supposeBEiC. Then a, BEC 
andhencearecomparableiffa<.#uoru<""aiffa(b )<""iT(b) 
or iT(b )<""a(b )VbEB. Thus for each bEB, a(b) and iT(b) are 
comparable and thus are elements of the same chain in.2' and 
therefore elements of the same maximal chain in.2'. Conse­
quently, we see that if an element of bEB is mapped into a 
given maximal chain in.2' by ueC then every other element in 
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C will do likewise. But then VBEe we see that u -I(CA ) 

= a-I(CA )V...tEA iff £1=='6'0 a iff BE(a)'6'0' Thus ec (a) '6'0 
and since we already showed that (a) '6'0 ce it follows that 
e = (a)'6'0' Since (a) '6'0 is a maximal chain, we see thatP'6'0 
= { (a) '6'0 lue/(.2')}, which is the largest memberofPV(.2' )) 

by Corollary 1.30, is a partition of 1'(.2' ) into maximal chains. 
In Definition A.I.46 entropy was said to be an order 

homomorphism from a chain in (.2', <'6" = '6' ) onto a subset 
of the reals with the usual order. That is, the entropy was 
defined to be a real-valued function which reflected the order 
induced on .2' by the adiabatic processes. Does this concep­
tion of entropy have a counterpart for the states in 1'(.2' )? Do 
there exist real-valued functions which mirror the order 
properties of chains in 1'(.2' )? The answer certainly is yes for 
the two special cases where 1'(.2' ) and.2' become virtually 
identical. One of these special cases is obtained by requiring 
the memebers of 1'(.2' ) to be constant functions on B (see the 
proof of Theorem 1.24) and the other arises when B has only 
one member (see the proof of Theorem 1.28). But what about 
the general case? If such order preserving real-valued func­
tions exist under more general circumstances they, unlike 
entropy, cannot be intrinsically significant. The reason is 
simple; a concept can be intrinsically significant only so long 
as it is independent of the particular body B to which it is 
applied. But the members of 1'(.2' ) depend upon the choice of 
body, a fact clearly conveyed by the more complete notation 
/(B,.2'). Thus 1'(.2' ) itselflacks intrinsic significance and ac­
quires meaning only within the context supplied by a par­
ticular body. It follows that any mathematical object which 
is to mirror the order properties of 1'(.2' ) must itself depend 
on B and, consequently, must lack intrinsic significance. De­
spite the lack of intrinsic significance such order preserving 
real-valued maps would be very useful computationally for 
they replace chains in 1'(.2' ) with chains of real numbers. 
While it might be conceptually useful to refer to such a func­
tion as an "entropy" for a body B we must keep clearly in 
mind the distinction between these functions and the intrin­
sically significant entropies of Definition A.1. 46_. 

I shall begin a sequence of analysis which will ultimate­
ly lead to the construction of "entropy" functions for A.I ) 
from the entropy functions for .I. I shall first explore the 
close connection between order homomorphisms for A.I ) 
and entropies for chains in (.I, <.,,r, = d)' This will be fol­
lowed by taking a look at "entropies" for chains in A.I ) and 
their connection with entropies for chains in .I. 

Theorem 1.32: Let e be a chain in (A.2'), <d' =.#), 
Ctfi (e) the collection of chains in (.2', <of' =.of) induced bye, 
and Ctf = {Ca laELl } a collection of disjoint chains in (.2'. 
<.of' =.of). (I) If each C a ECtfi possesses an entropy q:; a and 
C (b )ECtfi (e):::}C (b ) C C a for some aELl then e is order homo­
morphic to {<poalueCj CAB, R ) where <P is the real-valued 
function <P: UaE..:! Ca-R defined by <P (x) = q:;a(x) for XECa. 
(2) If g: C-AB, R ) is an order homomorphism then 3 entro­
pies for each chain C(b )E«J(C). 

Proof <P is clearly a function because 
XI = x 2:::}<P (xd = <P (x2) is a consequence of the disjoint na­
ture of the members of Ctfi which implies that XEUaE..:! C a can 
be a member of only one member of Ctfi and, hence, there is no 
ambiguity in the value of <P (x). Both pairs of relations < .• ,r , 
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= "" and <, = satisfy condition (1) in Theorem A.1.21 and 
so we need only consider the relationship of <.c/ and <. Now 
suppose a» a 2EC. Then a l <""a2 iff al(b )<.c/ a2(b )VbEll iff 
CfJa (al(b ))<CfJa (a2(b ))VbEllandsomeaELi, becauseCfJa are en­
tropies, iff <P (al(b ))<<P (a2(b ))V bEll by the definition of the 
function <P and, by definition of the composite function, iff 
<poadb )<<P°a2(b )VbEll iff <poal < <P°a2· Thus the map 
g:C-[ <poalaEC) where g(a) = <poa is an order homomor­
phism. To prove the second part of the theorem we shall use 
the notation g(a) = haEAB, R ). Suppose ai' a 2EC. Then 
since g is a homomorphism a l <.c/ a2 iff g(ad<g(a2) iff ha, 
<ha, iff ha, (b )<ha, (b )V bEll. Therefore, for a given bEll, 
al(b )<.w a2(b) iff ha, (b )<ha, (b) and, hence, the map hb: 
C (b )-R defined by hb (o(b )) = ha(b ) is an entropy for the 
chain C(b). 

Theorem 1.32 essentially says that chains in (A.2'), <.w, 
= "" ) are order homomorphic to subsets (chains) of(AB, R ), 
<, =) if and only if entropies exist for appropriate chains in 
(.2', <"", =.w). Consequently, it follows that if entropies 
exist for each maximal chain in (.2', <"", =.w) then each 
chain in A.2' ), and, hence each maximal chain in A.2' ), will be 
order homomorphic to some chain in (AB, R), <, =). 

We will now use Theorem 1.32 to construct "entro­
pies", in the sense of real-valued functions which mimic or­
der properties, for a certain class of chains in (A.2'), <.w, 
= ",,). This class is not all inclusive for we will need to im­

pose a requirement of integrability and require the existence 
of entropies for chains in (.2', <.w, =.w). Notwithstanding 
these conditions, the class is general enough to accommo­
date all of the usual thermodynamic calculations as we shall 
see shortly. The next theorem is a generalization of the "en­
tropy maximum" criterion for equilibrium states and, as 
such, it is the basis for all applications of thermodynamics to 
the real world. 

Theorem 1.33: Suppose a chain C inA.2') is order homo­
morphic to a chain C in AB, R ). If the members of Care 
integrable over B with respect to a complete measure space 
(B, S, v) then C is order homomorphic to a subset of R. 

Proof Let F: C-C be an order homomorphism and 
G ICbe the order isomorphism of Theorem 1.8. Then 
(G I C )0 F is an order homomorphism from C to R. 

A common feature accompanying many thermody­
namic discussions is the composite system. It is formed by 
the assembly of other systems or, equivalently, by partition­
ing a particular system into subsystems. Such composite sys­
tems have not yet been used in my treatment of thermody­
namics. If they are to be intrinsically meaningful they cannot 
be arbitrary but must come from the fundamental thermody­
namic structure of (.2', < "", =.w). Partitions can arise quite 
naturally from this structure and the details are presented in 
the next series of theorems and definitions. I shall begin the 
theoretical treatment by defining such thermodynamically 
induced partitions and studying some of their properties. 
This will subsequently be used to impose additional algebra­
ic structure on A.2' ). 

Theorem I. 34: Let 'G' = (C a [aELi I EP(.2' ) be a partition 
of.2' into chains and aEA.2' ) a thermodynamic state for B. 
The collection of non-null preimages of Ca E'G' is a partition 
of B induced by a and 'G' and denoted by P,,('G'). 
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Proof LetLl / = la[aELi and a- I(Ca)#0j and Pa('G') 
= la-I(Ca)[aELi 'j.ObservethatifaELi -Ll 'thena-I(Ca ) 
= 0. Therefore, it follows that uae..:1' a-I(Ca ) 
= UaEAa-I(Ca) = a- l (uae..:1 Cal = a- I(.2') = Bwhere I used 

a property of inverse set functions, the fact that 'G' is a parti­
tion of.2' and the fact that a is a function with domain B. To 
complete the proof that P a ('G') is a partition we must only 
show that its members are disjoint. Suppose a, {3ELi / and 
a- I(Ca)ro- I(Cp)#0. Then 3 an element bEll and 
bEa-I(Ca)ro-I(Cp ) = a-I(CanCp ) and, therefore, o(b )ECa 
nCp #0. But since 'G' is a partition CanCp #0-Ca = Cp 
and, hence, a-I(Ca) = a-I(Cp )' Therefore, Pa!'G') is a parti­
tion of B. 

Definition 1.35: The elements of P,,('G'), aEA.2') and 
'G' EP(.2' ), are called the subsystems of B relative to a and 'G'. 
The thermodynamic body B is said to be a simple system, 
relative to a and 'G' , iff the cardinality of P a ('G') is one. If B is 
not a simple system then it is said to be a composite system. 
The set P(B ) = I P". ('G') [aEA.2' ) and 'G' EP(.2' ) J is the collec­
tion of all partitions of B induced by some a and some 'G'. 

The set P(B ) is a collection of partitions of B but it is not 
necessarily the collection of all partitions of B, It is simple to 
establish the conditions which must be satisfied in order that 
P(B) becomes the collection of all partitions of B. 

Theorem 1.36: P(B ) is the collection of all partitions of B 
iff the cardinality of B is less than or equal to the cardinality 
of .2'. 

Proof Suppose the cardinality of B is less than or equal 
to the cardinality of.2'. Then by the definition of cardinality 
3 a functionf B~.2'. Clearly,fis a thermodynamic state of B 

by Definition 1.11 and because it is a 1-1 function we know 
thatf(b l) =f(b2)iffbl = b2• Let 'G' = I [xl [xE..!' JEP(.2') and 
let I B A [AEA J be a partition of B. By the Axiom of Choice 
A.1.43 3 a choice function y: A-B such that Y(A )EllA • We 
can now use the choice function to define a thermodynamic 
state a: B_.2' be defining its restrictions to B A to be constant 
functions with range 1m alBA = [f(Y(A )) J. But then it fol­
lows from the definition of a and 'G' that I B A [..tEA I = P". ('G') 
and, therefore, every partition ofBis an element ofP(B). But 
obviously every element of P(B ) is a member of the collection 
of all partitions of B, so P(B ) is the collection of all partitions 
of B. To establish the converse we suppose that P(B) is the 
collection of all partitions of B. But this then implies that 3 
some 'G' [ Cal aELi J EP(.2' ) and some aEA.2' ) such that 
P".('G') = II b J IbEll J. but then o(b) = alb /) iff b = b / 
and a: B_.2' is 1-1 and onto a subset of.2' and, therfore, the 
cardinality of B is less than or equal to the cardinality of .2'. 

The set P(B ) is a collection of partitions of B and can, 
therfore, be regarded as a partially ordered set with relations 
<p and = p. 

Theorem 1.37: Let 'G', 'G"EP(.2' ) and consider the partial­
ly ordered set (P(B), <p, = p). Then (1) 'G' <p 'G'/~P".('G') 
<pP".('G")VaEA.2') and (2) if B has at least two members 
then P".('G')<pP".('G'WaEA.2' )~'G' <p 'G'/. 

Proof Suppose 'G' = I Ca laELi j, 'G' / = I CA [AEA j, and 
'G' <p 'G' /. Then by the definition of <p (Definition 1.1) we 
know that VaELi 3 some AEA such that Ca C C A' and by the 
property of in verse set functions a - I ( C a ) C a - I ( C A ) 
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'dUEA2).ButthisthenimpliesPa(~)";pPa(~I)'dUEA2)and 
establishes (1). To prove (2) suppose Pa(~)";pPa(~I) 
'dUEA2) and ~ i p ~'. But ~ i p ~' and B a set with more 
than two elements permits us to construct the function 0', 
used in the proof of Theorem 1.28 (see Fig. 3) for {B J 
= Pa,{'itJ #Pa, (~') = {BA> Bx I and which implies that 
Pa, (~I) ";pPa , (~). But Pa. (~I)";pPa. (~) and Pa• (~) 
";pPa• (~I) iff Pa• (~) = pPa• (~I) which contradicts 
Pa (~)#Pa (~I).Hence, ~";p~l. 

. The re~triction that B possess at least two members in 
Theorem 1.37 (2) is essential. For if B = {bol then Pa(~) 
= {B J 'd uEA2 ) and 'd ~ EP(2 ) and one cannot then draw 

any conclusions about ~, ~ I EP(2 ) from A2 ). 
Theorem 1.38: Let ~ EP(I ) be a partition of 2 into 

chains and define a relation = S ('6) on A2 ), called subsystem 
equivalence with respect to~, by u'=S('6)0'2 iff Pa• (~) 
= pPa,(~), Then =S('C) is an equivalence relation onA2) 

whose equivalence classes are denoted by (U)S('6)' The 
equivalence classes of =S('6) contain only complete equiv­
alence classes of ='6' that is, 0',='6 u2=>o"'=S('6) 0'2' 

Proof The proof that =S('6) is an equivalence relation 
follows from its definition and the knowledge that = p is an 
equivalence relation. Now 0',='6' 0'2 iff 0'1- I(Ca ) = 0'2- I(Ca ) 

'daE,J.=~Pa. (~) = Pa, (~) iff Pa• (~) = pPa• (~) and the 
proof is complete. 

From Theorem 1.38 we can conclude that each chain 
(0') yO contains only subsystem equivalent states with respect 
to ~ because (0') '(, c (0') S('6). This applies even if ~ = ~o 
in which case (0') yO'O is a maximal chain by Theorem I. 31. Of 
course, the equivalence class (0') S('6) might contain several 
chains of the type (0') '(i' 

There are still two items which should be mentioned to 
complete the algebraic analysis of the thermodynamics of an 
extended thermodynamic system. One concerns coordinate 
systems for B and the other deals with coordinate represen­
tations for thermodynamic states of B. Neither topic will be 
given any comprehensive discussion because, for the most 
part, it would be similar to discussions already given in an­
other context. The subject of coordinate systems for B is a 
case in point. Its discussion would be word for word identical 
to the discussion of coordinate systems for 2 (Definition 
A.1.60 and Theorem A.1.61) with X replaced by the universe 
U and 2 replaced by B. But the existence ot these two kinds 
of coordinate systems, one for 2 and another for B, compels 
us to use a more precise terminology to make the necessary 
distinction between the two. To make the distinction I shall 
specifically refer either to 2-coordinates and 2-coordinate 
systems or to B-coordinates and B-coordinate systems. 

When it comes to coordinate representations of abstract 
objects we must now contend with two types; one arises from 
the B-coordinates and the other from the I-coordinates. The 
abstract objects which concern us in extended thermody­
namic systems are functions with domain B, such as the 
states UEA2) and the processes P on B. The B-coordinate 
representations of such quantities are defined in exactly the 
same manner as the coordinate representations of measure­
ments on X or 2 defined in Definition A.I.64. If eB is an 
evaluation map induced by a coordinate system for B, then 
the B-coordinate representations are composite functions 
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with domain Ime B and as typical examples we have the com­

posite functions uOe i ' and Poe i '. The I-coordinate repre­
sentations of 0' and P deal with their range and so are analo­
gous to the coordinate representation of a process on 2 also 
given in Definition A.1.64. The following definition and 
theorem deal with the 2-coordinate representation of states 
ofB. 

Definition 1.39: Let Y = {-fli = 1,2, ... , n I be a coordi­
nate system for 2, elY) the evaluation map induced by Y 
and 1f, i = 1, 2, ... , n the projection maps, that is, -f = 1f 
oe(.'T). A 2-coordinate representation of the state UEA2) is 
the collection of real-valued functions {did: B-.R, d=-f 
au, i= 1,2, ... , nJ. 

Theorem 1.40: Let 0'" U2EA2). Then 0'1 #0'2 iff ~ #c1z 
for some i. 

Proof Since B is the domain of all thermodynamic 
states, two states, 0', and 0'2' cannot differ because of domain 
and therefore 0', #0'2 iff u,(b )#u2(b ) for some bER. But Y is 
a coordinate system for 2 and separates its points and there­
foreu,(b )#u2(b) iff~ (b )#c1z(b) forsomei. But then itfol­
lows that 0'\ #0'2 iff ~ (b )=I=c1z (b) for some bER and some iiff 
~ # cIz for some i. 

The algebraic thermodynamics developed in this paper 
possesses one conspicuous and, perhaps, surprising feature 
and that is the behavior of the members of B. Their behavior 
could aptly be anthropomorphized with the observation that 
one point of B neither knows of, nor seems to care about, the 
behavior of the other points in B. That is, the elements of B 
seem to exhibit completely independent behavior. But a little 
reflection should easily dispel the initial surprise. The set B 
has, as yet, been given no topology and so there is no concep­
tion of nearness, neighborhood or continuity in B. This situa­
tion can be rectified by two actions: (1) The assignment of a 
topology to B, perhaps through the notion of measurements 
on B, as was done for 2, or perhaps in some other experimen­
tally significant manner. (2) The imposition of the require­
ment that the restriction of each state of B to a subsystem of 
B must be continuous. That is, the state itself need not be 
continuous, only its restrictions must be. These two actions 
would establish a communication among the points of Band 
would thus generate the desired correlation of behavior. This 
aspect of the problem, although interesting, will not be con­
sidered further in this paper. 

II. CONTINUUM CONSIDERATIONS 

Three topics related to continuum thermodynamics 
will be discussed in this section. The first topic will deal with 
constitutive relations and, for the most part, will merely 
serve to introduce some notational changes. This will be sup­
plemented by some specifics concerning the expression for 
free charge and free current which will be required for subse­
quent calculations. The second item for discussion will be 
the development of continuum consequences of the algebra­
ic theory, developed in the first part of this paper, and some 
ramifications of this analogue. The last subject for discussion 
will be some specific examples of the application of the con­
tinuum analogue which demonstrate not only that all of con­
ventional thermodynamics is contained in it but also that a 
whole new spectrum of problems is amenable to thermody-
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namic analysis. These examples will also shed some light on 
the origin and interpretation of the electrochemical potential 
and the related thermodynamic functions which are used to 
take into account the presence of the gravitational potential 
and centrifugation. 

A. Constitutive equations 

In the first paper' I made some very nonspecific choices 
for the constitutive relations which nonetheless were adequate 
to enable me to obtain a realization of the first law. However, 
in so doing I made some choices which, in effect, apeared to 
treat some constitutive equations in a way which was some­
what different from the treatment accorded others. I now 
wish to make some minor adjustments, little more than nota­
tional changes, which will rectify the situation and give a 
more equitable treatment to all constitutive relations. Much 
of the detail will be eliminated for the mathematical manipu­
lations are unchanged and, in order to facilitate a simple 
comparison of the new equations with the old, each new 
equation will be given not only its own number but also the 
number of the corresponding equation from the first paper. 

The first notational change to be made is in the expres­
sion for the internal energy flux which now is written as 

J ~ = muvk + qk + IJ/'d ~, 
where f1 A has the decomposition 

f1 A = J-l A + LlJ-l A 

(11.1.1, A.IV,12.3) 

(11.1.2) 

and J-lA is identified with the chemical potential based on its 
role in the realization of the first law (A. IV .17.1). This choice 
slightly alters the appearance but not the content of the ex­
pression for the energy flux J ~ and the evolution equation 
for internal energy; 

( 
Vivo ) 

J~. =m u + T + n Vi + ql + f1 Ad ~ 

l)u 
m-

& 

(11.2.1, A.IV.13.1) 

k AAdk) E'k <PPt p
k 

V "" -Vdq +J-l A + klt- -- - - k'Y 
Eo Eo 

J-lo a<p 2 an kr -kjv +--- -m- -VJk +7"" ·Vk 
2 at at J 

apk k,aBkl 
+Ek - -!M -. 

at at 
(II.2.2, A.IV.B.2) 

The expressions formerly used for the polarization and mag­
netization are replaced by 

pk = mpk +LlP\ (11.3.1, A.IV.15.1) 

M kl = mmkl + LlM kl, 

which then lead to 

(11.3.2, A.IV.15.2) 

Ek apk lat - !M kl aBkllat = m(Ek l)pk 1& - !mkll)Bkll&) + EdaLlpk lat - Vi(mpkvi)] 

- ¥1Mkl aBkllat + !mmklviViBkl' (II.3.3, A.lV.15.3) 

If all of the changes made to this point are combined then we obtain 

m [l)ul& - Ski &kll & - Ekl)pk 1& + !mkll)Bkll& - J-l A l)nA/& ] = - V k(qk + LlJ-l Ad ~) 

+ Llr"iVjVk - vkfk - m an lat - J-lAR A - d ~ V kJ-lA + EJ; - <PptlEo - (pk lEo) V k <P + ~J-lo a<p 21at 

+ Ek [aLlpk lat - Vi(mpkui)] - ¥1Mkl aBkl + !mmkluiViBkl' (II.4.1, A.lV.16.1) 
at 

The definition of heat (A. IV .17.1) when combined with 11.4.1 gives the final result. 

m~ 1& + V k (qk + LlJ-lAd ~) = Llr"jVjvk - VYk - m an lat - J-lAR A - d ~ V kJ-lA + EJ; 

- <Pp/Eo - (Pk IEo)V k<P + ~J-loJ<P 21at + Ek [aLlpk lat - Vi(mpkui)] - ¥1Mkl aBkllat + !mmklviViBkl' 

Equations (11.1 )-(11.5) have the same content as their 
counterparts in the previous paper and reduce to them exact­
ly if we set LlJ-lA = LlP k = LlM kl = O. The chief advantage 
conferred on the analysis by the new version is not in the 
form of the temporal evolution equations but in the equiv­
alent treatment shown to all constitutive relations which 
contribute to the first law and the implication of this treat­
ment for the decomposition of the set of physical states X 
into thermodynamic states I and non thermodynamic states 
X-I. Each constitutive relation (j1A, p\ Mkl, and ~j) is de­
composed into two parts but only one of these parts appears 
in the first law. Consequently, it seems reasonable to refer to 
J-lA, mkl,pk, and Ski as the thermodynamic portions of their 
respective constitutive relations and to refer to the balance of 
each constitutive relation as the nonthermodynamic por-
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(II.5. I,A.lV. 17.4) 

tion. It is the function of the non thermodynamic part of 
these constitutive relations to account for all phenomena 
which cannot be described adequately by the thermodynam­
ic part alone. This decomposition of the constitutive rela­
tions suggests that perhaps the decomposition could be used 
as the basis for an indirect definition of the separation of 
physical states into thermodynamic and nonthermodynamic 
states. As a part of such a definition we might impose the 
following stipulations: (1) The thermodynamic portions of 
the constitutive relations should be independent of the 
non thermodynamic coordinates, that is, independent of the 
elements of vII-Y. (2) The thermodynamic portions of the 
constitutive relations should be continuous on the maximal 
chains of I and give an integrable first law there. (3) The 
nonthermodynamic portions of the constitutive relations 
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should vanish on ~ and be nonzero only on X-~. 
Heretofore I have found it neither necessary nor desir­

able to say anything of a specific nature about the expres­
sions to be used for the constitutive relations and have in­
stead dealt in broad generalities. But because I shall shortly 
examine the thermodynamics of systems with free charges I 
must become just a little more specific about the expressions 
for free charge and current densities. The free charge density 
Pf is customarily expressed as the superposition of the free 
charge densitites of each of the charge carriers. Suppose:l' is 
the free charge per mole of species A. Then:l' is an integer 
mUltiple of the Faraday constant and 

pf=m:l'n;.. (11.6.1) 

By analogy to the expression for the flux of internal energy 
(11.1.1) we may decompose the free currentj; into three parts 
by the expression 

j; =pfvk + d' +:I'd~, (11.6.2) 

where Pfvk is the convective flux of free charge, :I'd ~ is the 
diffusive flux offree charge and d' represents the flux that 
still remains in the absence of convection and diffusion. But 
Pf andjJ are not independent since they must satisfy the 
conservation equation for free charge given as the first equa­
lity in (A.IV.7.1). The substitution of (11.6) into the charge 
conservation equation, coupled with the use of the mass and 
species conservation equations (A.IV.2.1, A.IV.2.3), and 
0:1' / Dr = 0, produces the equation 

0<1> =:I'R;. + Vkd'. (11.6.3) 

Thus we see that if (11.6) is to be used to represent the free 
charge and free current densities then the function <1>, which 
appears in the expressions for the bound charge and bound 
current densities (A.IV.6.5, A.IV.6.6), cannot be chosen in­
dependently but must be regarded as a solution of the inho­
mogeneous wave equation (11.6.3). Consequently, <1> must be 
regarded as an explicit function of time and position and not 
an independent constitutive relation. The right side of 
(11.6.3) cannot be expected to be identically zero for that 
would imply that bound and free charge are separately con­
served. This is inconsistent with the existence of insulator to 
metal transitions which may be viewed as the conversion of 
bound charge to free charge. If the reactions themselves are 
to be charge conserving then, of course, the R). will satisfy 
the constraint :l'R;. = 0 identically. 

B. Consequences of algebraic thermodynamics 

The exact algebraic result expressed by Theorem 1.33 is 
fundamental for the application of thermodynamics to actu­
al physical problems for it is a generalization ofthe "entropy 
maximum" criterion of equilibrium. It is not, however, a 
useful computational device because it represents a global 
exploration for an extremum. While it is important to know 
the exact result contained in Theorem 1.33 it is also impor­
tant to have a computationally workable scheme for deter­
mining the actual equilibrium state in a given situation. This 
means restricting the exploration to a local exploration in the 
vicinity of the extremum. With computational utility as my 
objective I shall now begin a program of specializing the 
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general result of Theorem 1.33 until it becomes computa­
tionally useful. Since thermodynamics is invariably applied 
to continua it is essential to translate the algebraic result first 
into a form directly applicable to continua. The next theo­
rem summarizes the content of Theorems 1.32 and 1.33 in 
suitable form for continua. 

Theorem 11.7: Suppose that(l) C is a chain inl'(~), (2)s 
is the ~-coordinate representation of a real-valued, extensive 
function with domain in ~ whose restriction to chains in its 
domain is an entropy, (3) 1m a is a subset of the domain of 
slrJaEC, (4) the measure v of Theorem 1.7 coincides with the 
mass, M, of the body, that is, the function m of Theorem 
1.7 (d) is the mass density, and (5) s is integrable over B with 
respect to mass measure lrJaEC. Then (6) C is order homo­
morphic to a chain C of integrable functions in I'(B, R ). If C 
possesses a maximal element, S =S BS dM = S ssm dv for 
each member of C, the maps 0 and g are as defined in Corol­
lary 1.9 and the discussion following Corollary 1.9, then 
(7) gs = S sD(ms) dv, (8) gS<..O, and 8S = 0 only for the 
unique maximal element in C whose preimages in I'(~ ) are 
the equilibrium states ofC iff 0 (ms)<..O and 0 (ms) = 0 only for 
the unique maximal element in C whose preimages in A~ ) 
are the equilibrium states of C. 

Proof This theorem is a direct consequence of Theorem 
1.32(1), Theorem 1.33, Corollary 1.9, and the discussion fol­
lowing corollary 1.9. 

Theorem 11.7(8) gives two criteria for finding the largest 
member of C, one in terms of S and the other in terms of ms, 
but neither identifies the equilibrium states ofC directly. To 
actually identify the equilibrium states we must know the 
order homomorphism from C to C. While both the criterion 
gs = 0 and the criterion 0 (ms) = 0 do locate the largest ele­
ment of C, neither represents a practical computational 
method. Nevertheless an eminently practical method can be 
based on the first part of Theorem II. 7(8) which identifies the 
largest member of C with the maximum value of S and is a 
generalization of the conventional entropy maximum princi­
ple. Since S is defined as an integral it immediately suggest 
the implementation of techniques from the calculus ofvari­
ations. Indeed, I have already commented on the similarity 
between the calculus of variations and the results of Theo­
rem 1.8 and Corollary I. 9 in the duscussion following I. 9. All 
of the computational machinery from the calculus ofvari­
ations can be made available to thermodynamics merely by 
imposing the conditions involving normed linear spaces over 
R mentioned in the discussion following Corollary 1.9. This 
converts the first part of Theorem 11.7(8) into a variational 
statement and, hence, is expressible in terms of the first and 
second variations. Furthermore, if we require that all vari­
ations on the boundary and all boundary variations satisfy 
the transversality conditions, then the thermodynamic prob­
lem of locating the largest element of C is converted into the 
mathematical problem of solving the Euler-Lagrange equa­
tions. This is summarized as a corollary to Theorem 11.7. 

Corollary 11.8: Suppose C, sand S are as in Theorem 
11.9. Furthermore, let C be a subset of a normed linear space 
over R and the space of admissible variations be a normed 
linear space over R. If oS and 0 2 S are the first and second 
variations of S thenfDEC is the lar~est element of C iff oS = 0 
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and 0 2 S < 0 atfo. If members of the space of admissible vari­
ations satisfy the transversality conditions thenfo is the solu­
tion of the Euler-Lagrange equations implied by lJS = O. 

Proof This corollary is a direct consequence of the cal­
culus of variations except for the sufficiency of the variation­
al criteria forfo. Sufficiency follows from Theorem 11.7(8) 
which says that S decreases monotonically from its value at 
the unique largest element in C. 

Corollary 11.8 is the variational counterpart of the "en­
tropy maximum" criterion of conventional thermodynam­
ics. The calculus of variations computation is a local explo­
ration for an extremum, that is, an exploration in the vicinity 
of the extremum. Such a calculation then can only locate 
relative extrema. In principle, such a local exploration for 
the largest element represents no loss in generality for the 
thermodynamic computation because if the chain C pos­
sesses a maximal element then, as has been shown [see Theo­
rem 1.9(8) and Corollary 1.9], that element is unique. In par­
actice, a lack of uniqueness in the solution of the Euler­
Lagrange equations can imply only one of two things. Either 
C is not a chain or the restriction of s to some chain in its 
domain is not an entropy for that chain as was required in 
Theorem 11.7(2). 

The particular function in C which satisfies the con~i­
tions oS = 0 and 0 2S<0 is determined, in part, by the chOlce 
of chain. In particular, we might be interested in subchains 
of the chain C. From the variational point of view, the selec­
tion of a subchain can be thought of as the imposition of 
constraints which limit the set of values of S which must be 
explored to some subset. These constraints are of two basi~ 
types. The first type is the more obvious of the two because It 
is simply a restriction of the permitted set of variations to a 
subset of the set of admissible variations. Such constraints 
may be handled either directly, perhaps by a change of varia­
bles, or indirectly by means of Lagrangian multipliers. A 
more fundamental, but less obvious type of constraint deals 
with the choice of the Lagrangian itself. That is, how much 
of the integrand is to be SUbjected to variation. For thermo­
dynamics this choice amounts to deciding whether to vary 
the product sm or only s. Clearly dv represents geometrical 
properties and in a nonrelativistic calculation, such as the 
one being discussed in this section, the geometry is indepen­
dent of matter. The two choices of Lagrangian will yield the 
same solution only if the set of variations is the same in both 
cases and if these variations do not permit a variation in the 

mass density. 
Before going on to some applications of algebraic ther-

modynamics, in the form of Corollary 11.8, I shall derive 
alternatives to Corollary 11.8 which are suitable for a par­
ticular category of constraints which may be imposed with­
out the use of Lagrangian multipliers. Specifically, I shall 
derive, from Corollary 11.8, the variational equivalent of the 
"internal energy minimum" criterion and the Legendre 
transforms of these two variational problems. The trans­
forms are the variational analogues of the Massieu function 
and the thermodynamic potential criteria for equilbrium 
states in thermodynamics. The thermodynamic Lagrangian, 
either ms or s, is an especially simple one since it is only a 
function of the thermodynamic coordinates and contains no 
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derivatives. Because of this and the transversality conditions 
there is a simple relationship between oS and the first vari­
ation ofthe Lagrangian, either lJ (ms) or lJs, 

oS = L o(ms) dv or oS = L (js dM. 

Note that 0 (ms) in this context is a variation and does not 
have the same meaning as the corresponding symbol in 
Theorem 11.7. However, even with the transversality condi­
tions, the second variation lJ 2S could still contain contribu­
tions from the boundary of B in addition to those which arise 
from second variation of the Lagrangian, either 0 2(ms) or 0 2S. 

But it is always possible to impose sufficient additional con­
ditions so that 0 2S is the integral of the second variation of 
the Lagrangian over the body B. Under such circumstances 
itisc1earthatlJS = Oando 2S < OifflJ (ms) = OandlJ 2(ms) < 0 
(or (js = 0 and 0 2S < 0) for all permitted variations and then 
one only needs to consider the first and second variations of 
the Lagrangian. With this in mind let us separately examine 
the relationship of the first and second variations of func­
tions which are not independent and whose variations are 
linearly constrained for this is the case of thermodynamic 
importance. While thermodynamic notation could be used 
in this analysis, the derivation is more concise and consider­
ably less awkward in a more general notation. 

Theorem 11.9: Suppose that Latin indices i,j, k ... use the 
range 1,2, ... , n, n + 1, Greek indices use the range conven­
tion of Definition A.II1.13 and no summation convention is 
used with either Latin or Greek indices. Consider n + 1 
functionsYk' k = 1,2, ... , n + 1 which satisfy the constraint 
D(Yk) = 0, whereDisafunction, and letA k =JD IJYk' iandl 
be two fixed indices, (lJy; )Yt and (lJ2y; )Yt be the first and second 

variations of Yi subject to the constraint lJy, = 0, and sup­
posethatA; andA, vanishnowhereonB. Then(l) (oY;)Yt = 0 
iff (oy, )y. = 0, (2) if (lJy, )y, = 0 then (lJ 2y; )Yt = 0 iff 

, 2 2 
(0 2y , )Yi = 0, and (3) if(lJy, )Yi = 0, (lJ ydYi #0, thensgn(lJ Y; )Yt 

= [sgn(A;A,)] [sgn({j 2y , )Yi ]. Suppose D has the form 

D =Yn + I - E(Ya'Yil),J = Yn + I + l:aAaYa is the Legendre 
transform of Y n + I , (Of)A y and (15 2f)Ay are the first and second 
variations off subject to the constraints oAr = 0, r = 1,2, 
... , ii with (oy n + I )yy' Wy n + I )yy having analogous definitio~s 
andEk}=J2E IJYk JYj fork,j#n + 1. Then (4), (Of)A

y 
= o Iff 

({jYn + I )yy = 0; (5), (15 2Yn + I )yy > 0 ( < 0) iff Eft" is positive 
(negative) definite; (6), (lJ Y)A

y 
> 0 ( < 0) iff Ea/3 is nonsingular 

and E - l: l:fJE E -/31E/3 is positive (negative) definite; pv a J1-a (1. v 

and (7), E kj positive (negative) definite implies EufJ and E,L" 
-l:ul:{3EiluE a,/E{3v are positive (negative) definite. 

Proof From D = 0 it follows that we may write 
oD = 0 = l:kAkOYk where Ak=JD IJYk = tPk(Yj) and, 
hence, A,({jy[)y, = - l:U,f,;Ak{jYk = A; ({jy; )Yt and since A; 
and A, vanish nowhere on B, the first part of the thoerem is 
proved. Solving oD = 0 for oy, gives oy, - l: k # [A k {jy k I A [. 
From this expression for oy, and the definition 0 2y , = o({jy,) 
itfollowsthatA,{j2y, + {jy,{jA, = -l:k#,oAk{jYk·ButoAk 
= l:jAkjlJYj' where 

Akj=JAkIJYj = JtPk1aYj = J2D IJYkaYj = Ajk 

and thus 
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A/82y/ + 8y/(l:j#/ Alj8Yj +AI/8y/) 

= - l:k ;oU(l:j#/ A kj8Yj + Ak/8y/)8Yk. 

But using the symmetry of A kj in the last term on the right 
and rearranging terms we find that the second variation can 
be expressed as A/82y/ + 8y/ [AI/8y/ + 2l:k #/A/k8Yk ] 
= -l:k #/ l:#/ Akj8Yk8y/. From this it follows that if we 

impose the condition 8Yi = 0, then 

A/Wyt!y; + (8y/)y; [A/MY/)y; + 2
k
f·

i

A/k8Yk 1 

= - I I A kj 8Yk 8Yj' 
k #/.O#/.i 

The right side of this expression is symmetric in I and i, thus 
intercha nging I and i to obtain a similar expression for the 
second variation (8 2Yi )YI we conclude that 

A/Wy/)y; + (8ytly;lAI/(8ytly; + 2 I A/k8Yk ] 
k#/.i 

=A;(82yi )y, + (8Y;)Y/[A;;(8Y;)YI + 2 I Aik8Yk]. 
k#/.i 

If (8yt!y; = o then thissimplifiestoA/Wy/)y; = AiWYi)YI and 
the second and third parts of the theorem follow immediate­
ly. We now suppose thatD takes its special form. ThenA n + I 

= 1,Aa = "'a(YP'yv) = -aElaYa,Ap. = "'p.(Yp,Yv) 
= - aE layp. from which we have 8Yn + I + l:aAa8Ya 
+ l:p.Ap.8yp. = O. Now since An + I = 1 we have An + I.k 

= 0 = A k.n + I and from the previously derived expression 
for 8 2y/ with 1= n + 1 we can write 

8
2
Yn+1 = I I A kj 8Yk8y/ 

k #n+ Ij#n+ I 

= I I Ekj 8Yk8Yj' 
k#n+ Ij#n+ I 

Thus (8Yn + I )yy = -l:p.Ap.8yp. and (8 2Yn + I )Yy 
= l:p.l:,Bp.v8Yp.8yv and (5) is an immediate consequence of 
the expression for (8 2y n + I )yy' Next we consider the Le­
gendre transformf of Yn + I and it follows that 

8f - Da8Aa + IAp.8yp. = o. 
a p. 

where now af laAa = Ya = ipa(Ap,Yv) and - aj layp. = Ap. 
= ipp. (Ap, Yv)' The expression for 8f gives (8f)A 

y 

= -l:p.Ap.8yp. and comparison with (8Yn + I )yy establishes 
(4). The second variationoffsatisfies8 2f -l:a8Ya8Aa + l:p. 

8Ap.8yp. = O. But since 8Ap. = l:a8Aaaipp.laAa + l:v8yv 
aipp.layv' the expression for 8 Ycan be rewritten in the form 

8
2
f - ?8A a [8Ya - ~8Yp.aipp.laAa ] 

+ I I(aipp.layv)8Y.u8yv = o. 
p. v 

It is desirable to re-express the derivative aipp.layv in terms 
I 

of derivatives of the functions", p.' First observe that in the 
transform the variables Aa and Yv are independent and, 
hence, aAalayv = o. But since we also know that 
Aa = "'a (Yp,Yv) we can use the chain rule for differentiation 
to establish the relation 0 = aAa1ayv 
= l:p(a"'a1aYp)(ayplayv) + a"'a1ayv' Ifwe supposeAaP 
= a"'a1ayp = - a2E layaayp to be nonsingular, then 

aYplayv = l:aE p-;' la"'a1ayv' If we now use this result and 
ipp.(Ap,yv) =Ap. = "'p.(Yp,Yv)' then we find by differenti­
ation that 

aipp.layv = I(a"'p.laYp)(aYplayv) = a"'p.layv 
p 

= I I(a"'p.laYp)E p-;' l(a"'a1ayv) + a"'p.layv 
a p 

= I I Ep.pE p-;' IEav - Ep.v' 
a p 

where I used a"'p.layp = - a2E laYpayp. = a"'playp. in the 
last step. Ifthis is substituted into the expression for 0 2fif 
follows that 

02f- ~OAa[8Ya - '2;lYp.aipp.laAa ] 

= - I I(aipp.layv)oyp.Oyv 
p. v 

= I I(Ep.v - IIEp.pE ia IEav)OYp.OYv 
p. v a p 

and thus 

Wf)A
y 

= I I(Ep.v - I IEp.pE ia IEav)OYp.OYv, 
p. v a P 

This immediately establishes (6). To prove (7) it is simpler to 
use matrix notation rather than subscript notation. A sym­
metric matrix E = E T is positive definite iff yTEy > 0 for all 
vectors y::f O. Suppose E and yare similarly partitioned, that 
is, 

E= (Ell 
\E2l 

E12), Y = (YI), 
E22 Yz 

where E21 = E i2' and E 11 and E22 are square and symmet­
ric. For Yz = 0 we have yTEy = yiEI tYI' for YI = 0 we have 
yTEy = yIE22Y2 and for YI = - E I1IE12Y2 we obtain 
yTEy = ynE22 - E21E I1IE12lv2' Thus the positive (nega­
tive) definiteness of E implies the positive (negative) definite­
ness of Ell' E22, and E22 - E21E I1IE12 as well as the exis­
tence of E III because if Ell is positive (negative) definite it is 
also nonsingular. 

To apply this theorem to thermodynamics we only need 
a translator from the notation used in its proof to thermody­
namic notation. When dealing with the variations in s such a 
translator is supplied by the first law forms for solids and 
fluids (A.lV.17.1, A.lV.18.1, and A.lV.18.2), 

(solids) 

(fluids) 
(11.10) 

To write down the translator when dealing with the vari­
ations in ms it is convenient to introduce first some notation 
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I 
to denote the product of an extensive variable and the mass 
density. Such product will be denoted by the same symbol 
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with a tilde over it, 

s ms, u=mu, Skj=mS kj, 

pk=mp\ fiikj=mm kj, n).=mnA' 
(11.11.1) 

We can obtain the appropriate translator from the relation 
Tc5s = m Tc5s + Tsc5m, the expression for the variation c5s and 
the Euler relation for Ts, 

(solids) 
(11.11.2) 

The only difference in form between (11.10) and (11.11) oc­
curs for fluids where the pressure term is present in (11.10) 
but absent from (11.11). This is really not surprising because 
if s is extensive then s = m [stu, 11m, p\ Bkj , n).)] 
= stu, l,pk, Bkj , nA)' 

Consequently, while we can obtain the variational analogue 
of the Gibbs free energy criterion for fluids in mass measure, 
we cannot do so in volume measure. 

With the translators (11.10) and (11.11) available, it is 
now a simple but tedious task to translate the variational 
form of the "entropy maximum" criterion, Theorem 11.8, to 
other forms. For this reason I shall only deal explicitly with 
the internal energy and Helmholtz free energy "minimum" 
criteria in volume measure. 

Theorem 11.12: Suppose I ==u - is = m( u - Ts) and 
for a equal either S, U, or I suppose A = f B a du, c5A = 
f Bc5a du, and 15 2A = f Bc52a du. Then (1) (c5S)u = 0 iff 
(c5U)s = 0, (2) if(c5S)u = 0 and (c5 2S)u <0, then (c5U)s = 0 
and sgn(T)(c5 2U)S > 0, and (3) (c5F)T = 0 iff (c5U)s = O. If 
sgn [WI)T] = sgn[Wu).], then (4), (c5U)s = 0, 
sgn(T)WU)s > O:::?(c5F)T = 0, sgn(T)(c5 2F)T > O. 

Proof Since c5A = 0 iff c5ii = 0 and 15 2A = 0 iff 15 2a = 0, 
we need only identify YI with sand Yi with u in Theorem 
11.9(1,2,3). This identification together with the identifica­
tion of Ai = 1, A I = - Tby means of (11.11) proves parts (1) 
and (2). In Theorem 11.9 we identify Ii = I,Yn + I = U,YI = S, 
and, hence, aulas = T = - A I' Then part (3) of this corol­
lary is a consequence of Theorem 11.11 (4). Finally (4) follows 
from Theorem 11.9(5, 6, 7). 

The sign conditions on (15 21)T and (15 2U)g leading to 
Theorem 11.12(4) were not replaced by the definiteness con­
ditions on combinations of submatrices of Ekj because the 
thermodynamic notation for these matrices is too cumber­
some. It probably should be mentioned that the notation 
(c5F)T in Theorem 11.12 does not imply that Tis a constant 
function on B but merely says that T is not to be varied in the 
variation of F. On the contrary the notation (c5S)u does im­
ply that the value of U is fixed. It should also be observed that 
U[and also Fin the context of Theorem 11.12(4)] takes on its 
minimum value for an equilibrium state only if sgn(T) > 0 
which does correspond to the usual situation. If sgn(T) < 0, 
then its value is a maximum. IfYn + I had been identified with 
S, andYI with U, then instead of the Helmholtz free energy 
per unit volume,], we would have encountered the Massieu 
function ( - I IT). Finally if! had chosen to work with mass 
measure instead of volume measure, then the only change 
would have been the replacment of dv by dM and the use of 
the symbol a instead of a in the integrands. 
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c. Applications 

Theorem 11.12 brings us to the conclusion of what I 
regard as the development of the continuum analogue of the 
algebraic results given as Theorem 1.33 and I shall now look 
at three examples of the application of this formalism. The 
purpose of the examples I have selected is to convey some 
sense of the breadth and versatility of the theory rather than 
just to serve as computational exercises. My first example is 
one which will demonstrate that all of conventional thermo­
dynamics, with its partitions and composite systems, falls 
within the purview of the theory developed here. Thermody­
namics is often applied to a composite system with a finite 
number of sybsystems where the state of each subsystems is 
constrained to be a constant function. It is easy to show that 
such states form a chain in (((I), <.if' = .if)' SupposethatK 
is a finite index set and ! B k C B I kEf( 1 EP(B ) is a partition of 
B. Then by the definition of P(B) given in Definition 1.35 
there exists a partition of I into chains. C(j = I Ca laELl 1 
EP(I ) and a thermodynamic state u such that P a (Y;) = I B k 

CB IkEf( 1 and by Theorem 1.38 (u) 'C isachainin(((I), <,01' 
= .if) containing only subsystem equivalent states. Then for 

any functionf K_.,;j, wheref(k) = a k , we can define a sub­
set e of (u) ',r; by the prescription e = ! u' I u' E (u) 'f," and 
V kEf(, Imu' IBk C Ca. and u'IBk is a constant function I. 
Then since ec (u)'(; we know that e is a chain and is, in 
fact, the collection of states encountered in conventional 
thermodynamics. Suppose that e and s satisfy the conditions 
of Theorem 11.7, then since ulBk is constant 

S = 2: Sk = 2: Sk Vk = 2: SkMk' (TEe, (11.13) 
kEK kEK kEK 

where Vk is the volume andMk is the mass of the k th subsys­
tem and Sk and Sk are the functions sand s evaluated for the 
k th subsystem. The expression for S given in (11.13) is exactly 
the form ordinarily used in the thermodynamics of compos­
ite systems and the direct maximization of S in this form 
corresponds to the ordinary computations of 
thermodynamics. 

The two examples which will follow differ from this 
first one in three respects. First, the states of the body are not 
required to be constant functions when restricted to subsys­
tems. Second, the states cannot be described adequately by 
thermodynamic variables alone. Third, constraints will be 
imposed by means of Lagrangian multipliers. Constraint 
equations used in the calculus of variations can be placed 
into one of two categories. Either they are functions, whose 
arguments perhaps may include derivatives and whose val­
ues need not be zero, or they are integrals of such functions 

Frank J. Zeleznik 174 



                                                                                                                                    

over a body. The treatment of both types of constraints is 
similar for the purposes of generating the Euler-Lagrange 
equations and the only difference is in the interpretation of 
the multipliers associated with the constraints. Suppose we 
have a Lagrangian Land n constraint equations G; = 0, 
i = 1,2, ... ,n as constraints. Then the Euler-Lagrange equa­
tions are obtained from 8.2" = 0, where .2" = L + A ;G; and 
theA; are functions with domainB, subject to the variational 
procedure and determined by the Euler-Lagrange equa­
tions. By contrast, if we wish to impose the constraints 
f B G; dv = K;, where the K; are constants and G; =1= 0, then 
the Euler-Lagrange equations are also obtained from 
8.2" = ° but now .2" = L + A ;G;, where the A ; are con­
stants, actually constant functions on B, which are not to be 
varied but whose values are determined by the constraints. 
Thermodynamic systems constrained solely by integrals 
correspond to closed systems. The thermodynamic systems 
which are constrained only by functions correspond to open 
systems. There also can arise hybrid systems which are si­
multaneously constrained by integrals and by functions. 
With these preliminaries explained we can now go on to con­
sider two additional examples where the variational tech­
nique will be used to derive the equations which describe the 
system. The first of these two examples will be a closed sys­
tem whose Euler-Lagrange equations turn out to be a sys­
tem of nonlinear simultaneous equations for the thermody­
namic variables at each point of the body. Of course, these 
equations can be converted to a system of first order partial 
differential equations in spatial coordinates by differenti­
ation. The second example will be an open system for which 
the governing equations are partial differential equations. I 
will discuss some implications of the closed system equations 
but I will not go beyond the derivation of the equations for 
the open system. 

Electrolyte solutions have been, and continue to be, a 
fertile field for the application of thermodynamics. An im­
portant source for the thermodynamic data of these solu­
tions have been the measurement of the electromotive force 
of galvanic cells. The chief advantage of electromotive force 
measurements as a source for thermodynamic data lies in the 
relative ease with which one can achieve rather high preci­
sion. But the quality of the resultant data is a function not 
only of the precision of the measurement but also of the va­
lidity of the connection between electromotive force and 
thermodynamics. There are two components to this connec­
tion: one the electrochemical potential and the other the cell 
reaction. The derivations of the electrochemical potential 
generally seem to be based more on physical arguments 
coupled with appeals to plausibility3.4 than rigorous deriva­
tion and, at least for me, have not been very convincing. The 
requirement for a posited cell reaction is contrary to the spir­
it of thermodynamics. Thermodynamic analysis, presum­
ably, is path independent and therefore should be indepen­
dent of particular reaction schemes5 (p. 307). If the 
connection between electromotive force and thermodynam­
ics is real then it should be possible to deduce it without 
resorting to ad hoc assumptions or cell reactions. I intend 
to accomplish just this with my closed system example and, 
since the thermodynamic treatment of the effect of the gravi-
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tational field and centrifugation can be similarly faulted, I 
shall look at all three effects simultaneously. In this example 
I assume that (I) we are dealing with fluids, (2) volume mea­
sure is used for the calculation of S, (3) greek indices from the 
last part of the alphabet are used to label species, and (4) 
greek indices from the first part of the alphabet are used to 
label constraints imposed on the composition variables. The 
specific constraints we wish to impose are all integrals, 

K(±I = IIf(±, dv, 

K 1 = 1 mdv, 

Ka = 1 mba dv, 

where 

1f(±1 =m(u±v2/2+!1)+~, 

(11.14) 

(11.15) 

and a~ are constants such that the matrix rank of a~ does not 
exceed the number of species. The function If( + I is just the 
energy density so that K( + I is the energy of the body B. Thus 
the first member of 11.14, with positive sign, represents the 
conservation of energy for the body B and obviously the sec­
ond member is the conservation of mass. If the constants a~ 
represent the number of atoms of element a in species v then 
the last member of 11.14 imposes the conservation of ele­
ments on the body. If M" is the molecular weight of species v 
then, if follows that 

(11.16) 

and if this is used to rewrite the integrand of the second 
member of 11.14, then the Lagrangian for our problem is 

.2" =5 +A (±I[u + (n ± v2/2)M"n" + ~] 
(11.17) 

In carrying out the variation of .2" I shall assume that 
8n = 0 and 0 (v2/2) = UkOUk = O. This is consistent with the 
fact that the potential.!1 and the velocity Uk are non thermo­
dynamic quantities and implies that they are to be deter­
mined by non thermodynamic considerations. Thus they are 
to be regarded as "external" fields which can affect the ther­
modynamic state but which cannot be affected by the state 
directly. On the other hand, the electromagnetic energy ~ 
will be assumed to be at least partly determined by the ther­
modynamic state and so its variation must be calculated. 
From the definition of ~ (A.lV.9.2) we know that 

o~ = €rfikoEk + BkjoB kj/2/1o, 

but because the electrochemical potential contains the scalar 
pote!,1tial we must reexpress 8~ in terms of the scalar poten­
tial rp and the vector potential A k' whose existence is guaran­
teed by the homogeneous Maxwell equations (A.lV.2.9) and 
(A.IV.2.W), and which can be used to replace Ek and Bk in 
o~, J 

B kj = VkAj - VjAk' 

Ek = - V J) - JAkIJt. 
(11.18) 
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This substitution, integration by parts and the use of equa­
tions (A.lV.6.7), (A.lV.6.8), (A.lV.7.21, and (A.lV.7.3) estab­
lish an expression for D Ci2f involving <p and A k' 

DCi2f = ¢DPJ + AkDjJ - EkDp k + BkjDM
kj
l2 

+ V k (A;DHki + A kDtP - ¢DD k) + Aka(DD k)fat 

- DD k (aAklat) + JioEo[DtPa¢ lat - ¢a(DtP )fat] 

- (V kA k + JioEoa¢ I at )DtP. (11.19) 

The divergence term in D Ci2f will not contribute to the Euler­
Lagrange equations because when it is converted to a surface 
integral it vanishes because of the transversality conditions. 
The terms involving time derivatives will not contribute in 
the steady state while the last term can be made to vanish 
because one can always choose A k and ¢ to satisfy the Lo­
rentz condition, V kA k + /-LoEoa¢ I at = 0, by choice of a suit­
able gauge function. Under these circumstances only the 
first four terms on the right side can contribute to the Euler­
Lagrange equations. We shall need only one final bit of infor­
mation before writing down the expression for D.Y. The 
function mkj is extensive, that is, mkj(Au, A 1m, Ai, B il , Anv) 
= Amkj(u, lIm,i, B il , nv) and from this it follows that 

aiiikjlau = amkjlau, aiiikjlapi = amkjlai, 

aiiikjlaBil = mamkJlaBi/' aiiikJlaii y = amkjlanv 
and, therefore, 

a kj kj .,-kj m.,_ am .,-i 
um =--uU +--. up 

au ap' 
amkj amkj _ 

+ m-- oBi/ + -- ona. 
ani/ ana 

If the vector potential A k and the scalar potential ¢ satisfy 
the Lorentz condition and 

Ml = 0, DUk = 0, D(Ap k) = 0, 

D(AMkj) =0, D(a"+zvd~)=O, (H.20) 

then under steady state conditions and subject to the trans­
versality conditions we have a relatively simple expression 
for D.Y, 

D!f' = [T- 1 +A 1±1(1 + Ylkjamkjlau)]DU 

- [(T- 1 +A I±I)E; - 01±IBkjamkjlai]Dp' 

+ m [T-1mkj+A (±IB (ami/laB .]DB . 2 ,I kJ kJ 

- {T-1Jia -A I±I[(¢ +Ak Uk )za 

+ (n ± u2/2)Ma + ~Bkjamkjlana] 
-A IMa -A aa~}oiia' 

The conditions (11.20) do not imply that n, Uk' AP \ AM kj, 
and (a" + zVd~) necessarily vanish nor do they imply that 
these quantities must be prescribed in advance. But, as my 
earlier remarks intimated, these conditions do imply that 
these quantities are determined by nonthermodynamic con­
siderations (equations). Thus the state of the body is only 
partially determined by the thermodynamic Euler-La­
grange equations. The Euler-Lagrange equations for this 
problem are obtained from D!f' = 0 and clearly are not a 
system of differential equations, 
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T- 1 +A 1±1(1 + Ylkjamkjlau) = 0, 

(T- 1 +A (±I)Ei -lilA (±IBkj(amkjlai) = 0, 

T-1mkj +A (±IBiMmillaBkj ) = 0, (11.21) 

T-1/-La -A I±I[(¢ + Akuk)za + (n ± u2/2)Ma 

+ Ylkj(amkJ/ana)] - AlMa - A aa~ = O. 
From this system of equations we can obtain an interesting 
result for A (± 1#0, 

(T- 1 +A (±I) = 0 

iff 

aMkj 
Bk--=O 

J au 

amkj 
Bk--=O 

J api 

. amil 
mkJ-B·I __ =O 

, aBkj 

Jia + (¢ +Akuk)za + (n ± u2/2 +A I/A (±I)MU 

+ !Bkj(amkjlana) + (A alA (±I)a~ = 0 
(11.22) 

The multiplier A (± I is a constant and, therefore, 
T - I + A I ± I = 0 implies that the equilibrium state for the 
body is one of constant temperature. Clearly then, the first 
three equations on the right side of(II.22) may be regarded as 
a system of first order partial differential equations which 
might not be satisfied but which the function mkl must satisfy 
if the equilibrium state of the body is to be one of constant 
temperature. One class of solutions to these equations is easi­
ly written down by inspection, 

mkj = e kjiIBi/, 

e kjil = ekji/(nv), 

ekjil(Anv) = Aekjil(nv)' 

e kjil = e ilkj, 

e kjil = _ e jkil = e jkli. 

(11.23) 

This includes, as a special case, mkl = 0 which comes from 
(11.23) by choosing the tensor e kjil as the zero tensor. Sup­
pose we ignore the constraint on the total mass by choosing 
A I = 0, and also choose Uk = 0, and e kji/ independent of 
composition. Then the last equation on the right side of 
(11.22) specializes to 

/-La + ¢zu + nMu + (A ul A (± I)a~ = 0 (11.24) 

and for ¢ = 0 = n these equations have exactly the same 
form as the equations normally used to determine chemical 
composition for complex chemical equilibria and, conse­
quently, contain all the equilibrium constant relations [Ze­
leznik and Gordon,5 Eqs. (9, 16)]. Furthermore, the second 
term in (11.24) is precisely the modification of the chemical 
potential which forms the electrochemcial potential while 
the third term is the modification used in conventional ther­
modynamics to take into account the gravitational potential. 
But the manner in which (11.24) was obtained makes it clear 
that the sources of the second, third, and fourth terms are the 
constraints, that is, the members of (11.14), and not thermo­
dynamics. This leads me to question the propriety of regard-
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ing the electrochemical potential, p" + ¢f, as a thermody­
namic function as is the practice in conventional 
thermodynamics. Certainly I know of no comparable sug­
gestions that the combination pU + (A a/A ( ± I)a: be regard­
ed as a thermodynamic function. Similar comments apply to 
the combinations p" + aM" and p" + ¢" + aM". 

We have not yet exhausted the interpretive content of 
(11.22) and I wish to look at one other special case. That 
special case is obtained by neglecting all electromagnetic ef­
fects Ii = 0, mkj = 0, ¢ = 0, Ak = 0) and ignoring the mass 
constraint (A I = 0). For these conditions the last member of 
the right side of (11.22) specializes to 

p" + (a ± v2/2)MU + (A a/A (± I)a: = 0 (11.25) 

and for a = 0 and the negative sign for the v2 term this 
implies 

pU _ (v2/2)M" = C", (11.26) 

where C" is a constant function. These equations are the ones 
normally used to determine chemical compositions during 
steady state centrifugation [Ref. 3, p. 244, Eq. (15-14)]. Ifp" 
=p"(T,p, nv) then 

nu'ihpu= -sVkT+m-IVkP 

because by the Gibbs-Duhem relation, n"ap" / any = O. 
Therefore (11.26) implies a characteristic property of cen­
trifugation, namely 

Vkp = mVk(v2/2) (11.27) 

because V k T = O. This result seems to be the basic justifica­
tion for the use ofll.26 in the thermodynamics of centrifuga­
tion. The usual derivation ofI1.26, at least for me, is unsatis­
fying. Of course the derivation given here is no less ad hoc 
than the usual derivation because the constraint based on 
g" 1 - 1 has no obvious physical interpretation in contrast to 
the obvious physical interpretation of the constraint based 
on g"1 + I=g"· 

How does one construct an acceptable thermodynamic 
treatment of centrifugation? The fundamental objective of 
such a treatment of centrifugation is the determination of 
composition by the simpler equations of thermodynamics, 
rather than the evolution equations (A.IV.2.3), in a manner 
that is consistent with the fluid dynamics of the problem. But 
since the fluid dynamical computation must be carried out in 
any event, there seems to be little point in atempting to incor­
porate the dynamics, as typified by (11.27), into the thermo­
dynamic equations by what are artificial means, at best. By 
this reasoning it is clear that only the second and third mem­
bers of (11.14) would be used as constraints in a thermody­
namic variational calculation for centrifugation. If these 
constraints are used in conjuction with the equilibrium crite­
rion 8F = 0, 8T = ° of Theorem 11.12(3) then the resulting 
equations which determine the composition are 

p" +A 1M" +A aa~ = 0 

and these must be supplemented by equations to determine 
T, m, and Vk • These supplementary equations obviously 
would include the mass continuity equation (A.IV.2.1) and 
the momentum conservation equation (A.IV.2.4). For fluids 
the latter takes the form 
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8vk .. 
m-= - Vda+p)+ik +gkiVAJr'J), 

8t 
wherep = - a(u - Ts)la(l/m) and this contains (11.27) asa 
special case. To see this we need only assume that the motion 
is purely rotational and, hence, that the velocity is described 
by the skew symmetric vorticity tensor {J)ij = - {J)ji' That is, 
VjVk = (J)jk = - V kVj' Then 8Vk/8t = aVk/at + rlVjVk 
= aVk/at - rlVkvj = aVk/at - VdV2/2). Hence, momen­

tum conservation becomes 

Vdll +p) - mVdv2/2) = -aVk/at+ ik +gkiVj( . .::h·ij) 

which clearly specializes to (11.27). 
The last example is an open, thermodynamic, fluid sys­

tem constrained by the differential counterparts of KI + I' K I' 
and K2 in (11.14), 

k(+I=VkJ~ =0, 

kl=Vdmvk) = VdMViivVk) = 0, 

ka=Vdmha) = Vk(a:iivvk) = O. 

The Lagrangian for this problem has the form 

(11.28) 

,Y =s + A 1+lkl + 1 +..1 Ikl +..1 aka (11.29) 

but I shall make some assumptions about sand kl + 1 which 
are not essential but which are made solely to simplify the 
calculation somewhat. I shall neglect all electromagnetic ef­
fects in sand kl + I' With this condition sbecomes a function 
of u and iiv alone and the energy flux takes the simpler form 

J ~ = [u + MViivla + v2/2) ]vk + (pkj - ..d~j)Vj 

+qk +pvdZ, 

where - pij=mSklBklij = mSillkGkj' Now for a fluid Gkj 
= Ggkj and thus p~ = 3p and the energy flux can be written 
in the form in which I will use it, 

J~ = [u + MViiv(IJ + v2/2) + P ]vk 

(11.30) 

In this expression for the energy fluxp = TJs/a(lIm) 
= p((u, 11m, nv) and since p is intensive p = p(u, 1, iiy). Ob­
serve that the combination u + p is the enthalpy per unit 
volume. We can now calculate 8,Y subject to the conditions 
811 = 0, 8vk = 0, 8(pkj - gkjp; /3 - ..d r"j) = 0, and 
8(qk +pYdZ) = 0, 

8,Y = k l +18A 1+1 + k l8A I + ka8A a 

+ [T -I - (1 + Jp/au)vkV kA 1 + 1]8u 

- {T-Ip" + [M"(a + v2/2) + ap/aiia ] 

X vkV kA 1 + 1 + M"vkV kA I + a: vkV kA a }8ii
a 

+ Vk [A 1+18J~ + (A IMu +..1 aa:)8fi"vk]. 

To obtain this form for 8,Y I used, for example, relations of 
the type A 1+ IVk8J~ = VdA 1 +18J~) - 8J~ VkA 1 + I. The 
divergence terms in 8,Y will not contribute to the Euler­
Lagrange equations for the problem because they vanish by 
the transversality conditions when converted to integrands 
on the boundary. Thus these terms can be ignored when we 
write down the Euler-Lagrange equations implied by 
8,Y =0, 
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Vk ([ti + MVnv(fl + v2/2) + p ]Vk + (pkj - gkjp;13 

- L1r"j)Vj + qk + /-lvd~} = 0, 

VdMVnvvk) = 0, 

V k(a~nvvk) = 0, 

T- I - (1 + ap/ati)VkVkAI +1 = 0, 

T -I/-lu + [MU(fl + v2/2) + ap/ aiiu ]VkV kA 1+1 

+ MuVkV kA I + a~ VkV kA a = O. (11.31) 

CONCLUDING REMARKS 

In this paper I have extended the algebraic theory of 
thermodynamics to include the effect of algebraic sturcture 
induced by the body itself. The extended theory leads direct­
ly to, and justifies, a variational method of thermodynamic 
calculations which encompasses the traditional thermody­
namic calculations as special cases. More importantly it per­
mits the extension of thermodynamic calculations to states 
which heretofore were considered to be outside the province 
of thermodynamics. The traditional thermodynamic states, 
constant functions on a subsystem, are the ones that are im­
portant for thermodynamic experiments because they mini­
mize the number of measurements which are necessary to 
characterize the state of a body. But states with gradients are 
more common, and technologically more important, so the 
extension permits thermodynamics to become a more versa­
tile and useful tool. 

APPENDIX 

Some typographical errors have been found in the first 
paper and the corrections are listed below. 

1. p. 1586, Definition 1.24, line 3 should read "ment of 
Miff m<MmoVmEM. It is said to be maxi-." 

2. p. 1586, Definition 1.27, line 6 should read 
"m3<Mm l=>m2<m3 or m3<Mm2Vm l , m 2, m3EM." 

3. p. 1588, Theorem 1.38, line 4 and line 5 should read 
"a subset of some maximal chain and, V x, x'~, x = .""x' iff 
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x<"" x' andx'<"" x." 
4. p. 1589, Theorem 1.42, line 2. The statement "eE[e)" 

should read "e'E[e)nC." 
5. p. 1599, Corollary III. 5, line 6 of the proof. The 

symbol "az"" should read "dz"." 
6. p. 1600, the first line after Definition III. 7. The word 

"cited" should be deleted. 
7. p. 160 I, the third line after Theorem III. 9. The word 

"chain" should read "chains." 
8. p. 1606, the fifth line after Eq. (IV .2.10), the symbol 

E kl should be e kl' 

9. p.1608,Eq. (IV.17.3). ThesymboI8Wshouldbe~W. 
10. p. 1609, line 9 of the first paragraph. The beginning 

of the line should read" that is, 'hq,." 
11. p. 1609, line 22 and line 23. The upper case letter 

"P" should be replaced by a lower case letter "p." 
The theorem below is an extended version of Theorem 

A.1.42 obtained by proving the converse of the original 
theorem. 

Theorem 1.42 (extended): Let Cbe a chain, not necessar­
ily maximal, in (.2', <"", = "") and e an equilibrium state of 
C. Then e' is ail equilibrium state of C iff e'E[e)nC. 

Proof Now e is an equilibrium state and hence eEC. 
Suppose e' is an equilibrium state of C. Then e' EC and hence 
e<.""e' or e'<""e. But because e is an equilibrium state 
e' <""e=?e = ""e' and in either case e = ""e'. Thus e'E[e) and 
hence e'E[e)nC. The converse is established in Theorem 
A.I.42. 
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A simple and useful characterization of the global copies of any classical gauge vacuum is given. 
When the gauge group is abelian we obtain through that characterization a necessary and 
sufficient condition for the equivalence of the principal fiber bundles on which any two of such 
copies are defined. We compute by using also that characterization the classical vacuum 
structures of some nonabelian gauge field theories defined on different space-times. 

PACS numbers: l1.lO.Np, 02.40. Vh 

1. INTRODUCTION 

In the last several years, the study of the quantum vacu­
um structure of the Yang-Mills theory has pointed out im­
portant physical properties of such a theory: multiplicity of 
quantum vacua with different realizations of the quantum 
Yang-Mills theory for each one of them, resolution of the 
U( 1) problem, appearance of instantons, etc. 1-3 That vacuum 
structure is built from the classical vacuum of the Yang­
Mills theory: the gauge fields whose field strengths are null 
on the whole of the space-time. 

When the space-time is the Minkowski space-time it is 
clear that all of those gauge fields are trivial, because they are 
defined on R4

, which is a simply connected manifold, and 
every fiat connection (i.e., with null curvature) defined on a 
simply connected manifold is trivial. 4 The same result holds 
for the gauge vacuum of spatially compactified space-times 
defined over R X S 3. But if one considers the gauge vacuum 
on nonsimply connected space-times that result does not 
hold: nontrivial fiat gauge fields may exist. When the gauge 
group is U(I) and the space-time manifold is RXS 1 this fact 
gives rise to the Aharonov-Bohm effect of the electromag­
netic gauge field, which points out the physical difference 
between the global gauge field copies (equivalence classes of 
connections with equivalent curvatures) of the electromag­
netic vacuum. 5

•6 

In an early paper,7 Kostant has shown that the group 
Hom(1T1(M),U(l)) acts freely over the set of equivalence 
classes of the connections with gauge group U(l) on an arbi­
trary manifold Mhaving the same curvature. Hence the glo­
bal copies of the U(I) classical vacuum on Mare in one-to­
one correspondence with the elements of the group 
Hom(1T1(M ),U(l)). In particular, for the manifold R3 xS I of 
the Aharonov-Bohm effect the global copies of the electro­
magnetic vacuum are in one-to-one correspondence with the 
elements of Hom(Z, U( 1)) z U( 1). 
. The aim of the present paper is to extend the U( 1) analy-

Sts of Kostant for any gauge group in order to know the 
classical degeneracy of the general gauge vacuum. In Sec. 2 
we find the extended characterization ofthe global copies of 
any gauge vacuum and we give when the gauge group is 

"'Partial financial support from the Instituto de Estudios Nuc1eares. 
h'Laboratoire Associe au C.N.R.S. Postal address: Universite P. et M. Cu­

rie, Paris VI, Tour l6-ler etage, 4, place lussieu-75230 Paris cedex 05, 
France. 

abelian a criterion through this characterization for the 
equivalence of the principal fiber bundles in which such 
copies are defined. General results of Sec. 2 are applied in 
Sec. 3 to some space-time manifolds and physical gauge 
groups. Section 4 contains the conclusions and some final 
remarks about this classical degeneracy of the gauge 
vacuum. 

2. GLOBAL COPIES OF THE GAUGE VACUUM 

Let M be a connected differentiable manifold and G a 
Lie group. Let us consider a fixed point Xo of M and the first 
homotopy group 17' 1 (M) of M with base point xo' In the group 
Hom(1T 1 (M ),G ) we have the relation of equivalence such that 
for any 5,5 'EHom(1T1(M ),G) 5 -5' (sis congruent with5') iff 
there is agEGwith5 '(l) = g-15( l)gforevery lE1T1(M). Let us 
denote its quotient space by Chom(1T1(M ),G) and the equiv­
alence class of 5 by [5]. There is also a relation of equivalence 
in the set of gauge fields on M with gauge group G: Two 
connections rand r' defined in two principal fiber bundles 
P (M,G ) and P '(M,G), respectively, are equivalent iff there is 
an Misomorphism (,p,idG ) ofPinP' mappingrinr' (in such 
a case the principal fiber bundles P (M,G ) and P '(M,G ) are 
said to be also equivalent). We shall denote the equivalence 
class of rby [r]. 

Each flat connection r defined on any principal fiber 
bundleP (M,G ) has associated an element ofChom(1T1 (M ),G) 
in the following way. Ifwe choose an element uEFwith n p(u) 
= xo, each continuous piecewise differentiable closed curve 

of M beginning and ending at Xo defines an element of the 
holonomy group of rat u. Since r is flat this element is the 
same for all the curves in the same homotopy class, and it is 
obvious that the mapping 5 u :17' 1 (M )-G so defined is a homo­
morphism of groups. If we choose another point vEll p I(X

O
)' 

since there is a gEG with v = ug, we have that 5v ( I) 
= g- 15 u ( I )g for every lE1T 1 (M). Hence the equivalence class 

of 5u is independent of the uEll p l(xoJ chosen. Moreover, it 
is trivial to see that this class is the same for all the connec­
tions being equivalent to r and in this way we have built a 
mapping K of r~ into Chom(1T dM ),G ), r~ being the set of 
equivalence classes of flat connections on M with gauge 
group G (i.e., the global copies of the gauge vacuum). 

Theorem 1: For any connected manifold M and any Lie 
group G the mapping 
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K:r~--+Chom(1TI(M),G ) 

is bijective. 
Proof In order to see the one-to-one character of K let us 

assume that rand r ' are two arbitrary flat connections on M 
with gauge group G such that 

K([r]) = K([r']). (1) 

Let P (M,G ), P '(M,G) be the principal fiber bundles where r 
and r', respectively, are defined. Since (1) holds there exist 
two points uoEPand u~EP' withllp'(u~) = IIp(uo) = xoand 
SUn = S u(, and hence we can define a mapping I/J of Pinto P' in 
the following way. Let us consider the holonomy bundle Po 
of rat uo, i.e., the submanifold of P whose points can be 
joined to Uo by a horizontal curve with respect to r. For 
every point uEPo we can define I/J(u) as the ending point of the 
horizontal lifting with respect to r' beginning at u~ of the 
projection on M of any horizontal curve of Po with respect to 
r beginning at Uo and ending at u, because that end point is 
independent of the chosen horizontal curve of Po connecting 
Uo and u. Indeed, if Y I and Y 2 are two horizontal curves of Po 
with YI(O) = YI(O) = Uo and YI(I) = Y2(I) = u, the continu­
ous piecewise differentiable curve Y3 defined by 

Y3t = YI(2t) if O<t<~, 

=Y2(2-2t) if !<t<I, 

is closed and horizontal in Po with respect to r. Now, since 
S u. = S u(,' the continuous horizontal lifting at u~ in P' of the 

projection on M of Y 3 is also closed, which implies that Y; (I) 
= Y; (1), Y; and Y; being the horizontalliftings at u~ in P , of 

the projections on M of Y I and Y 2' respectively. Since M is a 
connected manifold, it is arcwise connected. Therefore Po 
intersects every fiber of P and we can extend the definition of 
I/J to the whole of P in such a way that 

tP(ug) = I/J(u)g 

for any uEPo and gEG. It is trivial to see that (l/J,idG ) is aM 
homomorphism fromPintoP' which maps rinto r '. In the 
same way we define a M homomorphism (I/J' ,idG ) from P' 
into P which maps r' in r. Now from both definitions it 
follows that I/JO(If/ = idp', l/J'ol/J = idp and hence that (l/J,idG ) is 
a Misomorphism fromPintoP', which implies thatrandr' 
are equivalent, i.e., [r] = [r ']Er~. Thus K is one-to-one. 

We shall now prove that K is surjective. Let ll" :J( --+M 
be a universal covering of M and x a fixed point of ll. # I(XO)' 
Then there is a differentiable action by the right of 1T1(M) as 
discrete group on J( which gives to J((M,Il" ,1T1(M)) a 
principal fiber bundle structure and such that for each 
leTT 1 (M), xl is the end point of the differentiable lifting in J(~ 
beginning at x for every closed curve of the homotopy class 
I.R Let us now define for each SEHom(1TI(M),G) the right 
action of 1T I (M ) on j( X G given by 

(y,g)l = (yl,S (l)-Ig) (2) 

for every ( y,g)EJ! X G and IE1T I (M). Since the action of 1T I (M) 
on J( is properly discontinuous, the action defined by (2) is 
also properly discontinuous, which implies that the quotient 
space P = J( X G /1T I (M) is a manifold and that the natural 
projection II from J( X G into P is differentiable. On the 
other hand this action commutes with the canonical action 
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of G on J( X G. Hence we can project the canonical action of 
G on J( X G to an action of G on P, which corresponding 
quotient manifold is isomorphic to M. It is trivial to see that 
with this action P(M,G) is a principal fiber bundle and that 
(ll,idG ) is a homorphism of principal fiber bundles from 
J( X G into P (M,G ). Let us now consider the trivial connec­
tion ro in J( X G defined in each point (y,g) of J( X G by the 
subspace of the tangent space of J( X G at (y,g) which is 
tangent to the submanifold J( g = {(z,g);ZEJ! J. Because 

J( gl = J( 51 W'g 

for any IE1TI(M) andgEG, ro is invariant by the action of 
1T I (M). Therefore II maps ro into a flat connection r in P. On 
the other hand, since J( is arcwise connected, for every 
IE1T1(M) there is a curve YI:[O, I]--+J( with YI(O) = x and YI(I) 
= xl. The projection through I1.J/ on M of such a curve 

I1.J/ oYI- is a closed curve beginning and ending at 
llJ/ (x) = II J/ (xl) = Xo which belongs to the homotopy class 
I of 1T I (M). From the construction of r it follows that the 
horizontal lifting ofllJ/ 0YI with respect torat u = II (x,e) is 
the projection through II of the horizontal lifting YI of YI 
with respect to ro at Uo = (x,e). Since YI(t) = (YI(t ),e) for ev­
ery tErO,I] we have that lloy,( 1) = II (ji,IO))s I /) and there­
fore that 

Finally, because (3) holds for every IE1TI(M) we have 
proved that K([r]) = [S], which points out the surjective 

(3) 

character of the map K. Q.E.D. 
The above theorem gives us a faithful characterization 

of the classical gauge vacuum structure through the set 
Chom(1TI(H),G) which obviously depends on the gauge 
group and on the topological structure of the space-time. 

Note that this simple characterization of the global 
copies with null curvature is a consequence of the unicity of 
the local copy with null curvature. When the curvature of a 
non-abelian gauge field is not null it may have many local 
copies9

•
10 and therefore in this case the characterization of 

the global ones is more complex. 
Whenever1T I IM) = OwehavethatChom(1TIIM),G) = 0 

and in this case Theorem I shows us again that all flat gauge 
fields on a connected and simply connected manifold Mare 
trivial, i.e., all the classical gauge vacuum structures on M 
are trivial. 

If G is abelian, for any connected manifold M 
Chom(1TIIM),G) = Hom(1TIIM),G). 

Therefore in this case the global copies of the gauge vacuum 
are in one-to-one correspondence with the elements of the 
abelian group Hom(1TIIM ),G), which agrees with the Kostant 
result when G = UII). We shall now see by using this corre­
spondence which of those global copies of the abelian gauge 
vacuum are defined in the same equivalence class of princi­
pal fiber bundles. Let g be the abelian Lie algebra of G. The 
exponential map 

exp:g--+G 

is in this case a homomorphism of abelian groups, and hence 
the mapping 

EXP:Hom(1T 11M ),g)--+Hom(1TIIM ),G ) 
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defined by 

EXPs( I) = exp(s(l)) 

for any sEHom(1T)(H),g) and lE1T)(M) is also a homomor­
phism of abelian groups. 

Theorem 2: Two flat connections rand r I on a connect­
ed manifold M with abelian gauge group G are defined in 
equivalent principal fiber bundles iff there exists a homo­
morphism l1EHom(1T)(M),g) such that 

K([r']) = K([r])EXPl1. (4) 

Proof Suppose that rand r ' are defined in equivalent 
principal fiber bundles. Then there is a principal fiber bundle 
P (M,G) where the connection rand a connection equivalent 
to r ' which we shall also denote by r I are simultaneously 
defined. 

If OJ and OJ' are the connections I-forms in P of rand r ' , 
respectively, we have that T = OJ' - OJ is a g-valued tensorial 
I-form of type adG of P. Since 9 is abelian there is a g-valued 
t-form a of M such that T = II ~a, II p being the projection 
fromPonM. 

! ej
, i = t, ... ,n} 

be a basis of g, where n = dimG. The g-valued I-form a splits 
into n real t-forms a j in such a way that 

a= i ajej. 
i= I 

Since rand r' are flat we have da = 0, which implies that 
da j = 0, i = l, ... ,n, i.e., each realI-form a j is closed. Ac­
cordingly the mapping associating 

jt) ( -L a j )eiEg 

to each closed curve y in M beginning and ending at xo, 
which obviously is independent of the basis of 9 chosen, only 
depends on the homotopy class of y, because 

L a i = L a j i= t, ... ,n, 

for every closed curve y' in M of the same homotopy class of 
y. Let 11 be the homomorphism of 1T) (M) into 9 defined by 
that mapping. In order to prove that 11 satisfies the equality 
(4) it is sufficient to see that for each horizontal lift yinPwith 
respect to r of any closed curve yin M the curve r defined 
by 

r(t) = y(t) expLtl ( - L airy,) dt )e
i
} 

is an horizontal lift of y in P with respect to r I, y, being the 
tangent vector to yat y(t ). Now by Leibniz's formula 

y; = y, exp{ jt) (- L airy,) dt )ei} 

- i ai(y,)X~t) 
i= 1 

for every tE[O, 1], Xi being the vector field of P defined by the 
corresponding element ei of 9 through the action of G on P 
and Yt exp! l:7~) ( - f~ai(Y') dt lei} being the transformed 
tangent vector of y, through the action of 
exp{ l:7~ 1 ( - f~ai(Y') dt )ei}EG on P. Thus, since OJ(Y,) = ° 
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and OJ(x~t I) = ei
, we have 

OJ'(y;) = ° 
for every tE[O, I], which shows that r is a horizontal lift of y 
in P with respect to r'. 

Conversely, suppose that equality (4) holds for some 
l1Ehom(1T)(M ),g). In the basis! ti,i = l, ... ,n} of 9 the homo­
morphism 11 splits into 11 homomorphisms l1i' i = I, ... ,n, of 
1T)(M) into R in such a way that 

1] = i 1] j ei
• 

;=1 

By Rham's theorem 11 there are in M n closed real I-forms 
ai' i = I, ... ,n, such that for any IE1T)(M) 

l1i( l) = i a j , 

y being any closed curve in M of the homotopy class I. Let a 
be the closed g-valued I-form of M defined by 

n 

a= I ajei, 
i~ ) 

which obviously is independent of the basis of 9 chosen. It is 
easy to see that the g-valued I-form 

W= OJ + II~a 
defines a flat connection r in the principal fiber bundle 
P (M,G ) where r is defined. Then we have 

K([F]) = K([r]) EXPl1 = K([r']), 

which implies by Theorem I that r' and f are equivalent. 
Thus the principal fiber bundle where r I is defined is equiv­
alent to P. Q.E.D. 

The preceding theorem enables us to know that the glo­
bal copies of any abelian gauge vacuum on a connected 
space-time manifold M which are defined in trivial principal 
fiber bundles are given by the elements of 

K~ 1 o EXP(Hom(1T)(M),gj)C rft . 
Another important consequence of Theorem 2 is that the 
equivalence classes of principal fiber bundles on a connected 
manifold M with abelian structure group G where flat con­
nections are defined are in one-to-one correspondence with 
the elements of the group 

Hom(1T) (M ),G )lHom(1T)(M ),g), 

where Hom(1T,(M ),g) and its image in Hom(1T)(M ),G ) through 
the mapping EXP are identified. In particular, the existence 
of space-time manifolds with 

Hom(1T)(M),U(t))/Hom(1T)(M),R);6 {OJ 

was used by Boya and myself)2 in order to point out the 
existence of electromagnetic gauge fields without monopoles 
defined in nontrivial fiber bundles. 

Accordingly, the two preceding theorems give us a sim­
ple and complete description of the classical vacuum struc­
ture of any abelian gauge field theory. Nevertheless most of 
the fundamental gauge field theories appearing in physics 
are non-abelian and their vacuum structure is more com­
plex, because in general 

Chom(1T )(M ),G);6 Hom(1T)(M ),G ) 
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and, theorem 2 does not hold for them. We shall analyze 
some simple cases of such vacua in the next section. 

3. SOME VACUUM STRUCTURES OF NONABELIAN 
GAUGE FIELD THEORIES 

For the sake of simplicity we shall only consider special 
orthogonal gauge groups SO(N) and special unitary gauge 
groups SU(N) with N>2. 

A. 1T1(M) = 'I. 

First, let us analyze the non abelian gauge vacua of the 

expiAI 0 0 0 

0 expiA2 0 0 

0 0 expiAN_ 1 0 

0 0 0 ( N-I) 
exp -i ;~IA; 

with AI, .. ·.AN _ I E[0,21T) and Al <,···<.AN _ I' Accordingly, 

r~V':d, :::::Chom('l,SU(N)):::::AfU(I), 

where 
AfU(I) = !(expiA I,. .. ,expiAN)EU(l)N; 

N 

A;E[0,21T).AI<,···<,AN_ I ,(1!21T) LA;EN"}. 
i= I 

In a similar way we obtain for G = SO(N) 

r~?rd, ::::: Chom(Z,SO(N)):::::A [N 12IS0(2), 

where [N /2] is the highest integer z with z<.N /2 and where 

A[N121S0(2) = { (expA la, ... ,expA[NI2Ia)ESO(2)[N12i; 

a=(~ -~). AjE[0,21T), AI<""<.A[NI2 1}' 

On the other hand, since the classes of principal fiber 
bundles on R3 xS I with gauge group G are in one-to-one 
correspondence with homotopy classes of mappings of 
SO = ! I, - 1] into G,8 when G is connected all principal fi­
ber bundles on R3 X S I with gauge group G are trivial. Thus 
the global copies of r~9rd, and r~V':d, are defined in triv­
ial principal fiber bundles. 

Note that the SU(2) and SO(3) gauge vacuum structures 
on R3 X S I are similar to the electromagentic ones giving rise 
to the Aharonov-Bohm effect. Indeed 

r~v~k, :::::U(I):::::r~9~k, :::::SO(2):::::r~\~s' :::::U(l), 

and all the copies of these vacuum structures are defined in 
trivial principal fiber bundles on 1R3 xS I with gauge group 
SU(2), SO(3), and U(l), respectively. 

B. 1T1(M) = Zp (p> 1) 

Let L (p, 1) be the quotient manifold (lens space) of the 
action of Zp = ! a,a2 , ... ,aP = e] in the sphere S 3 given by 

(xl,x2,x3,x4)a' 
= (Xl cos21Tr/p - X2 sin21Tr/p,x l sin21Tr/p + X2 cos21Tr/p, 

X3 cos21Tr/p - X4 sin21Tr/p,x3 sin21Tr/p + X4 cos21Tr/p), 
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space-time manifold of the Aharonov-Bohm effect R3 X S I. 
Since 1T1(R

3xS I) = 'I. every sEHom(1TI(M),G) is completely 
given by 5 (I )EG. When G = SU(N) every AESU(N) can be 
diagonalized by means of a unitary transformation, i.e., 
there exists UEU(N) such that U - IA U is diagonal. There­
fore, UI = (detU) - IINUESU(N) verifies that U 1- IAUI is 
also diagonal, which implies that A is congruent with a diag­
onal element ofSU(N). In the same way, since the matrices of 
the invertible linear transformations interchanging the vec­
tors ofthe natural basis of eN are unitary, A is always congru­
ent with a diagonal matrix of the form 

ESU(N), (5) 

for r = 1,2, ... ,p and for all (XI,X2,X3,X4)ES3CIR4. The mani­
fold IRxL (p,l) supports some admissible space-time struc­
tures. 12 How are the gauge vacuum structures defined on 
those space-times? Since 1TI(L (p, 1)) = lp, 1TI(RXL (p, 1)) 
= Zp. Thus every sEHom(1TI(RXL (p,I)),G) is completely 

determined by 5 (a). Now since every AESU(N) is congruent 
to a diagonal matrix of the form (5), we have 

r~~'i:\p.II :::::Chom(RXL (p,I),SU(N)):::::.A~Zp, 
where 

A7 l p = {(a",a", ... ,a")EZN ;r1<.r2<. .. ·<.rN, II/p) ± r, E "I. 
• I 

and that each global copy of the vacuum r~~'i: I( p.11 is reduc­
ible to a global copy of the abelian vacuum r~~12Ip.II' Nev­
ertheless, though the copies of r~~)2(p.II are defined in non­
equivalent principal fiber bundles because Hom(Zp ,RN

) 

= 0, two copies of ~~~IIP.II may be defined in equivalent 
principal fiber bundles because theorem 2 does not hold for 
the SU(N) groups when N>2. 

In the same way, we prove that 

~~~IIP.II :::::Chom(1TI(M),SO(N)) =A[
N121Zp ' 

and that each global copy of the vacuum r~~"i:I( p.l) is reduc­
ible to a global copy of the abelian vacuum r~~21'(';.'I\' In 
spite ofthis, two copies of r~~~I(p.11 may also be defined in 
equivalent principal fiber bundles when N>3. 

Up to now all the space-time manifolds considered had 
abelian first homotopy groups and hence the holonomy 
groups of the global copies of the gauge vacua on them were 
also abelian, which simplified the computation of the corre­
sponding gauge vacuum structures. We shall now analyze a 
more complex case: the vacuum structures on a space-time 
manifold whose first homotopy group is not abelian. 

C. 1T1(M) = Q 

Let us consider the quatemion subgroup Q of SU(2) 
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where I is the identity ofSU(2) and ux ' uy , and Uz are the 
standard Pauli matrices. The action of Q in SU(2) defined by 
the right product in SU(2) is free and properly discontinuous. 
Thus the corresponding quotient manifold SQ is paracom­
pact and satisfies the exact homotopy sequence 

"'-+'l'T)(SU(2))---+1r)(SQ)---+1ro(Q) + 1To(SU(2))-···. 

Then1T)(M)z1To(Q)zQbecause1T)(SU(2)) = 1To(SU(2)) = 0. 
Q is the lowest non-abelian group which can be realized as 
the first homotopy group of the quotient manifold of a free 
action ofa group over SU(2)ZS3 (diffeomorphically). In­
deed, the lowest non-abelian finite groups are the dihedra 
groups D3 (order 6) and D4 (order 8), and the quatemion 
group Q (order 8). But there are no free actions of D3 and D4 
on S 3 because in D3 and D 4 there are involutive elements 
which do not lie in their corresponding group centers. )3 

On the other hand, since SU(2) is a Lie group it admits a 
right invariant orientation, which implies that SQ is also 
orientable. If we consider in S Q a Riemannian metric g (there 
always exists such a metric because SQ is paracompact), we 
may define in RXSQ a Lorentizian metric gin such a way 
that for every (t,x)eRXSQ we have 

g(v,v') = g( y,y') - ss' 

for any two vectors v = (s,y) and v' = (s' ,y') of 

1(,.x)(RXSQ)z T,(R)X Tx(SQ)zRX Tx(SQ)' 

Since R X SQis orientable and R X SQ is time orientable with 
respect to g, (RXSQ,g) is an admissible space-time which 
satisfies the causality condition. We shall now study the 
gauge vacuum structures. of such kinds of space-times. 

There are only five classes of inequivalent irreducible 
unitary representations of Q: the classes described by 

(1) a two dimensional representation So defined by the 
inclusion of Q in SU(2); 

(2) four unidimensional representations defined by 

S)(iux ) = s)(iuy ) = - 1, S)(iuz ) = S)( -l) = 1, 

S2(iuy ) = S2(iuz ) = - 1, S2(iux ) = S2( -l) = 1, 

S3(iux ) = S3(iuz ) = - 1, S3(iuy ) = S3( -l) = 1, 

S4(iux ) = S4(iuy ) = S4(iuz ) = S4( -l) = 1. 

Consequently, since for any i,j = 1,2,3,4 the represen-
tations S; $ Sj and Sj $ S; of Q are equivalent, there are only 
eleven classes of nonequivalent two - dimensional unitary 
representations of Q: the classes described by the 
representations 

So, Sij = S; $ Sj i<j, i,j = 1,2,3,4. 

Now, if two N-dimensional special unitary representa­
tions S, S ' of Q are equivalent they are unitary equivalent. 
Then there exists a matrix UEU(N) with 

U-)s(A jU=s'(A), 

foranyAEQ. Hence we have for U) = (detU) - IINUESU(N) 
also 

U )- )S (A jU) = S '(A ), 

for every AEQ, which implies that sand S ' are two congruent 
homomorphisms of Q in SU(N). Accordingly. 

~~~QzChom(O.sU(2))z ([SO],[Sii]' i = 1,2,3,4J, 

i.e., there are five global copies of the SU(2) gauge vacuum 
on R X SQ' The copy corresponding to [So] is the only copy of 
~~~Q having non-abelian holonomy groups. Note that 
~~~Q does not have a natural group structure. 

In the same way, for any special unitary gauge group 

SU(N) we find that 

where 

AKD2 = {(a; , ... ,a; )EDf;i)<; ... <;iK ,a",,·a i , =el J for K>O, 
) I k 

~OD2 = (ll, 
) 

D2 = (a ),a2,a3,a4 = e I being the second dihedral group. 
Similarly, we obtain 

~~~1Q Chom(Q,SO(N)) z ( [S;"";N] 

= [S;I $ ... $ sd;i)<; ... <;iN,i), ... ,iN = 1,2,3,4 
,dets" iJa) = I,aEQ I 

i.e., there are CardA~D2 global copies of the SO(N) 
gauge vacuum on RXSQ • It is obvious that in this case all of 
these global copies have abelian holonomy groups. 

Accordingly, the structure of non abelian gauge vacua 
is more complex than the structure of the abelian ones. [For 
instance for the abelian groups U(l) and R we have 

r~~)sQ z Hom(Q, U( I)) z (SJ,S2,S3,S4 I = D2, 

and 

r:xsQzHom(Q,R) = 0, 

respectively.] In spite of that, Theorem I provides us with a 
powerful and useful tool for the study of both kinds of gauge 
vacua. 

TABLE I. The vacuum structure r~ ::::Chom(1T,(M ),G) for some space-time manifoldsM and some elementary gauge groups G. Note that r;.t'l;~, :::: SO(2), 

r;.~~k, :::: UtI), ~~IP"I = Zp' and r;.';i~IP.11 = Zp, are the only nontrivial and nonabelian vacuum structures in this table having a natural group structure. 

Space-time Gauge Group G 
ManifoIdM UtI) R SU(N) SO(N) 

R4 0 0 0 0 
S4 0 0 0 0 
R3 xS' UtI) R A1"U(I) A 1N12JSO(2) 
RXL(p,l) Zp 0 A\"Zp AINI2JZp 

RXSQ D2 0 [NI2) 

U A N- 2iD A~D2 
1=0 1 2 
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Most of the results of this section are summarized in 
Table I. 

4. CONCLUSIONS 

The main physical consequence of Theorem I is that in 
general the classical gauge field vacuum is degenerate and 
that the degree of this degeneracy is given by the cardinality 
of the set 

Chom(1T,(M),G,) 

M being the space-time manifold and G being the corre­
sponding gauge group. 

In the electromagnetic case this degeneracy was known 
from the discovery of the Aharonov-Bohm effect, which 
shows us that such a degeneracy is broken by the presence of 
charged material particles in the space-time manifold 
R 3 XS '. In the same way one may expect that for all gauge 
field theories vacuum degeneracy is broken by the presence 
of material particles feeling the corresponding gauge 
interactions. 

In a recent paper '4 Mayer and Wiswanathan discuss the 
quantum structure of the gauge vacua for non-one-point 
compactifications of the spacelike subspace R3 of the Min­
kowski space-time. In particular, they consider the quan­
tum vacua arising from the trivial SU(2)(SO(3)) gauge field 
copy on lR.P 3. Since 1T, (RP 3) = Z2' Theorem 1 says that there 
is another SU(2)(SO(3)) gauge vacuum copy on RP3. There­
fore, another quantum vacua sector may be derived from 
this classical vacuum copy. This new sector must also be 
studied for the complete understanding of the quantum 
vacuum structure in that compactification. 
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Finally, vacua sectors of this kind may also appear in 
the construction of the quantum gauge vacua on space-time 
whose manifolds are not simply connected when the corre­
sponding classical vacua are degenerate. But in general the 
quantum structure of the gauge vacuum on such space­
times is not well known yet. 
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A Hilbert space formulation is proposed for the three-nucleon scattering problem. Scattering 
integral equations are given derived from Alt-Grassberger-Sandhas equations. Using the . 
momentum representation, the kernel of the iterated integral equation is shown to be compact 10 

an adjusted Hilbert space. The extension to four nucleons is given. 

PACS numbers: 25.10 + s, 03.80. + r, 02.30.Rz 

I. INTRODUCTION 

In his famous work Faddeev l established three-body 
scattering integral equations and showed the iterated kernels 
to be compact in a given Banach space. Compactness would 
be a strong tool for powerful approximation techniques for 
practical solutions if the space were a Hilbert space. Much 
work has been done since on the investigation of few-body 
scattering equations.2

-
11 It is a common feature of these 

equations that their kernels are built up from transition am­
plitudes or Green's functions corresponding to a lower parti­
cle number. By probability conservation, one is forced to 
take into account all the subsystems particle breakup poles 
and corresponding cuts. These singularities give rise to the 
difficulty that the kernels are not compact on the ordinary L2 
Hilbert space. For three particles in coordinate representa­
tion Ginibre and Moulin 12 showed compactness of kernels in 
a Hilbert space. For three particles nonsingular scattering 
equations in momentum space have also been proposed. 13 In 
momentum representation, widely used in practical few­
body calculations, this work gives a Hilbert space approach. 
It allows one to calculate the scattering amplitudes from in­
tegral equations in Hilbert space with compact kernels. It is 
shown in detail for three particles, and for four particles the 
basic equations are given. The main point is the application 
of the substraction technique which splits a Cauchy type 
singularity into a nonsingular part and a singular part which 
is analytically solvable. This idea has been used by Noyes 
and Kowalski, 14 in order to extract from a two-body scatter­
ing equation a nonsingular equation. Here it is used to con­
struct a scalar product from a function and the subtracted 
function, thus giving an appropriate Hilbert space. This 
method already has been shown to work in the two-body 
case and a special low energy three-body case. 15 It is briefly 
reviewed in Sec. 2. For the three-body case, it is generalized 
to more variables. 

It is well known I that the original Faddeev kernel is not 
compact, as it is not connected. The same is true for the 
equations given here, so that iterations are needed which 
will, firstly, make the kernels connected and secondly, will 
make the singularities less severe. In Sec. 3 the notation and 
the equations are given for the three-body case. The next 

a'NATO Fellow from lustus-Liebig-Universitiit, Giessen, West Germany. 
"'Research sponsored by the Division of Basic Energy Sciences, U.S. De­

partment of Energy, under contract W-7405--eng-26 with the Union Car­
bide Corporation. 

section defines the basic Hilbert space. In Sec. 4 a condition 
is formulated which is shown to be sufficient for compact­
ness of the kernels. In Sec. 5 we show that it applies to the 
class ofH61der continuous potentials defined by Faddeev l in 
a certain approximation. In the final section, for the four­
body case, the basic set of equations is given in analogy to the 
three-body case. 

2. TWO-BODY CASE 

Let us briefly review our method given for the two-body 
case. 15 In the case of a rotationally symmetric two-body po­
tential, the angular momentum decomposed scattering 
equation (Lippmann-Schwinger equation) is of the type 

f(q') =g(q') + lim f"" dq k(~',q) f(q) , 
.~ +0 Jo qo + IE - q 

(2.1) 
f=g+Kf· 

Let us introduce for technical simplicity a momentum 
cutoff a > 0, although rotational invariance and momentum 
cutoff are not needed. We define 

~ = {t/Jll/J(q)E!f 2(0,a),¢ "'(q) = I/J(q) - t/J(qo) E!f iO,a)} , 
q -qo 

(2.2) 

and on ~ a scalar product 

(2.3) 

It turns out that ~ is a Hilbert space. The following condi­
tions on k tum out to be sufficient for K to be compact on 
~: 

k(q',q)E!fiO,a)x(O,a) , 

¢ ~q. (q' ,q) = k (q' ,q) - k (q' ,qo) E!f 2(0,a) X (O,a) , 
q -qo 

¢ k (q',q) = k (q',q) - k (qo,q) E!f 2(0,a) X (O,a) , 
q. q' - qo 

¢k (q',q) = k(q',q)-k(q',qo)-k(qo,q) + k(qo,qo) 
q"q, (q' - qo)(q - qo) 

E!f2(0,a)X(0,a). (2.4) 

The compactness is made transparent by the following 
steps: 
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lim La dq k (~',q) f(q) 
<-·0 + 0 qo + l£ - q 

= r dq k (q',q) - k (q',qo) f(q) + k (q',qo) 
Jo qo - q 

X La dq f(q) - f(qo) 
o qo-q 

+ k (q' ,qolf(qo) lim (a dq ~ 
<~ + 0 Jo qo + lE - q 

- [dq 1> ~q.,(q',qlf(q) - k (q',qo) [ dq 1>f(q) 

+ k (q',qolf(qo) [In ~ - itT] 
a -qo 

= - [dq 1> ~Jq' ,qlf(q) 

- [dq [k (q' ,q) + 1> ~. (q' ,q)(qo - q)]1> f (q) 

+ [dq[k(q',q)+1>~q.(q',q)(qo-q)] 

X [j (q) + 1> f (q)(qo - q)] ~ [In ~ - itT] . (2.5) 
a a -qo 

3. THREE-NUCLEON CASE: NOTATION AND 
EQUATIONS 

Let us consider three particles of identical mass m. 
Throughout this paper we use the convention Ii = m = 1. 
The index a denotes the particle, also the subsystem of two 
particles in which particle a is not contained, and the chan­
nel index of three particles containing this subsystem. Let q 
be the relative momentum between two particles and p the 
relative momentum between the third particle and the center 
of mass of the two-particle subsystem. Thus, a plane-wave 
state in the channel a, e.g., is expressed as Ip,q) a' In the 
following an operator 0 defined in the two-body space is 
denoted without index or as 0.(2) Let Vbe the two-body in­
teraction, G ~)(Z) the two-body free Green's function and 
T(Z) the two-body transition amplitude. Let Va be a two­
body potential read in the three-body space as 

a (p',q'IVaIp,q)a =<5(p'-p)(q'IVlq)· (3.1) 

Let Go(Z) be the free Green's function in the three-body 
space, Ta (Z) be the two-body transition amplitude read in 
the three-body space obeying 

Ta(Z) = Va + Va Go(Z)Ta(Z) . (3.2) 

Let U{3a (Z) be the three-body transition amplitude, which 
fulfills the Alt-Grassberger-Sandhas equations, 16 with 

l!r{3a = 1 - <5{3a 

U{3a =~{3aGO-I + L~{3yTyGoUya' (3.3) 
y 

where a, p, r run over all particles. Defining 

U{3a = T{3GoU{3a , 

one obtains from Eq. (3.3) 

U{3a = T{3~{3a + L ~(3y T{3GoUyu . 
y 

In the following, the energy is constrained by E 

186 J. Math. Phys. Vol. 22, No.1, January 1981 

(3.4) 

(3.5) 

= Real (Z) > 0, which means we are dealing ,with the most 
complicated case. The singular behavior of Eq. (3.5) arises 
from poles of the kernel. /3 (p',q'IGo(Z )lp,q){3 has a pole at 
Z = ap2 + q2, while {3 (p',q'l T/3(Z)\p,q) {3 has a pole at 
Z = a p2 + Ed' Here the technically simplifying (but not cru­
cial) assumption is made that there is only one two-body 
bound state at Ed < O. We make a variable transformation 
p = (V3/4)p but omit the tilde in the following. Now let us 
split Go and Ta into singular parts and nonsingular parts 
defining 

a (p',q'ISa(Z)lp,q)a 

= <5 (p' - p)<5(q' - q)( - IZ I - p2 - lEd Il 
I(Z - p2 - Ed) , 

a (p',q'ISo(Z)lp,q) a 
(3.6) 

= <5 (p' - p)<5(q' - q)( - IZ I - p2 - q2)/(Z - p2 -l) , 
and B a (Z) and Bo(Z) via 

Go =SoBo, 

Ta = SaBa . 

It is valid that [Sa,Ba ] = [Sa,Go] = [Sa,SoL 
= [Sa,Bo] = [So,Bo] = O. Let us introduce U/3a' via 

U{3a = S (3 U{3a . 

From Eq. (3.5) one obtains 

U{3a = B{3~/3a + L ~/3yB/3Go8y Uya . 
y 

(3.7) 

(3.8) 

(3.9) 

For physical relevance, it is sufficient to investigate this 
equation multiplied from the right by a state 11> ) a' with the 
definition 11)/3 = U/3a 11> ) a' Ii) /3 = B/3~/3a 11> ) a' thus 
giving 

y 

Our aim is a Hilbert space JY' with g andfbelonging to JY' 
and a compact integral operator K mapping JY' into JY' with 

f=g+Kf, (3.11) 

such that the solutionfis closely related to the solutionlof 
(3.10). A step toward this goal is the iteration of Eq. (3.10). 
The reason is that our kernel is similar to that of Faddeev's 
equation for which iteration was shown 1 to make the kernel 
smoother. After three-fold iteration Eq. (3.10) reads 

11)/3, = li)/3, + L 1!r/3,{3,B{3, Go8/3, li){3, 
/3, 

+ ') 1!r/3,/3, 1!rp,/3, 1!r/3,/3. 1!r/3./3, B{3, Go8{3,B{3, Go8/3, B/3, 
/3,Ji,J3, 

X Go8/3.B{3. Go8/3.ll)/3. ' (3.12) 

which is our basic three-body equation. The inhomogeneous 
term is called Ig) /3, and 
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H(3.(3.(3,(3. = B(3. GoT(3. GoT(3, Gr/3(3.Bo . 

Thus (3.12) reads 

11)(3. = Ig)(3. 

(3.13) 

+ L ~(3.(3.~.(3,§./3,(3.~(3.(3.K(3.(3,/3,(3.(3.ll)(3. (3.14) 
(3.(3,(3.(3. 

and the kernel K(3.(3.(3,(3.(3. is factored into 

K(3./3.(3,(3.(3. = H(3.(3.f3,(3.S~(3.S(3. ' (3.15) 

H(3.(3.(3,(3. will turn out to b~ the nonsingular ~art, while ~he 
singularities are contained m S~(3.S/3.' That IS, SO contams 
the free pole, S/3. the deuteron pole in the channelP4' S/3. the 
deuteron pole in the channel P5' Remember only channels 
P4 =lP5 contribute in (3.14). As poles emerge in different 
channels, let us define some channel and variable transfor­
mations. For each PI =lP2 

A = e~) with real coefficients a, b, c, d , 

/3. (p',q'lp,q)/3. = /3, (p',q'IA Ip,q)/3, 

= /3, (p',q'lap + bq,cp + dq)/3, . 

(3.16) 

(3.17) 

Instead of characterizing a Hilbert state by the momenta 
P(3'Qp, one could also use P/3'Py = ky withP =lr, 

B = G~) with real coefficients a, b, 

/3, (p',q'lp,k)/3./3. = /3, (p',q'IB Ip,q)/3, 

= /3. (p',q'lp,ap + bq)/3, . 

(3.18) 

(3.19) 

Let us use the Hilbert states in the Ip,q) /3. representa­
tion in order to describe the singularities of So, S/3.' S(3.' The 
pole of So emerges for E - p2 - q2 = 0, the pole of S/3. 
emerges for E - (ap + bq)2 - Ed = 0, while that of S/3. 
emerges for E - p2 - Ed = 0. 

One can define a hypersphere of singular points. Let 
G = R3 X R3 and 

GE = {(p,q)I(p,q)EG, E - p2 - q2 = 01 , 

GE-E".B = {(p,q)I(p,q)EG, E-Ed -(ap+bq)2=01 

= {(p,k)l(p,k)EG, E - Ed - k 2 = 01 ' (3.20) 

GE- Ed.1 = {(P,q)I(P,q)EG, E-Ed _p2=Oj 

= l(p,k)l(p,k)EG, E-Ed _p2=Oj, 

with p,k defined by (3.18). Note the following properties: 

GEnGE_ Ed,B = 0, 
GEnGE _ Ed' I = 0 , 

which can be verified easily. Assume on the contrary 

(p,q)EGEnGE_Ed.B' That means 

(3.21) 

0= E - p2 - q2 = E - Ed - (ap + bq)2. Calculating the 
coefficients of A, (3.16), one finds A to be an orthogonal 
matrix. Thus,p2 + q2 = (ap + bq)2 + (cp + dq)2. Combin­
ing this with the foregoing equation means ° > - (cp + dq)2 = - Ed > 0, which is a contradiction. 
Similarly, assuming (p,q)EGEnGE _ Ed' I means ° = E - p2 - q2 = E - Ed - p2, and thus ° > - q2 = _ Ed > 0, which is also a contradiction. More­
over, one can define corresponding domains 

UE = {(p,q)I(p,q)EG,oqi + q2 <E + !IEd I j , 

UE_ Ed.B = {(P,q)I(p,q)EG,IE - Ed - (ap + bq)21 <!IEdll 

= {(p,k)l(p,k)IEG,IE - Ed - k 21 < !IEd I j , 

UE- E 1 = {(p,q)I(p,q)EG,IE-Ed _p21 <!IEdll (3.22) 
d' 

= {(p,k)l(p,k)EG, IE - Ed - k 2
1 <!IEd II , 

with 

GE CUE' GE_ E",B C UE_ Ed.B' GE_ Ed,1 C UE_ E".I 

and 

UEnUE_E",1 =0, 
(3.23) 

where the boundary of each U has a finite distance to the 
corresponding G. Defining 

UE- Ed = UE_E",BUUE_E",I , 

(3.24) 

One has a disjoint decomposition of G 

G= UEUUE_EyUR • (3.25) 

Now we are able to split a matrix element of the kernel 

K/3. /3,/3,/3./3. : 

= lim /3. (p' ,q' IH/3.(3,(3,(3. (E + iE)So(E + iE)S(3. (E + iE)S(3. (E + iE)I¢') (3, 
€--- +0 

= lim r dpdq/3. (p',q'IH(3.(3.(3,(3.(E+iE)lp,q)(3. 
E __ +0 JU

R 

( - IE I - p2 - q2)( - IE I - lEd I - p2)( - IE I - lEd I - (ap + bq)2) ( 1,1.) 
X 2 2 2 b )2) (34 p,q 'I' /3. (E-p -q )(E-Ed -p )(E-Ed -(ap+ q 

+ E~~O L, dp dq (3. (p',q'IH(3./3.(3.(3, (E + iE)lp,q) (3. 
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( - IE I - p2 - q2)( - IE I - lEd I - p2)( - IE I - lEd I - (ap + bq)2) 
X (E + iE _ p2 _ q2)(E _ Ed _ p2)(E _ Ed _ (ap + bq)Z) {3, (p,qlttr) {3, 

+ E~~oLI' Id dpdk{3, (p',q'IH{3,{3,.B,{3,(E+iE)lp,k){3.J3, 

( - IE I - ~(p2 + k 2 + p·k))( - IE I - lEd I - p2)( - IE I - lEd I - k 2) 
X (E _ ~(p2 + k 2 + p.k))(E + iE _ Ed _ p2)(E + iE _ Ed _ k 2) {3.J3, (p,klttr){3, . 

(3.26) 

In the domain UR, no pole contributes from So, S{3,' S{3,; in UE only the pole from So contributes, and in UE_ Ed only the poles 
from S{34,S{3, contribute; thus the iE can be omitted in the denominator terms which give no pole contribution. 

4. HILBERT SPACE 

In this section a scalar product space is introduced appropriate to handle the above discussed singularities, guided by the 
same idea as in the two-body case. It is shown that the space is complete; i.e., a Hilbert space. Let us start with some definitions. 
Let 

2' 2( G) = ! ttrl f dp dq I ttr(p,qWexists in the sense of Lebesgue J (4.1) 

and similarly 2' 2( U E)' 2' 2( U E _ Ed)' and 2' 2( U R)' Let 

cW'( U E) = {ttrl tf;E2' 2( U E ),¢ ~ (p,q) = (ttr(p,q) - ttr(p,q) I (p' + q' ~ E))(E - p2 - q2) - IE2' 2( U E) }, 

where ttr(p,q)[ (p' + q' ~ E) = ttr( [ (p2 + ;2)1E ]1/2 ' [(p2 + q~)lE )]1/2 ), 

cW'(UE_ E) = {ttrltPE2' 2(UE- E)'¢ L Ed,(p,k) = (ttr(p,k) - ttr(p,kll(p' ~ E- Ed))(E - Ed - p2)-lllE_ E)p)E2' 2(UE- E,,) , 

¢ ~_ E)p,k) = (ttr(p,k) - ttr(p,k)l(k' ~ E-Ed))(E - Ed - k 2)-lllE_dk )E2'2(UE_E), 

¢ L Ed.E - E)p,k) = (ttr(p,k) - ttr(p,k) I (p' ~ E - Ed) - ttr(p,k) Ilk I ~ E - Ed) + ttr(p,k) II p' ~ k I ~ E - Ed)) 

X [(E - Ed - p2)(E - Ed - k 2j]-WE_ E)P)llE_ E)k)E2'2(UE-EJ} , 

wherellE_E)x) = 1 if IE-Ed-x21<!IEdlandO 
elsewhere, 

cW'(UR) = 2'2(UR)' 

cW'( G) = cW'( U d + cW'( U E _ E) + cW'( U R) . 

From the ordinary scalar products in 2' 2' we construct 

new scalar products. We define 

(ttr,(}h(u
l
) = (ttr,(})/,(U,) + (¢ ~,¢ ~L,(u,) , 

(ttr'(})l1(U, /) 

= (ttr,(})/,(U1 I) + (¢LE",'¢~-Ed,)Y'(U" ,) 

+ (¢ ~ - E,/,¢ ~E - E" L,(u, ,) 

+ (¢ ~ _ E,/.E - Ed'¢ ~- E,/.E - Ed )/,(U, ,)' (4.2) 

(ttr,() h(u
H

) = (ttr,() )y,(U
H

) , 

(ttr,()h(G) = (ttr'()l1(U,) + (ttr,()h(u, ,) + (ttr'()"r(uH ) • 

Theorem 1: cW'( G) is a Hilbert space 
Proof From the properties of the scalar product (.,. )Y' , ' 

it is clear that (.,.h is a scalar product. It remains to estab­
lish the completeness. 

(i) Let us begin with cW'(UE ). Let/n be a Cauchy se-

quence in cW'(UE). From that it follows thatln and ¢1i are 
Cauchy sequences in 2' 2( U E)' As 2' 2( U E) is complete, 
limiting elementsJ,gE2' 2(UE ) exist, such that 

Inn ~J, ¢1i~g in the LZ(UE) norm. (4.3) 
n 
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One has to show that ¢~(p,q) = g(p,q) almost everywhere in 
UE • Now the following variable transformation will be 
useful. 

p = ppsins, q = qpcosS , (4.4) 

withp and q unit vectors ofp and q, respectively, which 
fulfills pZ + q2 = p2. It is claimed that In (p,q) I (p' + q' ~ E) is a 
Cauchy sequence in the space 2' 2( p,q,s) defined as 

2'z{p,q,s) = !ttrl f dpdq i1T/2 ds Ittr(p,q,SW 

exists in the sense of Lebesgue.} 

It can be seen this way: 

(f dpdq i1T12 ds I/n(p,q)I(P'+q'~E) 

- Im(p,q)l(p'+q' ~ E) 1
2)112 

= (f dpdq i1T12 ds I/n(p,q,p = VE,S) 

_ 1m (p,q,p = VE,sW) 112 

( 
('E f rT/2 

= 6E -3 Jo dp p5 dpdq Jo ds I In (p,q, p 

= VE,S) - 1m (p,q,p = VE,OIZ) 112 
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)
112 

- 1m (P,q)I(p' +q' =E) 12 . (4.6) 

Using/n(p,q)I(p'+q'=E) =In(P,q) 
_ <p~(p,q)(E - p2 - q2), an upper bound for the last ex-

pression is 

(6E-3 L,dP dq Ifn(p,q) - 1m (p,q) 12)112 + (6E-3 

x L, dpdql (<p~(p,q) - <P~"(p,q) )(E - pZ _ q2W)1I2 . 

In UE IE - p2 - q21 <E + !IEd I holds, such that we obtain 
the estimate 

(6IE 3 )1/2I1fn -1m I\Y'(UE) + (6IE 3 )(E + !IEd \) 

X I\<P~ - <p~IIY,tUE) , 

which is a Cauchy sequence. From the completeness of 
Y 2( p,lj,s) we conclude the existence of a limiting element 
h (p,lj,s), such that 

In (p,q) II p' + q' = E) _h (p,lj,s) in Y z( p,lj,s) . 
n 

As GE is a subset of measure 0 in UE , one is free to set 

I(p,q) I (p' + q' = E) = l(p,lj, p = ~ E ,s) = h (p,Ij,S) , (4.7) 

which does not modify lEY 2( U E)' Thus, one has 

f dp dlj 11712 ds I In (p,q)( p' + q' = E) - l(p,q)l( p' + q' = E) 12-;0 

(4.8) 

which implies 

L, dp dq I/" (p,q)J(p' +q' ~ EI - l(p,q)I(P' + q' =E) 12-;0. (4.9) 

Then one concludes 

I,dP dql/(p,q) - I(P,q)l(p'+q'=E) 

( _ g(p,q)(E _ pZ _ q2) 12) 1/2 

< (I, dp dq I I(p,q) - In (P,qw}12 

+ (I, dp dql/(p,q)I(P' + q' = EI - In (p,q)I(P' + q' = E) 12)112 

+ (I, dp dql (<p~(p,q) - g(p,q)(E - p2 - q2W}12-;o. 

(4.10) 

The first and the third term tend to zero because of(4.3) and 
the second because of (4.9). That means 

I(p,q) - f(p,q)l(p'+q'=E) =g(p,q)(E - pZ - q2)a.e. in UE . 

As gEY2(UE ) , 

<p~(p,q) = (f(p,q) - f(P,q)l(p'q' = E) )I(E - p2 _ q2) 

= g(p,q)a.e. in UE and <p~EY 2(UE) , 

which establishes the existence of a limit element/6:W'( U E), 
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which means completeness of ,r( U E)' 
(ii) Guided by the same idea (but technically a little dif­

ferent) goes the prooffor ,r(U E _ EJ Assumeln is a Cauchy 

sequence in,r( U E _ EJ Thus,fn' <p~ - Ed' ,<P:£ - Ed' and 
<p ~ _ Ed.E _ Ed are Cauchy sequences in Y 2( U E _ E)' having 
limit elements 

I, 1,.1.1.. .1.1.. h .I.!,' _i 
n--+ '''rE-E.i'~ g''f',E-Ed --+ ''f'E-Ed.E - E" 

n n n n 

in the Y z( U E - Ed) norm. (4.11) 

It is claimed thatln (p,k)J(p' = E _ Ed) is a Cauchy se­
quencein 

Y 2(p,k) = {"'I f dp f dk 1",(p,kW 

exists in the sense of Lebesgue I . (4.12) 

It turns out as follows: 

(f dp f dk [fn(p,k)l(p'=E-E
d

) -lm(p,k)l(p'=E-E
d

) 12)112 

X f dk Iln(p,k)l(p'=E-E
d

) -lm(p,k)l(p'=E-E
d

) 12)112 

= (N L'-Ed>1 dpdk I In (p,k) - 1m (p,k) 

- [<p~- E",(p,k) - <P~_E.,,(p,k)](E - Ed - p2W)I!2 , 

(4.13) 

where N, is the integral preceding constant 
(3/[ (E + ~IEd \)3 - (E + !IEd \)3] ). Making use of 
IE - Ed - p21 < !IEd I, one obtains an upper bound 

N 11211 In -In ILnu,_ ,.) + !IEd I VN 
X 11<p {"- Ed - <p~'- Edlly,(u, I)' 

which is a Cauchy sequence. From the completeness of 
Y 2( p,k), one infers the existence of a limit element s( p,k) 
such thatln(p,k))(p' =E-Ed)-S(p,k) in Y 2(p,k). As GE_ E I 

is a subset of U E _ Ed' I of menasure 0, one can put do 

l(p,k)l(p' = E _ Ed) = s(P,k). Without modification 
lEY 2( U E _ Ed< I ); that implies 

f dp f dk 1/"(p,k)l(p'=E-Ed) - f(p,k)l(p'-E-Ed) 1
2-0, 

n 

(4.14) 

and thus 

L dpdk Iln(p,k)ltP'=E-Edl -/(p,k))IP'=E_EdI 1
2-o. 

E- Ed' I n 

(4.15) 

Then the following estimate holds: 

(L,. 'd' dp dkl/(p,k) - f(P,k)(p' =E-Ed) 

- g(p,k)(E - Ed - p2W )
1/2 
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«Lf: f:d
l 

dPdkl/(P,k)-ln(P,k)1 2}/2 

+ (L,_ 'd.
1 

dpdkl/(p,k)l(p'=E_Ed) 

- In (p,k)l(p' = E- Ed) 12 )
112 

+ (L
E

_ Ed. I dp d kl(<p~ - E •• (p,k) 

(4.16) 

The first term and the third one tend to zero because of 
(4.11), the second term because of (4.15). This means 

I(p,k) - 1(P,k)l(p' = E - Ed) = g(p,k)(E - Ed - p2)a.e. (4.17) 

in U E _ E",I ,as gE:t' 2 U E _ Ed' I ), this reads 

<p ~ - Ed> (p,k) 
= [(f(p,k) - l(p,k)1( P' = E _ E.) )I(E - Ed - p2)] II E _ E.(P) 

=g(p,k)a.e. in UE- Ed.1 . (4.18) 

From this it easily follows that 

<p~ - E,,,(p,k) = g(p,k)a.e. in UE - Ed . (4.19) 

Analogously, one shows 

<P-:E _ E.<p,k) = h (p,k)a.e. in UE - Ed (4.20) 

and 

<P {. _ E",E _ Ed (P,k) = i(p,k)a.e. in U E _ Ed . (4.21) 

Equations (4.19), 4.20), and (4.21) together mean complete­
ness of cW'(U E - EJ 

(iii) Obviously cW'( UR) = :t' 2( UR) is complete. Thus (i), 
(ii), and (iii) imply completeness of cW'(G). 

5. COMPACT KERNEL 

Let us define 

:t' 2(UE X UE ) = {tPl LEX U
E 

dp' dq' dp dq ItP(p',q',p,q)1 2 

exists in the sense of Lebesgue} . (5.1 ) 

:t' 2(Uj X ~),Uj>~EUE,UE_Ed,UR are analogously de­
fined. In the following, one needs not only functions in 
:t' 2( Uj X ~) but also all possible combinations of its sub­
tractions, which is a generalization of the definition of sub­
tractions given in (4.1) in :t' 2( Uj). Let us give some notation. 
<P '" means subtractions of f/!. A semiconlon separates sub­
straction on Uj from that on ~. A colon separates between 
the subtractions corresponding to the p and k variable in the 
case of U E _ Ed . Note that in the case of substractions on 
U E _ Ed the II E _ Ed function is included. Here are some sam­
ple cases: 

f/iE:t' 2(UE X UE): 

<p~(p',q',p,q) = (f/!(p',q',p,q) - tP(p',q',p,q)lp'H'=E)) 
I(E _ p2 _ q2) , 

where 

190 J. Math. Phys. Vol. 22, No.1, January 1981 

f/!(p',q',P,q)IIP'+q'=E) = f/!(p',q', P 
[(p2 + q2)IE] 1/2 ' 

[(p2 + q~)lE] 1(2 )' 

<P ~;E(P',q',p,q) = I f/!(p',q',p,q) - tP(p',q',p,q)IIP" + q" = E) 

- f/!(p',q',P,q)IIP'+q'=EI 

+ f/!(p',q',p,q) I;' + q" = p' + q' = E) I 
X (E _ p'2 _ q'2) - I(E _ p2 _ q2) - I; 

t/JE.:t' 2(UE- Ed X UE - EJ 

<P ~,E _ Ed (p' ,k' ,p,k) 

= [(f/!(p',k',p,k) - f/!(p',k',p,k)l(k'=E-EdJ)I 

(E - Ed - k 2)]llE_ E.(k) , 

<P ~ - Ed.;,E - Ed (p' ,k' ,p,k) = I f/!(p' ,k' ,p,k) 

- tP(p',k',p,k)IIP' '=E-Edl - f/!(p',k',p,k)llk'=E_Edl 

+ tP(p',k',p,k)l(p" = k' = E- Ed) I(E - Ed - p'2)-1 

X(E - Ed - k2)-lllE_e)p')llE_E.lk). 

Assumption (5.2): Every space :t' 2( U, X ~) is assumed 
to contain the functions listed in Table 1. 

Definition (5.3): Let the condition (5.2) be fulfilled for k. 
Then one defines mappings K (Uj , ~) on cW'( ~), where 
Uj1~ run over UE,UE_Ed,UR, via: for each f/!EcW'(UE), 
(S',t')EUj 

(K (Uj1UE)tP)(s',t') 

- l' i d d k(s',t',p,q) ./,( ) - 1m p q . 2 2 'I' p,q . 
E~ + 0 uE E + IE - P - q 

Analogously, for each 
f/!EcW'(UE _ E.),(S',t')EUj ;(K (Uj,UE _ E.)f/!)(S',t') 

= E~~ 0 L, Ed dp dk k (s',t',p,k)f/!(p,k) 

X(E+iE-Ed -p2)-I(E+iE-Ed _k2)-I, 

and for each f/!EcW'(UR), (S',t')EU;. 

(K (Uj1UR tP)(s',t') = ( dpdqk(s',t',p,q)f/!(p,q). 
JUR 

Theorem 2: The mapping K (Uj, ~) is a linear compact 
mapping from cW'(Uj ) intocW'(Uj). ThusK = ~jJK(Uj,Uj)is 
a linear compact mapping from cW'(G) into cW'(G). 

Proof Clearly K (Uj, ~) and thus K is linear. The proof 
of compactness is given in several steps: 

(i) Firstly, we want to show that K (UoE E) maps a 
bounded cW'( U E) sequence to a :t' 2( Uj ) sequence, containing 
a convergent subsequence in :t' 2( Uj ). Let tPn be bound in 

cW'(UE)' 
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TABLE I. List of functions. 

.5t' 2(UE X UE) .5t' 2(UE X UE_ E) .5t'2(UE XUR) 

k k k 

4>tE 4>~-Ed 4> ~; 
4> ~; 4> ~-E", 
4> ~;E 4> ~;, 

tfJ ~-EdfE- Ed 

4> ~;,E- Ed 
4> ~;E-Ed' 
4> ~;E - Ed,E - Ed 

.5t' 2(UE- Ed X UE) .5t'2(UE_ Ed X UE_ E) .5t'z(UE_ Ed X UR) 

k k k 
4> ~E tP ~,E-Ed 4> ~-E"; 
4> ~-E.,; 4> ~E-E", 4> ~- E",; 
4> ~- E",; 4> ~E- E.,;, rp ~- E",E- E.,; 
4> ~-E";E 4> ~-E .. ;, 
4>LE",;E 4> ~E - E",E - Ed 
4> ~ - E",E - Ed; 4>k . 

,E - E~,E - Ed' 

rp ~ - E",E - E.,;E rp ~ - E",;,E - Ed 
rp ~E - E,,;E - E", 

4> ~ - E .. ;E - E", 
rp ~ - E",E - E",', 
rp ~E- E",;E- E",E- Ed 
4> ~ - E.,;E - E",E - Ed 
4> ~ - E",E - Ed;,E - Ed 

4> ~ - E .. E - E.,;E - E .. 
rp ~- E .. E- E-tE- E .. E:- Ed 

.5t' 2(UR X UE) .5t'2(UR X UE-EJ .5t'z(UR X UR) 

k k k 
rp ~E 4> ~E- Ed 

rp~-Ed' 
rp ~ - Ed,E - Ed 

lim { dp dq [k (S',t',p,q)/(E + iE _ p2 - q2)]~n(p,q) 
E-+O)UE 

= lim { ( dpdq [(k(s',t',p,q)-k(s',t',P,q)IIP'+q'=E))I(E- p2_ q2)Nn(p,Q) 
E_+O JUE . 

i d d k(s',t',p,q) - k(S',t',p,q)i(P'+q'=E) iE ./, ( ) 
+ p q E 2 2 (. 2 2 V'n p,q 

U" ( -p -q) E+IE-P -q) 

+ ( dp dq k(S',t',p,q)i(P'+q'=E)(rPn(p,q) - rPn(p,q)IIP'+q'_E))/(E _ p2 _ q2) 
Ju" 

+ ( dp dq k (s',t',p,q)i(P'+q' = E) [iE/(E + iE - p2 - q2)J(rPn(p,q) - rPn(p,q)IIP'q' =E)) I(E _ p2 _ q2) 
Ju" 

+ LE dpdq k(S',t',P,q)I(p'+q'=E)rPn(p,q)'(p'+q'=E) [lICE + iE _p2 _ q2)]} 

= ( dp dq rp ;E(S',t',p,q)~n(P,q) + lim ( dp dq rp tE(S',t',p,q) [iEI(E + iE _ p2 - q2)] rPn (p,q) JUE E_ +0 JU
E 
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+ L E dp dq (k (s', t' ,p,q) - ¢ ~E (S' ,t' ,p,q)(E - p2 _ q2) )¢ ~(p,q) 

+ E~~O L .. dp dq (k (s',t',p,q) - ¢ ~E(S',t',p,q)(E - p2 - q2»[id(E + if" - p2 - q2)]¢ ~"(p,q) 

(5.4) 

From,pn being bounded inK(UE) follows,pn and¢ ~n are bounded sequences in.!f 2(UE)' Assumption (5.2) assuresk and¢ ~E 
to be elements of .!f2(Uj X UE) asE - p2 - q2 is bounded on UE also¢ ~(s',t',p,q)(E - p2 - q2) is an element of .!f 2(Uj X U~). 
Thus, from a standard theorem it follows that the first and the third terms contain convergent subsequences in .!f 2( U;). The 
second and the fourth terms tend to 0 with f"_ + 0 uniformly in n as k (s',t',p,q) X [if"/(E + if" - p2 - q2)], ¢ ~E(S',t',p,q) 
X [idlE + if" - p2 - q2)] and ¢ ~E (s' ,t' ,p,q)(E - p2 - q2) [i£l(E + if" - p2 - q2)] tend to 0 with E-o in .!f 2( Uj X U E) by an 
argument given explicitly in Ref. 15. In the fifth term the p integration and later E-limitation can be performed explicitly, 
giving a complex number co. Thus, the fifth term reads 

6 i E + IIEdl iTrl2 --
Co I 6 dpp5dpdq ds sin2 s COS2s k(s',t',p,q,p=~E 'S),pn(p,q,p=~E ,s) 

(E + (l/2) Edl) 0 0 

= Co 
6 

f d d (k (s' t' ) _ A. k (s' t' )(E _ 2 _ 2)) 
(E + (l/2)I Ed 1)6 )u,. p q "p,q 'I';E' ,p,q P q 

X (,pn (p,q) - ¢ ~'(p,q)(E - p2 - q2)) (5.5) 

which also contains a convergent subsequence in .!f 2( U;). 
(ii) Next we want to show that k (Uj>UE_ E.l maps a bounded sequence,pn from K(UE_E.l into a sequence in.!f 2(Ut!, 

which contains a convergent subsequence. Splitting into disjoint components 

UE_ Ed = (UE_ E",I \UE-Ed,B)U(UE-Ed, B \UE- Ed.1 )U(UE_Ed,lnUE_ Ed' B) 

(see Fig. 1) and also decomposing the 1 function on U E - Ed 

llu,. Ed = llE_E)p)(1 -llE_E)k)) + llE_E)k)(1 -llE-E.!P)) + llE-Ed(P)llE-dk ) , 

one arrives at 

€~~ofu, Ed dp dk k (s',t',p,k),pn(p,kj(E + iE - Ed - p2)-I(E + iE - Ed - k2)-1 

= E~~ 0 {L.. Ed dp d k II E - E)P)( 1 -ll E _ E)k))k (s' ,t',p,k),pn (p,k)(E + iE - Ed - p2) -lIE + iE - Ed - k 2)-1 

+ L, £d dp dk llE_ E)k)(l -llE_E)P))k (s',t',p,k),pn(p,k)(E + if" - Ed - p2)-I(E + if" - Ed - k 2)-1 

+ fu
E

. Ed dp dk llE_E)P)llE_Ed(k)k (s',t',p,k),pn(p,k)(E + iE - Ed - p2)-I(E + iE - Ed - k 2)-1} . 

(5.6) 

(5.7) 

(5.8) 

Note that in the first term the "dangerous points" at E - Ed = k 2 are excluded, while in the second term those points at 
E - Ed = p2 are excluded. Now let us look upon the firstterm and proceed as in (1). Using the abbreviations II (x) = II E - E)X) 

and D (X,E) = l/(E + iE - Ed - x 2
), one obtains 

E~~O LE '.d dp dk ll(p)(1 -ll(k))D (k,f")[k(s',t',p,k)/(E + if" - Ed - p2jJ,pn(p,k) 

192 

= E~~O fuE. £d dp dk ll(p)(l -ll(k))D(k,E){[(k (s',t',p,k) - k (s',t',p,k)lIp'=E_Ed»)/(E - Ed - p2)],pn(p,k) 

+ [(k (s',t',p,kj - k (s',t',p,kjIlP' =E=Ed»)/(E - Ed - p2j][id(E + if" - Ed - p2j],pn(p,k) 

+ k (s',t',P,kjIIP'=E_ Ed) [t,pn(p,kj - ,pn(p,kj liP' = E- Edy(E - Ed - p2l] 

+ k (S',t',p,k) liP' = E- Ed) [iE/(E + iE - Ed - p2)] [(,pn (p,k) - ,pn (p,k) liP' = E _ Ed) )/(E - Ed - p2)) 

+ k(s',t',p,k) Ilpl = E-Ed),pn(p,k)I (p' =E- Ed) [l/(E + if" - Ed - p2)n 
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dp dk ll(p)(1 - ll(k))D (k,€){~ ~E_E.,,(S',t',p,k)tPn(p,k) 
lid 

+ ~ ~_E.,,(S',t',p,k)[id(E + i€ - Ed - p2)]!fn(p,k) 

+ (k (S',t',p,k) - ~ ~E- E",(S',t',p,k)(E - Ed - p2)}t/J ~·_E",(p,k) 

+ (k(s',t',p,k) - ~ ~E_E",(S',t',p,k)(E - Ed - p2)[id(E + i€ - Ed - p2)]~ ~·_E.,,(P,k)} 

+ lim f dft dk (1 - ll(k)D (k,€)k (s',t',p,k)l(p'~E_Ed)tPn(p,k)l(p'~ E-Ed) 
£_+0 

III (p)( 1 - II (k))D (k,€) I is bounded in U E' Arguing as in (i), 
one gets the first and third term in the curly bracket contrib­
ute to a sequence with a convergent subsequence in 5e 2( Uj ), 

while the second and fourth term contributions tend to 0 in 
5e 2( U j ). In the last term the S dp integration gives a complex 
number Co(€) and the limH + 0 Co(€) exists. Thus the last 
term can be written 

1
· 3Co(€) 
1m 

H + 0 (E + (3/2) lEd 1)3 - (E + (l/2) lEd 1)3 

X IE dp d k II (p)( 1 - II (k))D (k,€) 

X(k (s',t',p,k) - ~ ~E_E",(s',t',p,k)(E - Ed _ p2)) 

X (tPn (p,k) - ~ ~._ E", (p,k)(E - Ed _ p2)) , 

which also gives a convergent subsequence in 5e 2( Uj ). Com­
pletely analogously 

<!~~o I,. 'd dpdkll(k)(1-ll(p» 

k (s' ,t' ,p,k)tPn (P,k) 
x------------~------------

(E + i€ - Ed - p2)(E + i€ - Ed - k 2) 

and 

<~~o I, 'd dpdkll(p)ll(k) 

k (s',t',p,k)!fn (p,k) 
x----------~~----------~ 

(E + i€ - Ed - p2)(E + i€ - Ed - k 2) 

contain convergent subsequences in 5e 2( Uj ). 

(3) Finally, consider K(Uj,UR ). From J¥'(UR ) 

= 5e 2( UR ) and the property 5.2 of the kernels it follows that 
a bounded sequence is mapped on a sequence with a conver­
gent subsequence. 

Up to now it has been shown that K (Uj> ~) is a linear 
compact mapping form J¥'( Uj ) on 5e 2( Uj ). In order to show 
that it is a compact mapping from J¥'(~) on J¥'(UJ, it is 
necessary that all the subtractions on 5e 2( Uj ) defined in 4.1 
also have convergent subsequences. But that is fulfilled as all 
occurring subtractions of the kernel corresponding to the 
variables of Uj have by definition 5.3 and Assumption 5.2 all 
the properties of being square integrable; the proof runs the 
same as in (i), (ii), and (iii), but instead of using the kernel k, 
now using the kernel k subtracted corresponding to the var­
iables of Uj • That completes the proof that a bounded se-
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(5.9) 

I 
quence on J¥'(~) is mapped by K (Uj'~) on J¥'(UJ con­
taining a convergent subsequence which means 
compactness. 

6. APPLICATION ON TWO-BODY POTENTIALS 

As we want to make use of Faddeev's famous work in 
Banach space, I we use the class of potentials introduced 
therein. 

The two-body potential (3.1) has the properties 

(q'lVlq) = v(q' - q). (6.1) 

On the function v several conditions are imposed which are 
assumed to hold throughout this section: 

(1) Boundedness and sufficiently fast falling off: 

Iv(q)I<C(1 + Iql)-I-O_; 

(2) Smoothness: 

Iv(q) - v(q + h)1 <C(1 + Iql) -I - o-Ihl Po; 

Ihl<l, f.Lo>O; 

(3) Real valuedness: 

v( - q) = v(q) . 

(6.2) 

(6.3) 

(6.4) 

As we need square integrability, we impose the constraint 
00 ,> 1. We need some further definitions: 

where a, p run over all channels, and Pa' Pp are expressed by 
p,q via the transformation (3.18). 

XEd(q) is defined as a solution of 

VGO(Ed)XEd = XEd' 

Faddeev l shows that Xdq) has the properties 

IXE.!q) I <C(1 + Iql)-I-O_, 

(6.6) 

(6.7) 
IXdq + h) - XE.!q) I <C(1 + Iql) - 1- oolhl Po; Ihl< 1. 

An integral kernel Q (p' ,q' ,p,q,z) is said to be of the type fJ if 
it may be expressed in the form 

Q (p',q',p,q,z) = F(pL,q',p,q,z) + G (p',q',p,z) 

X [ X dq) I(z - p2 - E ~)] 
+ [x dq')l(z - p2 - E ~) ]G (p' ,p ,q,z) 

(6.8) 
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+ [rE.(q')/(z - p2 - E~)] -

XH(p',p,z)[ XE.(q)/(z-p2-E~)]. 

An integral kernel Q (p' ,q' ,p,q,z) of type (j is said to belong to 
the class (j (e, f.l) if F (p' ,q' ,p,q,z) satisfies the following 
estimates: 

IF(p',q',p,q,z)I <CN(p',q',e)(l + p2) - I, 

IF(p' + h',q' + l',p + h,q + l,z + ...::1z) - F(p',q',p,q,z)I (6.9) 

<CN(p',q',e)(l + p2) - 1 

X(lh'll"+ II'II"+ Ihll"+ 1111"+ l...::1zll"), 

and if the kernels G (p' ,q' ,p,z), G (p' ,p,q,z) and H (p' ,p,z) satisfy 
the estimates from (6.8) and (6.9) on setting, respectively, 
q' = 0, q = 0, and set simultaneously q' = 0 and q = 0, while 
N is given by (6.5). Then Faddeev proves the following result: 

Faddeev's theorem. The integral kernels 

p, (p',q'l Tp, (Z )Go(Z )Tp, (Z )Go(Z )Tp, (Z )Go(Z ) TpJZ ) Ip,q) P. ' 

belong for Pi =l=Pi + 1 to the class (j (0', fi) with certain indices 
e,fi, 0' >!, uniformly over any finite region of the complex Z­
plane, denoted by 11" Ed to indicate that it is slit along the real 
axis from the point Ed to + 00. Let us investigate the matrix 
element of H p,p,fJ,/3. (3.13), 

p,(p' ,q'l H p,p,fJ,/3. (Z) Ip,q) P. 

= p, (p',q'IBp, (Z)Go(Z)Tp,(Z)Go(Z)Tp,(Z)Go(Z) 

XBp. (Z )Bo(Z )Ip,q) P. 

Z _p,2 -Ed 

-IZ l-p,2 -IEdl 

X p, (p' ,q' I Tp, (Z )Go(Z )Tp, (Z )Go(Z )Tp, (Z) 

X Go(Z ) Tp.(Z )Ip,q)p. 

(Z -P2-Ed) 
X (6.10) 

( _ IZ I - p2 - lEd 1)( - IZ I - p2 _ q2) . 

Using Faddeev's theorem, this reads 

p, (p' ,q'IHp,p,fJ,/3.!Z) Ip,q) P4 

(Z-p'2-E) 
_~-=----::----=..:d _ Q (" Z ) 
(-IZ 1-p,2 -IEdll p,q ,p,q, 

(Z _p2 -Ed) 
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X XEd(q) 
( _ IZ I - p2 - lEd 1)( - IZ I - p2 _ q2) . 

(6.11) 

Our aim is k (s',t',p,q) = limH+o (s',t'!Hp,p,fJ,/3.!E + i€) 
Ip,q)p., respectively, k (s',t',p,k) 
= limH +0 (s',t'IHp,p,fJ,/3, (E + i€)lp,k) P.P. defined by (5.3) 

and (3.26) to fulfill condition (5.2) which would yield, with 
the help of Theorem 2, the desired result. Let us switch for 
the moment from the class of local two-body potentials de­
fined by (6.1 )-(6.4) to the wide class of separable two-body 
potentials. It was shown by Kroger and Fenske15 that below 
the three-body breakup threshold even the noniterated ker­
nel of the scattering equations is compact. It is shown in the 
Appendix that for a separable potential 
limH + 0 (s' ,t'IHp,p,fJ,/3.!E + i€) Ip,q) P.' respectively, 
limH + 0 (s' ,t'IHp,p,fJ,/3.!E + i€) Ip,k) P.P. fulfills the condi­
tions (5.2) and yields the desired result. Returning now to the 
local potential given by (6.1 )-(6.4), one reads from (6.11), 
(6.9), (6.5), and (6.7) that 
limE~ + 0 (p',q'IHp,p,fJ,/3. (E + i€)lp,q) P. is bounded, continu­
ous and square integrable in p' ,q' ,p,qEG X G. That is close to, 
but not quite, sufficient to guarantee the requirements (5.2) 
because the index fi < 1. Thus, we make an approximation, 

E~rr; oHp,p,fJ,/3. (E + i€)--+Hp,p,fJ,/3. in L 2(G X G) (6.12) 

and require also that p, (p',q'IHp,p,fJ,/3.lp,q) P. be once con­
tinuously differentiable with respect to p',q',p,qEG X G. 
Then Hp,p,fJ,/3. fulfills the condition (5.2). We remark that 
this approximation is not continuous going over to dY'(G). 
But it definitely makes sense, as it is closely related to the 
separable approximation of the two-body potential, which 
gives the desired result as mentioned above and turned out to 
be quite successful in many practical calculations. Thus 
Theorem 2 can be applied and yields: 

Theorem 3: For the class of separable two-body poten­
tials defined in the Appendix, the kernel Kp,p,fJ,/3.p. 
= Hp,p,fJ,/3.S~P.Sp. given by (3.13), (3.15), and (3.16) and for 
the class of Holder-type two-body potentials given by (6.1)­
(6.4), the kernel Kp,p,fJ,/3.p. = Hp,P,fJ,/3.S~P4Sp. given by 
(3.13), (3.15), (3.16), and (6.12) is a compact kernel for the 
scattering equations (3.12) in the physical limit Z = E + i€, 
€--+ + 0 in the Hilbert space dY'(G) given by (4.1) and (4.2). 

7. FOUR-NUCLEON CASE 

In this section the treatment for the three-nucleon case 
is extended to four bodies. Let us recall two important fea­
tures concerning the structure of the three-body operator 
equation and the sphere of singular points. The splitting of 
Ta , Go into a "harmless" and a "singular" part allows an 
operator equation with a kernel of the structure "harmless" 
operator times a "singular" operator and the solution being a 
"harmless" operator. The other property is that the sphere 
of singular points given by (3.20) due to the free propagator 
and that ofthe deuteron propagator do not intersect. In the 
following, we want to show that analogues of these proper­
ties also hold in the four-nucleon case. To derive operator 
equations, we start from the four-body Alt-Grassberger­
Sandhas equations. 16 They read 
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(7.1) 

U pa =~PaGo-l + L~prTrGoU;a . 
r 

We define 

U pa = TpGoUPa ' 

(7.2) 

U{fa = TpGo L UppGoTpGoU'(!'a 
p 

which fulfills 

UPa = ~pa Tp + L TpG~pr U;a , 
r 

(7.3) 

The operator U'Pa contains the deuteron pole, the triton pole 
in the u. = (i,kjl) channels, and the double deuteron pole in 
the u = (ij,kl) channels. For explicit details on the structure 
of equations we refer to Ref. 17. 

In order to split the kernel into "harmless" and "singu­
lar" parts, we introduce SP' containing the deuteron pole in 
those channels u where the two-body subsystem is con­
tained, via 

a (k',p',q'ISp(Z)lk,p,q) a 

= otuk - k)o(p' - p)o(q' - q) 

_ IZ I - (2/3)k 2 - (3/4)P2 - lEd I 

X Z _ (2/3)k 2 _ (3/4)P2 - Ed ' 
(7.4) 

S a, containing the triton pole in the u = (iJkl) channel via 

,,(k',p',q'IS"(Z )Ik,p,q)" 

- IZ I - (2/3)k 2 - IE I = o(k' - k)o( '- )o( ,_ ) d 
P P q q Z-(2/3)k2_ Ed ' 

(7.5) 
andS a, containing the double deuteron pole in the u = (ij,kl) 
channel via 

" (k' ,q' ,q' IS "(Z )!k,cj,q) a 

- IZ I - lk 2 - lEd I = o(k' - k)o(q' - q)O(q' - q) 22 d • (7.6) 
Z -!k -Edd 

We assume for technical simplicity that the four-body sys­
tem has only the triton and deuteron as subsystem bound 
states. 

Now we define 

Tp = s/ip , 

U pa = spsTfjpa , (7.7) 

U"P =S S"fjap pa {3 f3a • 

From (7.3) we imply 

tJ:t = fja ~"P + ~ ~aTfja G. to STfjTP f3a pa ~ pp (1J p pa . (7.8) 
T.p 
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The operator U'Pa does not contain either the deuteron pole 
or the triton pole or the double deuteron pole. The poles are 
contained in Go, Sp and ST. Equation (7.8) is the four-body 
analogue to Eq. (3.9). It has a kernel of the desired structure 
"harmless" times "singular" operator. But the kernel 
U pp G oS pST is not compact. That requires further iterations. 

Let us finally demonstrate the four-body analogue 
property of nonintersection of spheres of singular points. In 
the channels of the type (iJkl) one has the following singular 
points: 

(i) E - ~k 2 - ~2 - q2 = 0 due to the free pole in Go, 
(ii) E - ~k 2 - ~2 - Ed = 0 due to the deuteron pole in 

(iii) E - ~k 2 - E, = 0 due to the triton pole in ST. 

It is valid E, < Ed < O. If one assumes on the contrary that (i) 
intersects (ii), then 

E - ~k 2 _ ~2 _ q2 = E _ ~k 2 _ ~2 - Ed , 

thus 0 > - q2 = - Ed > 0 gives a contradiction. If (ii) were 
to intersect (iii), then 

E _~k2 _~2 - Ed =E - ~k2 -E" 

andO< (3/4)P2 = E, - Ed < o would give a contradiction. If 
(iii) were to intersect (i), then 

E - ik 2 - E, = E _ ~k 2 _ ~2 _ q2 , 

and 0 < - E, = - ~2 - q2 < 0 would be a contradiction. In 
the channels of the type (ij,kl) one has the singular points: 

(i) E - !k 2 - i/- q2 = 0 due to the free pole in Go, 
(ii) E - !k 2 - if - Ed = 0 due to the deuteron pole in 

(iii)E - ~k2 - Edd = Odue to the double deuteron pole 
inST. 

The energies are Edd < Ed < O. The spheres (i, ii, iii) do not 
intersect each other, as one verifies similarly. Thus, in the 
four-nucleon system two important features ofthe three­
body case also hold: the "harmless" times "singular" struc­
ture of the kernel of equations and the separation property of 
the singular spheres. The four-nucleon case is open to pro­
ceeding in detail with the same technique applied as in the 
three-body case. 

ACKNOWLEDGMENT 

It is a pleasure to acknowledge fruitful discussions with 
C. Fenske of Giessen and F. Constantinescu of Frankfurt. 

APPENDIX 

In this section we want to show that for the widely used 
class of separable two-body potentials 
limE~ +0 H p•p,f3,f3. (E + iE) fulfills condition (5.2), such that 
Theorem 3 holds without approximation (6.12). A separable 
two-body interaction is defined as 

V=A Ix) (xl ' (AI) 

where we restrict ourselves for simplicity to the rank-one 
case. Additionally, a fall-off condition and a smoothness 
condition is required, 

(A2) 
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The two-body transition operator Treads 

T(Z) = t(Z)lx)(xl, t(Z) = A ,(A3) 
A - (xIGo(Z)lx) 

which leads to 

Ta(Z) = J dp IP,X)at(Z - p2)a (p,xl , 

Ba(Z) = J dp IP,X)ab(Z -p2)a (p,xl, 

(A4) 

b (Z _ 2) _ Z - p2 - Edt (Z _ 2) (AS) 
P - -IZI-p2_IEdl p 

Hp,p,J3,J3.(Z) = J dp dp'dp" dp'"lp,x) p, b (Z - p2) 

Xp, (p,X IGo(Z)lp',x)p,t(Z _ p'2) 

Xp, (p',X IGo(Z)lp",x)pJ(Z - p,,2) 

X p, (p",X IGo(Z)lp"',x)p.b(Z _p",2)p. (p"',xIBo(Z). 
(A6) 

With the following definition for I 

I (p',p,z) = J dp"dp'" p, (p',X IGo(Z)lp",x)pJ(Z _p,,2) 

X p, (p",X IGo(Z)lp"',x)pJ(Z _p",2) 

(A7) 

one has 

p, (p',q' IHp,p,p,p.(Z) Ip,q) {3. 

= b (Z - p,2) X(q') I (p',p,z) b (Z - p2)~(q) 2' (A8) 
-IZI-p -q 

The function limE _ +0 t (E + iE - p2) has the properties: 
(i) It tends asymptotically to a constant as p tends to 

infinity; 
(ii) It is analytical in p except at E - p2 - Ed = 0, the 

deuteron pole, and at E - p2 = 0, where it behaves like 
b

l 
+ bz(Z _ p2)112. 

The same hoids for limE _ + 0 b (E + iE - p2), except having 
the deuteron pole. It remains to investigate 
limE- + 01 (p' ,p,E + iE). Defining the function S (p' ,pI via 

f.j(P:"X IGo(Z)lP,X)a 

X (ap' + bpI X(cp' + dp) s (p' ,pI 
= Z - ~(p'2 + p2 + p'.p) = Z _1(p,2 + p2 + p'.p) , 

(A9) 

where the constants a, b, c, d result from channel recoupling. 
I reads 

, _ Jd "d '" s(p',p")t(Z _p"2)S(p",p"')t(Z _p",2)S(p"',p) . 
I (p ,p,Z) - p p (Z _ ~(p'2 + p,,2 + P"p"))(Z _ ~(p"2 + p",2 + p" 'p"')HZ _ ~(p",2 + p2 + p"'.p)) 

(AlO) 

Because of XE2' z(R3), one has sE2' 2(R3 X R3) and thus for 
Im(Z)=j.O IE2' 2(R3XR3). This would hold also in the limit 
Z = E + iE, E __ + 0, if there were no singularities. First of 
all, one notes that the deuteron pole of t (Z - p2) cannot coin­
cide with any singularities arising from the denominator, 
similar to property (3.21). Performing the integration in the 
neighborhood of the deuteron pole gives a contribution, 
which is square integrable and analytic in p',P also in the 
limit E __ +0. In order to investigate the analytic structure 
of the remaining part, one can also look at 

10(p',p,Z) = Iv dp" dp'" (N(p',p",Z)N(p",p"',Z) 

XN(p"',p,Z» ~ I, (All) 
N (p',p,Z) = Z _ ~(p'2 + p2 + p'.p) . 

The integration domain D can be chosen large enough to 
include the singularities of the integrand, but must be small­
er than R3x R3, in order that 10 exist. The integration ofp" 
can be performed following Lewis, 18 which yields 

Jo(p',p,Z) = f dp" (N(p',p",Z)N(p",p,Z»~1 

811"i In f.l' + f.l - ~Ip' - pi , 
91p' - pi f.l' + f.l + lip' - pi 

(A12) 
f.l' = [3(p,2 - Z)] 1/2, f.l = [3(p2 - Z)] 112. 

The result is that limE_ +0 lo(p' ,p,E + iE) exists for all 
p',pER3 X R3 and is a continuous and square integrable func­
tion. Excluding once the behavior in the neighborhood of the 
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I 
critical points p,2 - E = ° and p2 - E = 0, 
limH +0 10(p',p,E + IE) is even a smooth function in the 
sense of being locally subtractable and square integrable. 
Thesameholdsforlim<-+o I (p',p,E + iE)becauses(p',p)is 
an analytic function. limH +0 10(p',p,E + iE) and thus 
limE_ +0 I (p',p,E + IE) behave in the neighborhood of 
p'2 _ E = ° and p2 - E = ° like 

lim I (p',p,E + iE)l p""",p2"",E 
€_+o 

= C I + lim [Cz(E + iE - p,2) 112 + C3(E + iE _ p2)112 
E-+O 

+C4«E+iE-p'2)(E+iE- pZ»IIZ]. (AI3) 

That can be seen from (A 12). Integrating the term 
1/ N (p" ,p,Z) in the neighborhood ofp" = - !p, where it be­
comes singular, yields 

( d " 1 
JU(P" ~ \p) P Z _ ~(p"2 + p2 + p" .p) 

= ( dq ! 2 = CI + CZ<Z _pZ)1I2 
JU(q~O) Z -p --W 

(AI4) 

If U is a ball. Because of the symmetry of I under p',P ex­
change (AI3) is evident. From the properties of b (Z _ pZ) 
and I (p',p,Z) found so far one can conclude 

k (p',q',p,q) = lim p, (p',q'IH/3,p,J3,{3. (E + iE)lp,q) /3. 
E_+O 

lim (b (E + iE - p,3) X(q') I (p' ,p,E + iE) 
(;-++0 
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Xb(E+i€-()X(~) )E.2"2(GXG), (A15) 
-IEI-p -q 

which means that k is contained in the table (5.2). Next, we 
want to show that for such a k also c/J ~;E is contained in table 
(5.2) 

f dp'dq'dpdqlc/J ~;E(p',q',p,q)12 
JU2 XU2 

= f dp'dq'dpdql lim (13, (p',q'IHp,p,p,p.!E + i€lIp,q)P. 
E_+O 

- 13, (p',q'IHp,p,p,p.(E + i€)lp,q)p.1 p"+ q"= E 

- p, (p',q'IHp,p,p,p,(E + i€)lp,q)p,1 p'+q'= E 

+ p, (p',q'IHp,p,p,p, (E + i€)lp,q)p,lp" + q"= E) 12 
,,1+Q2=E 

I((E _ p'2 _ q'2)(E _ p2 _ q2))f. (A16) 

Because limH +0 b (E + i€ - p2) and 
lim.~ +0 I (P' ,p,E + i€) are smooth functions except at the 
points E - p'z = 0 and E - p2 = 0, we insert for 
lim.~ +0 p, (p',q'IHp,p,p,P. (E + i€)lp,q)p. the asymptotic ex­
pression for b and I (A 13) in the neighborhood of 
E - p'z = 0 and E - pZ = 0 

= lim (b l + b2(E + i€ - p'2)112) X (q') 
.~+o 

X [CI + C2(E + i€ - p'2)112 + C3(E + i€ _ p2)112 

+ C4((E + i€ - p'Z)(E + i€ - p2W12] 
((b l + b2(E + i€ - pZ)I12)X(q) 

X _ IE I _ p2 _ q2 (A17) 

lim X (q') [d l + dz(E + i€ _ p'Z)1/2 
E __ +0 

+ d3(E + i€ _ p2)1/2 

+ d4«E + i€ - p'Z)(E + i€ _ p2»1/2] 

X X(q) 
-IEI-pz _q2 

Because X (q')X (q)/( - IE 1 - p2 - qZ) is an analytic func­
tion in the integration domain, it is sufficient to substitute in 
Eq. (AI7) 

--+ lim [dl + dz(E + i€ - p'Z)I12 + d3(E + i€ _ pZ)1I2 
£--_+0 

+ d4«E + i€ - p'Z)(E + i€ - p2»I12] . (A18) 

Abbreviating 

W' = lim (E + i€ _ p'2) liZ, 
£ __ +0 

W ' l' (E' '2)IIZI _ = 1m + I€ - P p" + q" = E , 
£ __ +0 

(A19) 

W = lim (E + i€ _ pZ)IIZ, 
._+0 
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~= lim (E+i€_p2)1I2
Ip'+q'=E' 

£-+0 

and inserting (A 18) in (A 16), one has 

f dp'dq'dp dqld l + dzW' + d3 W + d4 W'W 
U2 XU2 

- (d l + d2J£' + d3 W + d4J£'W) 

- (d l + dzW' + d3 J£ + d4W'~) 
+ d l + dzJ£' + d3 J£ + d4J£'~lzl 

((E _ p'z _ q'Z)(E _ pZ _ q2))2 

= r dp'dq'dp dq Id412 
JU2 XU2 

1 
(W' - J£')(W - ~) 12 

X (E _ p'2 _ q'2)(E _ p2 _ q2) 

= (ld4 1 f dp dq I W ~ W 212)2 . Ju, E-p -q 

Equation (A19) gives 

. '2)112 {(IE - p2J)1I2, 
W = 11m (E + I€ - P = '(IE 21)112 

.~+o I - P , 

(A20) 

E>p2 

E<p2 

(A21) 
. ( . pZE )112 EII2 

1£ = 11m E + I€ - -2--2 = 2 2)IIZ q . 
• _ +0 p + q (p + q 

Thus, one has to estimate the following integral 

X I (IE - pZI)I12 - (E )IIZq2/(p2 + q2)1121 
E_p2_q2 

In the integration domain all factors are bounded and the 
integral exists. The second term, with the substitution 
pZ _ E = S2, reads 

i

[(IIZ)I EdIJ,n i[(I/Z)IEdl-S.),/2 
ds S(S2 + E ) liZ dq qZ 

o 0 
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FIG. 1. Schematic plot of U E _ E~I (1//) and U E _ E~B (\ \ \); 

U E _ E, = U E _ E~I UUE_E~B' the lines of singular points arep~ = E - Ed 

q =E-Ed' 

( 

S2 L[(1/2)IEdl1'/2 
X <M ~ 

(_ S2 _ q2)2 0 

X dq q L
[(1I2)IE"1 - s'J'/2 ~ 2 

o (S2 + q2)2 

and exists also. The third term, with the same substitution, 
reads 

1
[(1I2)IE"IJ'/2 

ds S(S2 + E)1I2 
o 

L
[(1/2)I E<l1 - rJ'/2 E q4 

X dq ----=-----
o ~ + E (S2 + q2)2 

and exists becauseq4/(s2 + q2?< 1. Thus, from the existence 
of the expression given by (A22), we conclude the existence 
of the expression given by (A 16) and thus <p ~;E is contained 
in Assumption (5.2). Finally, let us consider if for the func-
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tion k defined by (A15) <p ~ _ Ed.E _ Ed;E _ E",E _ Ed is contained 
in (5.2). Using (AI5) and (3.18), one has 

1M3. (p' ,k' IHfJ•f3,f3,f3. (Z) Ip,k) f3.f3. 

= f3. (k',ep' + jk'IHf3•p,f3,f3. (Z)lp,ap + b k)p. (A23) 

= b (Z - k '2) x(ep + jk') I (k,p,Z) 

X 
b (Z - p2)x(ap + b k) 

I 2 2 ' - IE - P - (ap + b k) 

with some channel recoupling coefficients e,f. 

<p ~ - Ed.E - Ed;E - Ed.E - Ed requires subtractions at the points 
E-Ed =p,2,E-Ed =k,2,E-Ed =p2,E-Ed =k 2 • 

But in a neighborhood of those points limH + 0 b (E + i-
E - k '2)1 (k',p,E + iE)b (E + iE - p2) is a smooth, i.e., locally 
subtractable and square integrable, function. Because 

X (ep' + jk')x(ap + b k)l( - IE I - p2 - (ap + b kf) is an 
analytic function one concludes that <p ~ _ Ed.E - Ed;E - E .. E - Ed 

is contained in (5.2). Combining all the arguments given 
above, one finds also all terms of mixed subtractions to be 
contained in (5.2) which was the claim of this Appendix. 
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One-speed transport anisotropic scattering coefficients are calculated by an inverse transport 
model which requires only emerging angular distributions from a homogeneous slab uniformly 
irradiated by a monodirectionally incident beam. The solution of the direct problem used to test 
the inverse calculations is obtained with the F N method of Siewert. New numerical schemes are 
developed which are applicable for the F N solution of other one-speed problems. The inverse 
transport method shows promise for characterizing media by only measurements of reflected and 
transmitted laser light from a slab. 

PACS numbers: 42.1O.Qj, 42.60.He 

I. INTRODUCTION 

Recently a method has been proposed for obtaining the 
one-speed transport anisotropic scattering coefficients from 
reflection and transmission measurements for a homogen­
eous slab target uniformly illuminated by an azimuthally 
dependent incident beam. 1 If such an inverse transport 
method can be shown to provide relatively accurate predic­
tions for the angular expansion coefficients of the scattering 
kernel, then the method should have application for identifi­
cation of materials using noninvasive measurements. 

It is the purpose of this investigation to test the conjec­
ture that the anisotropic scattering coefficients can be deter­
mined accurately from appropriately selected angular mo­
men ts of the emerging distributions. To accomplish this test, 
the reflected and transmitted angular distributions are as­
sumed to be the solutions of the direct transport problem for 
a slab illuminated by a monodirectionally incident beam. 
This direct problem is solved using a slight generalization of 
the slab geometry azimuthally independent solution of 
Siewert2 which was obtained with the FN method.3-S This 
generalization also has been carried out concurrently with 
our analysis by Devaux and Siewert .6 

The equations required to calculate the scattering coef­
ficients using the inverse problem solution are summarized 
in Sec. II, and the F N solution ofthe direct transport prob­
lem is developed in Sec. III. Additional equations for imple­
menting the F N method are presented in Sec. IV, while Sec. 
V contains a description of the different numerical schemes 
used to solve theFN equations. Numerical tests of the direct 
problem solution are in Sec. VI. Finally, results of test calcu­
lations in Sec. VII substantiate agreement of the scattering 
coefficients obtained by the inverse solution with the as­
sumed scattering coefficients. Conclusions and possible im­
plications for use of the method with experimental data are 
presented in Sec. VIII. 

II. INVERSE PROBLEM SOLUTION 

The equation of transfer for monochromatic radiation 
in plane geometry is 

a/(T,p, ¢1) + I( ,/,) 
p aT T, p, 'I' 

1 II 121r = - d/1: d¢1 I p(cos 8 )I(T, /1:, ¢1 '), 
417" -I 0 

0<; T<; To , (1) 

where anisotropic scattering of finite order K is assumed, 
distances are in mean free paths, 

K 

p(cos 8) = L ILIkPdcos 8), (2) 
k=O 

and where 0 < lLIo < 1. Here the P k are Legendre polynomials 
and 8 is the angle between the direction defined by p I and ¢1 I 

and that defined by p and ¢1. It will be assume that 

I(O,p, rp) = 8(p-Po)8(rp), O<p<;l, (3) 

I(To, -p, rp) = 0, O<p<;l. (4) 

The equations for calculating ILl k' k = 0 to K, require 
the use of moments of the radiation angular intensity 
I(T,p, rp), defined as l 

i~(T) = (21T)-lf
1r 

drp cosmrp 

X f~ I dpplp '!:( p)l (T, p, rp ), (5) 

and evaluated on the surfaces T = 0 and T = To. Here the 
P '!:( p) are the associated Legendre functions. Use ofEqs. (3) 
and (4) reduces the equations for i~(O) and i~(To) to integrals 
over the angular intensities emerging from the slab surfaces. 
Also required is a second set of moments, involving products 
of the angular intensity, which are defined as l 

S7'=4f dPp2l ((21T)-lf
1r 

drp/(O, -p,rp)cosmrp) 

X((21T)-lf1rdrp/(0,P,rp)cosmrp). (6) 

The ILIk values may be evaluated by either of two 
schemes. The first approach, which may be called the "angu­
lar intensity method," uses moments of I(T,p, rp) in the 
equations l 
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sg 
s~ 

s~ 

Wo s~ + WI sgl + 
WI S~I + 

+ W K SgK' 

+ W K S~K' 

(7) 

where the s values are defined in terms of the integrals in Eq. (5) as 

(8) 

The second scheme, which provides an independent means of determining the W k , may be termed the "angular heat flux 
method" since it uses moments ofpJ(r,p, 4», and is based on the equations I 

s~ (wo/ho) s?o + (wI/hi) S~I + + (wK/hK) S?K' 

st 

In Eq. (9) the S values are defined as 

S7'k = (- l)k-m(2k + 1)[(k - m)!/(k + mIl] 

X {[i7'dOW - [i7'dro ))2}, 
and the hk values are 

hk = 2k + 1 - Wk' 

III. DIRECT PROBLEM SOLUTION 

(10) 

(11) 

The direct transport problem defined by Eqs. (1) 
through (4) has been solved, for the azimuthally symmetric 
case, by Siewert who used his F N method? The extension to 
the azimuthally dependent case, as done here, follows 
straight forwardly. 

In order to separate the azimuthally dependent prob­
lem into a set of (K + 1) azimuthally independent problems, 
we expand I (r, p, 4> ) in a finite Fourier expansion 1,7 

K 

I(r,p,4»= I (2-8mo)/m(r,p)(l-p2t/2cosm,p 
m=O 

+ Iu (r, p, 4> ), (12) 

where lu(r, p, 4» is part of the uncollided intensity, 

Iu(r,p, 4» = 8(p - po)e- TII"(8(4» - (21T)-1 

(13) 

The F N method is based upon a set of equations derived 
by expanding I m(r, p) in its singular eigenfunction expan­
sion8 and using the full-range orthogonality relations to 
eliminate the expansion coefficients in terms of the intensi­
ties at the boundaries. The resulting equations for the un­
known outgoing surface angular distributions, Im(o, - p) 
and Im(ro'p), O<,m<,K, are expressed for the positive eigen­
values VECT + , as 

f J.UfJ m(v, p)I m(o, - p) dm( p) 
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+ e- T,/vf p,p m( - v,p)/m(ro,p)dm(p) 

=L 7'(v), 

f p4> m(v, p)/m(ro' p) dm(p) 

+ e - T,/V f p4> m( - v, p)/ m(o, - p )dm( p) 

(9) 

(14a) 

= L ;'(v), (14b) 

where 

LI(v) = f p,p ( - v, p)I (0, pI dm( pI + e - T,/V 

X f P4>(V,p)I(ro, -p)dm(pl, (15a) 

L2(V) = f p4> ( - v, p)/(ro' - p) dm( p) + e- T,/V 

X f p,p (v, p)1 (0, p) dm( p). (15b) 

For convenience in Eq. (15) and in the following, the super­
script m with I m( r, p) and other functions is suppressed if no 
confusion is possible; in such cases all relevant quantities in 
any of the equations must be understood as referring to the 
particular azimuthal component under consideration. 

The positive spectrum CT + consists of the continuum 
(0, 1) and of the set of discrete positive eigenvalues I Vj,j = 1 
to J) which are zeros of 8 

A (z) = 1 - ¥ J~ I (z - p)-Ig( p, p) dm( p). (16) 

It is known thatH J <,K - m + 1, although for m exceeding 2, 
J typically has been found to equal zero.9 

The eigenfunctions 4> (v, p) in Eqs. (14) and (15) are de­
fined by the equation 

4> (v, p) = !v9g(v, p)l(v - p) + A (v)(1 - v) - mo(v - p), 
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O<v< 1, 
=!vjg(vj,Jl)/(vj -Jl), v=vj ' j= 1 toJ, 

where f!J1 stands for principal value, and 

(17) 

A. (v) = 1 - !vf!J1 f~ I (v - Jl)-lg( Jl, Jl) dm( Jl). (18) 

Here g( v, Jl) is defined as 
K 

and 

g(v,Jl) = L ckgdv)Pk(Jl), 
k=m 

p';;(Jl) = (dm/dJlm)Pk(Jl) = (1 - Jl2) -mI2p';;(Jl), 

Ck = (i)k(k - m)!/(k + m)! 

(19) 

dm( Jl) = (1 - Jl2r dJl. (20) 

The g k (v) in Eq. (19) are polynomials of order (k - m), 
alternatively even and odd, defined by the recursion relation 

(k+ I-m)gk+l(v)-hkvgk(v)+(k+m)gk_l(v)=O, 

k>m, (21) 

with the starting conditions gm _ I (v) = 0 and 10 

m-I 
gm (v) = Pm (v) = n (2k + 1) = (2m - I)!! (22) 

k=O 

Thegk(v) polynomials reduce to thePk(v) polynomials in the 
limit that (J)k = 0, k>m. 

To solve Eq. (14) with boundary conditions (3) and (4) by 
the F N method, 1(0, - Jl) and I(ro' Jl) are expanded as2,II 

N 

1(0, -Jl) = L anJln, o <Jl"; 1, (23a) 
n=O 

N e- T'/Po8(Jl-Jlo) 
1(1'o,Jl) = n~o bnJl

n 
+ 21liI-Jl~r/2 ' O<Jl";1. 

(23b) 

The second term in Eq. (23b) completely eliminates the sin­
gular nature of 1(1'0' Jl) and is necessary for good conver­
gence with increasing N, especially when ro is small. 

UseofEqs. (3), (4), and (23) in Eqs. (14) and (15) gives the 
set of equations 

N 

L [anBn (v) + e - T.lvbnA" (v) J = (2/V)Ll(V), VEO' + ,(24a) 
n=O 

N 

L [b"B,,(v) + e - T,/va"An(v)] = (2/v)L2(v), VEO' + ,(24b) 
n=O 

where 

LI(v) = (Jlo/21T)¢ ( - v,Jlo)(1 - Jl~)mI2 

X (1- exp1'o( - l!v- l!Jlo)]' (25a) 

L2(v) = e - T.lV( Jlo/21T)¢ (v, Jlo)(1 - Jl~ )m12 

X [l-exp1'o(l!v-l!Jlo)], V=F=Jlo' 

= e - T.I!-'''(1'o/41T)g( Jlo' Jlo)(1 - Jl~)mI2, v = Jlo' 
(25b) 

and where the coefficients Bn (v) and An (v) are defined as 

2 il 

Bn(v) = - Jl n + l¢(v,Jl)dm(Jl), 
v 0 

(26a) 
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2i l 

An(v) = - Jln+ I¢( - V,Jl) dm(Jl) 
v 0 

= -Bn( - v). (26b) 

The expansion coefficients an and bn are calculated by 
specializing the F N equations (24) to (N + I) v values in 0' +. 

The moments needed for the inverse problem solution are 
calculated using the intensities in Eq. (23). UseofEqs. (3), (4), 
(12), and (20) leads to the results 

i/k(O) = (21T)-lJl~P';;(Jlo) 

(27a) 

(27b) 

2 N 
S/ = -(1 - Jl~r/2Jl~1 L anJl~, 

17' n =0 

(28) 

where 

4.,1 = fJlnp,(Jl) dm(Jl), n>O, l>m. (29) 

IV. ADDITIONAL EQUATIONS FOR DIRECT PROBLEM 
SOLUTION 

The Bn (v) and An (v) may be evaluated, in terms of the 
numbers .::1 n,l, using the recursion relations 

K 

B" + 1 (v) = vBn (v) - L ckgk (v}.::1" + l.k' (30a) 
k=m 

K 

An+ 1 (v) = - vA" (v) + L (- w- mckgdv}.::1" + I,k' (30b) 
k=m 

In turn, the.::1 's themselves satisfy 

(/+ I-m}.::1n.l+l -(2/+ l}.::1n+l,1 + (/+m}.::1n,l_l =0, 
(31) 

with the first few values given by 

.::1",m_l = 0, 

.::1 ",m = (2m )!(n - 1 )!!/(2m + n + I)!!, 

.::1 n ,m + 1 = (2m + I)!n!!/(2m + n + 2)!!, 

for l>m and n>O. It also may be shown that 

.::1 n,m + n + 2j = 0, j = 1, 2, ... , 

(32) 

(33) 

It should be mentioned that a two-term recursion relation 
for .::1 n,l also exists. 6 

The starting conditions for the recursion relations (30) 
are related by the identity 

2 II Bo(v) - Ao(v) = -:; _ 1 Jl¢ (v, Jl) dm( Jl) 

= 2hm /(2m + 1), (34) 

so only Ao(v) need be calculated using Eq. (26b). The result is 

K 

Ao(v) = L ckgdv)Tdv), (35) 
k=m 
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where 

Tdv) = ( _ l)k - m t p,pd p,) dm( p,), k>m. 
Jo v + P, 

The Tk(V) satisfy the recursion relation 

(k + 1- m)Tk+ I (v) 

- (2k + l)vTk(v) + (k + m)Tk_ dv) 

= ( - l)k - m -1(2k + 1)Al.k' 

with Tm _ I (v) = O. The other starting condition is 

T m (v) = Lio.m - (2m - 1 )!!vR m(v), 

where R m(v) is defined as 

R m(v) = t dm(p,) , 
Jo v + p, 

and obeys the recursion relation 

R m(v) = (1 - v)R m - I(v) + (2m - 2)!! 

X [v/(2m - I)!! - 1/(2m)!!], 

with the starting condition 

R o(v) = In(l + l/v). 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

For v ~ 2, the recursion relations (30) do not work well 
because differences oflarge, nearly identical numbers must 
be calculated. In such cases, Siewert I I has suggested the use 
of series expansions derived from Eq. (26), 

(42b) 

Also for v ~ 2 the calculation of gk (v) from recursion relation 
(21) may give trouble, in which case a continued fraction 
expansion works better .12 Such an expansion can be derived 
by rewriting Eq. (21) as 

gk+ Jlv) 

gk(V) 

hk V { (k + m) [ gk(V) ] - I} 
= (k+ 1-m) 1- hkv gk_dv) 

hkv 
(43) =------

(k + I - m)(CF)k 

where the terminating continued fraction (CF)k implicitly 
defined in Eq. (43) is obtained from the recursion relation 

and the starting condition (CF)m = 1. 
We tum now to the numerical evaluation of A (z) which 

is required when calculating the eigenvalues vj • Equation 
(16) may be expressed as 

K 

A (z) = 1 + z I ckgdz)qdz), (45) 
k=m 
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where 

qk(Z) = ~fl h(P,) dm(p,) (46) 
2 -I p,-z 

Use of Eq. (21) in Eq. (46) gives the recursion relation 

(k + 1 - m)qk+ I(Z) - (2k + l)zqdz) + (k + m)qk_ dz) 

= (2m)!!<5km • (47) 

where qm _ I (z) = O. To calculate the starting condition 
qm(z), another recursion relation is used, 

q'::,(z) = (2m - 1)(1 - r)q'::, =: (z) 

-z(2m -2)!!, 

where 

o (z - 1) qo(z) = ~ln -- . 
z+l 

(48) 

(49) 

Equations (45) through (49) remain valid for the calcu­
lation orA (v) provided the principal value integral is taken in 
Eq. (46) and the sign of the argument of the logarithm in Eq. 
(49) is reversed. Also, for z ~ 2, Eq. (47) may be replaced by 
the rapidly converging power series 

qk(Z) = - ~ Li zk- m - I - 21 (50) 
~ 21-(k-mJ.k . 

I=k-m 
A better form than Eq. (45) for evaluation of A (z) and 

A (v) can be derived by multiplying the equivalent ofEq. (21) 
for pdz) by qdz) and Eq. (47) by pdz) and subtracting. After 
multiplying the result by (k - m)!/(k + m)l and summing 
over k, the Christoffel-Darboux formula9

•
13 

A (z) = [(K + 1 - m)!/(K + m)!](gK(Z)qK+ I (z) 

- gK + I (Z)qK(Z)] (51) 

is obtained. 
To calculate the zeros of A (z), i.e., the values of Vj' 

Siewertl4 has developed a formally exact method which re­
quires that complicated integrals be performed. Such a 
scheme has been used to provide a very accurate first guess 
for each vj • which was then utilized with a Newton-Raph­
son iteration method to obtain even more accurate values.6 

For highly anisotropic scattering, for which (K + 1) separate 
calculations must be performed (one for each m), direct use 
ofEq. (51) with a Newton-Raphson iteration is more expedi­
ent. A criterion for limiting the z value in the iterative search 
of the discrete eigenvalues follows from 8 

K hk 00 1J2n 
A(z)= II -- - I -, Izl>l, (52) 

k = m 2k + 1 n = I z2n 

where 1J2n is calculated in terms of g(p" p,) of Eq. (19) using 
the definition 

1J2n = ~ f~ I p,2ng( JL, p,) dm( p,). (53) 

A procedure similar to that used to derive Eq. (51) leads to 
the single integral 

(K - m + 1 )! t 2n _ I [ (lP () 
1J2n = (K + m)! Jo JL gK JL K + I JL 

-gK+I(P,lPK(p,)]dm(p,). (54) 

Certainly the simplest method for calculating the eigen-
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values is to use the positive roots -vi(0, 1) of the polynomial 

gL + m (v) = 0, L large. (55) 

These roots converge to the Vj values as L~ IX) 13; in practice, 
surprisingly high-accurate estimations are obtained from 
small L values (L - 10). 

v. NUMERICAL SCHEMES FOR DIRECT PROBLEM 
SOLUTION 

Two fundamentally different approaches were used to 
solve the F N equations (24): the collocation or nodal method 
and the projection or modal method. The collocation meth­
od is the approach used by Siewert and co-workers and re­
quires that the equations be evaluated at (N + I) collocation 
points. The scheme used by Siewert2.4 is to select all the exact 
values Vj and to space the remaining values VI' I = (J + 1) to 
(N + 1), equally distant in [0, 1]. The collocation points are 
selected by dividing [0, 1] into equally spaced intervals. In 
our calculations a first set of collocation points (set C I) is 
defined by the endpoints of every interval, including 0 and 
1/ a second set C2 follows by using all endpoints except 0 
and I, and a third set C3 is obtained by using the midpoints 
of the intervals. Still a different scheme would be to use the 
values of vj,j = I to J, and select the remaining values VI as 
the positive roots of the polynomial 

P2(N-J+ 1)+m(V) = O. (56) 

Thus the remaining values would be selected as nodes from a 
Gauss-Legendre quadrature set. 

In the preceding collocation schemes, the points in 
[0, 1] do not depend upon the properties of the medium. One 
way of introducing such a dependence is to select all nodes as 
the positive roots of the polynomial 

g2IN+l)+m(V)=0. (57) 

The nodes from Eq. (57) will be called collocation set C4. 
For the projection technique, equations (24) are project­

ed onto a set of linearly independent functions X;"(v), i = 0 
to N, by multiplying Eqs. (24) by each of the functions and 

integrating over the entire positive spectrum u + . This re­
sults in 

N 

I [a"B",i + b"A".i 1 = L 1, i> 
,,=0 

N 

I [b"B",i + a"A",;] = L 2.i> 
n=O 

where 

B".i =1 Bn(v)X;(v)dv 
u+ 

= jtl B,,(Vj)X;(Vj) + f B,,(v)X;(v)dv, 

A",; =1 e-T'/VA,,(v)X;(v)dv, 
a+ 

and where 

L r,; = 21 v-1Lr(v)X;(v) dv, r = 1,2. 
a+ 

(58a) 

(58b) 

(59a) 

(59b) 

(60) 

We have used two projection schemes. The first, PI, is 
defined by the set of functions 

x ;"( v) = g7'+ m (v), 

andthesecond,P2,by 

X;(v)=8(v-vj ), ;= I to J 
=~-J-I, i=J+ 1 to N. 

(61a) 

(61b) 

The last scheme gives a hybrid method consisting of a collo­
cation for the Vj values and a projection for 0 < v < 1. 

Instead of analytically evaluating the integrals over 
0< v < 1 in Eqs. (59) and (60), we have opted to carry them 
out using a numerical quadrature technique. In our evalua­
tion we divide the interval 0 < v < I into a equal subintervals, 
and use a p-point Gauss-Legendre formula in each 
subinterval. 

TABLE I. Accuracy test for F5 calculations for isotropic scattering with (i)o = 0.999 and To = 2 and~o = 0.5. 

To Method ioo(O) ilO(O) ioo(To) ilO(To) 

2 CI 2.7243 - I - 2.7470 - 2 4.9104 - 2 2.7141- 2 
C2 2.7276 - I - 2.7469 - 2 4.9279 - 2 2.7140 - 2 
C3 2.7271 - I - 2.7469 - 2 4.9213 - 2 2.7140 - 2 
C4 2.7276 -1 - 2.7469 - 2 4.9242 - 2 2.7140- 2 
PI 2.7262 - I - 2.7469 - 2 4.9167 - 2 2.7140 - 2 
P2 2.7262 - I - 2.7469 - 2 4.9167 - 2 2.7140 - 2 
Exact 2.7262 - I - 2.7469 - 2 4.9165 - 2 2.7140 - 2 

20 CI 3.0967 - 1 - 6.0029 - 3 6.0028 - 3 3.4691 - 3 
C2 3.1004 - I - 6.0023 - 3 6.0082 - 3 3.4688 - 3 
C3 3.0997 - 1 - 6.0025 - 3 6.0074 - 3 3.4689 - 3 
C4 3.1004- 1 - 6.0024- 3 6.0084 - 3 3.4688 - 3 
PI 3.0988 - 1 - 6.0025 - 3 6.0059 - 3 3.4689 - 3 
P2 3.0988 - 1 - 6.0025 - 3 6.0059 - 3 3.4689 - 3 
Exact 3.0987 - I - 6.0025 - 3 6.0057 - 3 3.4689 - 3 
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VI. CALCULATIONS FOR DIRECT PROBLEM SOLUTION 

The F N calculations performed by Devaux and 
Siewert6 were reproduced with the calculational methods 
developed in Secs. III-V. Thus, the emphasis ofthe direct 
problem calculations discussed here will be on comparing 
the accuracy and rate of convergence with increasing N of 
the numerical schemes presented in the last section. 

Three scattering models were used for the numerical 
tests. The binomial model with predominantly forward ( + ) 
or backward ( - ) scattering is defined by9.IS 

p(cosb) = wo(a + 1)2 -a(I ± cosb la, a;;'O, (62) 

where the coefficients wda ± ) ofEq. (2) may be evaluated 
with the (apparently new) recursion relation 

wda±)= ± (2k+ I)(a+ I-k)wk_da±), 
2k-I a+I+k 

k;;.I, (63) 

once Wo is specified. If a is a positive integer, K = a. 
A second scattering model, due to Henyey and Green­

stein,I6 is 

p(cosb) = (I - g2)(1 + g2 - 2gcosb) - 3/2, 

- 1 <g< I, 

for which the expansion coefficients W k (g) are 

(64) 

(65) 

The third model represents the scattering of visible light 
in fog, I? approximated with the coefficients 18 

Wo= I, Ws = 1.0716, 

WI = 2.1053, W6 = 0.4803, 

W 2 = 2.7424, W7 = 0.3615, (66) 

W3 = 2.1929, Wg = 0.1587, 

W 4 = 1.5578, W9 = 0.0075. 

To avoid modifying our computer program for cases when 
the largest vr~ co as wo-I, we have replaced the value of Wo 
in Eq. (66) by 0.999 in our calculations. 

To test the accuracy of the F N calculations, the mo­
ments ilm (0) andilm (To) for 1= Oand I, given in Eq. (27), were 
examined. (These moments are proportional to the angle­
integrated intensity and heat flux in the mth Fourier compo­
nent, respectively.) We first performed F N calculations from 
N = 2 to IS for isotropic scattering with Wo = 0.999 and 0.2 
for flo = 0.5 and slab thicknesses of To = 2 and 20. All six 
methods proposed in Sec. V converged for N <; 15, but the 
projection methods converged faster. The Fs results for 
Wo = 0.999 in Table I illustrate that there is only a very small 
difference in accuracy between the six schemes. 

For anisotropic scattering the convergence is more rap­
id for Fourier components with larger m; the convergence is 
not appreciably affected by the value of flo' 0.5 <;flo <;0.9. It 
also was generally observed that the i lm converged more 
rapidly than iOm ' a fact that has implications for the inverse 
problem calculations in Sec. VII. 
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TABLE Ill. Selected coefficients IiJk calculated for an assumed K by angular intensity (AI) and angular heat flux (AHF) methods for the binomial scattering 

model with liJo = 0.95 and a = 19. 

K Method liJo liJ, liJ7 liJlI liJts liJ I9 

AI 8.205 - 1 
0 AHF 7.925 - 1 

AI 9.422 - 1 7.092 - 1 
3 AHF 9.029 -1 7.777 -1 

AI 9.923 - 1 2.316 4.155 - 2 
7 AHF 9.370 - 1 2.447 4.219 - 2 

AI 9.715 -1 3.347 5.104 - 1 2.020 - 3 
11 AHF 9.515 - 1 3.384 5.159-1 2.021 - 3 

AI 9.599 - 1 3.631 7.974 - 1 1.792 - 2 1.117-5 

15 AHF 9.550 - 1 3.632 7.976 - I 1.792 - 2 1.117-5 
AI 9.595 - 1 3.638 8.086 - 1 1.950 - 2 3.514 - 5 5.376 - \0 

19 AHF 9.551 - 1 3.639 8.086 - 1 1.950- 2 3.514 - 5 5.376 - \0 

Exact 9.500 - I 3.639 8.086 - I 1.950 - 2 3.514-5 5.376 -10 

TABLE IV. Selected coefficients liJk calculated by angular intensity (AI) and angular heat flux (AHF) methods using F N results with C4 for Henyey­

Greenstein model with liJo = 0.99, g = 0.9, and K = \0 for To = 2 and #0 = 0.5. 

N Method liJo liJ, 1iJ6 liJ\O 

AI 8.531-1 - 4.909 4.393 7.241 

4 AHF 9.901-1 5.004 6.861 7.249 

AI 1.035 3.249 6.007 7.246 

8 AHF 9.899 - I 5.078 6.844 7.249 

AI 1.015 4.289 6.476 7.248 

12 AHF 9.900- I 5.077 6.844 7.249 

Exact 9.900-\ 5.052 6.840 7.249 

TABLE V. Selected coefficientsliJ< calculated for an assumedKby the angular heat flux method for binomial scattering model with liJo = 0.95, a = 4.1, and 
K= 15. 

K liJo liJl liJ2 liJ3 liJ4 liJs 

3 9.484 - \ 1.881 1.295 3.807 -\ 
4 9.500 - 1 1.915 1.392 5.030- 1 7.639 - 2 
5 9.500 - 1 1.916 1.394 5.066 - I 7.915 - 2 1.243 - 3 
6 9.500 -\ 1.915 1.394 5.057 - 1 7.839 - 2 8.001-4 -1.611-4 
7 9.500 - 1 1.916 1.394 5.061 - I 7.880 - 2 1.062 - 3 - 3.246 - 5 
8 9.500 - I 1.916 1.394 5.058 - 1 7.850- 2 8.539 - 4 - 1.495 - 4 
Exact 9.500 - 1 1.916 1.394 5~06O - 1 7.863 - 2 9.515 - 4 -9.118-5 

TABLE VI. Coefficients liJ k calculated for D-digit accuracy by angular heat flux method using FN results of Table II. 

N D liJo liJl liJ2 liJ, liJ4 

5 1 8.3284 - 1 2.0467 1.0530 4.1545 - I 4.5817 - 2 
2 9.4965 - 1 1.8757 1.3264 4.5189 - I 6.9900 - 2 
3 9.5048 - I 1.9014 1.3605 4.7506 -1 6.7563 - 2 
4 9.4982 - I 1.8995 1.3567 4.7499 - 1 6.7873 - 2 

15 9.5000 - I 1.8996 1.3570 4.7513 - I 6.7878 - 2 

\0 1.6973 7.1351 - 2.4011 - 3.8097 - 1 3.6796 - 2 
2 8.9261 - I 2.3052 I. 7939 4.8876 - I 7.0452 - 2 
3 9.2205 - 1 1.9929 1.3770 4.8009 - 1 6.8307 - 2 
4 9.3477 - I 1.9024 1.3487 4.7503 - 1 6.7864 - 2 

15 9.5003 - 1 1.9000 1.3571 4.7500 - 1 6.7857 - 2 

15 1 1.0286 3.0368 5.0768 7.7390 9.3345 - 1 
2 5.5381 - 1 8.0394-1 - 1.9459 - 1.7712 1.1308 - 1 
3 1.2255 4.9620 - 7.6316 - 1 3.6121 -1 6.9353 - 2 
4 1.0236 2.7431 1.0036 4.5880 - 1 6.8727 - 2 

15 9.5003 - 1 1.9000 1.3571 4.7500 - 1 6.7857 - 2 
Exact 9.5000 - 1 1.9000 1.3571 4.7500 - 1 6.7857 - 2 
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Two important observations follow from our numerical 
tests: 

(i) The finite accuracy available for digital calculations 
sets an upper limit for N, denoted as N max' beyond which the 
F N system of equations becomes ill conditioned. This limit 
depends upon the scattering model and the numerical 
scheme used for the calculation. Generally, for calculations 
with IS-digit precision, N max ;S 10 for projection techniques 
PI and P2, whereas for collocation methods Cl through C3, 
N max ~ 15. The F N solutions with collocation method C4 
tended to be the best for N~ 15. 

For the fog ofEq. (66) and for strongly anisotropic scat­
tering with Wo close to unity, such as the Henyey-Greenstein 
model with g large or the binomial model with a large, the 
C4 model works better than any other. All methods other 
than C4 require the exact values of vj ' which are difficult to 
calculate for a weakly absorbing medium because the func­
tions A (z) and A '(z) become very small for z large. On the 
other hand, the estimated Vj values used in C4 calculations 
are easily obtained because g'(vj ) is enormous. 

(ii) The coefficients On and bn oscillate with the value of 
n, and the magnitude of these oscillations increases mono­
tonically with increasing values of N, as illustrated in Table 
II for a binomial scattering model. This is due to the fact that 
the F N calculation gives polynomial approximations of de­
gree N for the intensities, and that the coefficients of finite 
polynomial approximations of strongly nonuniform func­
tions have oscillations that increase with the order N of the 
approximation. This phenomenon has implications for the 
inverse problem calculations. 

VII. CALCULATIONS FOR INVERSE PROBLEM 
SOLUTION 

Inverse problem calculations were performed using F N 

results for the direct problem. The case of isotropic scatter­
ing was considered first. With Wo = 0.999 and 0.2, and with 
To = 2 and 20 and Ito = 0.5, results for Wo accurate to three 
decimal places were obtained using F3 calculations based on 
collocation methods CI through C4 and F4 calculations us­
ing projection methods PI and P2. 

For the anisotropic scattering of fog, the angular heat 
flux method reproduced all w k values to four-digit accuracy, 
while the angular intensity method gave the same results 
except for wo, which was 1.0012 instead of 0.9990. These 
inverse computations were done using F 15 calculations with 
collocation method C4 for a slab with To = 2 and Ito = 0.5. 

One of the requirements of the inverse problem is that 
the K value has to be estimated; this assumed K value will be 
denoted by K. It is obvious from Eqs. (7) and (9) that K must 
equal or exceed K, or the higher-order coefficients cannot be 
calculated. Table III shows different sets of Wk obtained for 
different K for the binomial model with Wo = 0.95 and 
a = 19. These calculations were based upon F\3 results using 
C4 for a slab with To = 2 and Ito = 0.5. A comparison of the 
calculated Wk'S with the exact ones used in the FN calcula­
tions shows that the lower-k coefficients are considerably in 
error for K <K. The errors in the Wk'S were smaller for the 
binomial scatterin~ law with w~ = 0.2. 
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For K = 19, the angular heat flux algorithm provided 
slightly better (l) ~ values for the inverse problem calculations 
than the angular intensity algorithm. This difference is pos­
sibly because the ilk values converge faster with N than the 
iOk values. The "upper triangular" structure of Eqs. (7) and 
(9) aggravates this difference for small k values because of 
error propagation. 

Inverse computations based upon an F6 direct calcula­
tion for the case in Table III give nearly identical results to 
those obtained from the F13 calculation. This suggests that 
the inverse problem results could be relatively insensitive to 
the N of the direct problem calculations provided, of course, 
that N is not too small. 

To test this hypothesis, the Henyey-Greenstein scatter­
ing model with (l)o = 0.99, g = 0.9, and K = 10 was consid­
ered. Such a scattering model represents a severe test of the 
F N method because the scattering coefficients (l)k monotoni­
cally increase for k<.9. Table IV shows results for the inverse 
problem based upon F N calculations using the C4 technique 
for N = 4,8, and 12. In this case, accurate results were ob­
tained for the small N values; also, the angular heat flux 
method was markedly superior to the angular intensity 
method. 

When the assumed K exceeds the value K used in the F N 

calculations, all (l)k' k > K, obtained from the inverse calcu­
lations are identically zero. If experimental data were used to 
perform the inverse problem calculations, no sharp cutoff 
would exist. Such a case has been simulated by using the 
binomial scattering model for a = 4.1 and (l)o = 0.95 in an 
FlO calculation with K = 15 for 'To = 2 andJ.lo = 0.5. The 
corresponding (l)k values are distributed in two groups: one 
group for 0<.k<.4 is nearly the same for the scattering model 
with a = K = 4 and much larger than the second group, for 
5<.k<. 15, which acts as a "perturbation." The results in Ta­
ble V show that accurate values for (l) k' k <. 4, are obtained for 
K = 4 and do not change appreciably for K> 4, while the 
values of (l) k' k> 4, stabilize only when K::::: 15. 

Perhaps the most important test of the inverse method 
is to examine the (l)k values predicted when the precision of 
the angular intensities is limited. To assess this, inverse prob­
lem calculations were done by rounding to D digits the 
/m('T,J.l), i.e., the an and bn values oftheFN calculations. The 
F5 , FlO' and F I5 calculations of Table II for the binomial 
model with (l)o = 0.95 and a = 4 were used in this test. The 
results for D<.4 in Table VI show than an inverse calculation 
based on the F5 data is better than the corresponding one 
based on the F I5 data. 

The rounding off of the coefficients a nand b n leads to a 
loss of precision because of the oscillation of these coeffi­
cients shown in Table II. Since the magnitUde of the oscilla­
tions increases with N, the loss of precision is greater with 
larger N. This explains the poorer results of the inverse cal­
culations in Table VI based on FlO and F I5 data. Also the 
relatively good results obtained for small N are due to the 
fact that the inverse calculations depend only upon the mo­
ments of the intensity, and not on the detailed shape of the 
angular intensity. As shown in Table VII, these moments are 
calculated with enough precision for small N. 
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VIII. CONCLUSIONS 

The direct slab albedo problem with azimuthal depen­
dence has been solved with the F N method and been found to 
converge for N c-::= 10-15. The F N system of equations be­
comes ill conditioned for N too large because of the finite 
precision available in the digital calculations. The conver­
gence depends upon the degree of anisotropy of the scatter­
ing and the value of (l)o and, to a lesser extent, upon the slab 
thickness and the angle of incident radiation (provided J.lo 
:S 0.9 so that there is sufficient azimuthal dependence). 

The recursion relations and series expansions in Sec. IV 
were found to be helpful (and sometimes necessary) to obtain 
good numerical accuracy with the F N method. Of the six 
numerical schemes proposed in Sec. V, the four collocation 
methods gave good results, although the collocation ap­
proach C4 was best for strongly anisotropic scattering. The 
projection techniques PI and P2 were less satisfactory for 
many cases of anisotropic scattering. 

The inverse problem for a homogeneous slab has been 
numerically evaluated with the results from the direct prob­
lem calculations. Generally the angular heat flux method 
provided slightly better accuracy, but the differences were 
small. Consequently, the method of determining the (l) k coef­
ficients should depend upon whether the intensity or heat 
flux is easier to measure experimentally. 

When using experimental data, a series of calcula,.!.ions 
should be performed with increasing assumed values K of 
the anisotropy of the scattering. If the actual (l)k coefficients 
diminish rather gradually with increasing k beyond some 
value k m , then the first (k m + 1) coefficients will converge 
with increasing K for K> km' as seen in Table III. If the (l)k 

values exhibit a rather sharp drop in magnitude for k> k m , 

the larger coefficients are accurately obtained with inverse 
calculations even for K = k m , as shown in Table V. 

The precision test in Sec. VII is moderately encourag­
ing for the use of the inverse problem algorithms. It was 
observed that for small N, two-digit accuracy in the angular 
intensities at the slab surfaces gave two-digit precision in the 
(l)k values, and that four-digit accuracy gave three-digit pre­
cision, as shown in Table VI. Because of the upper triangular 
form of the inverse method equations. the calculated (l) k val­
ues are generally worse for small k. 
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In this paper we study the scattering of a plane electromagnetic wave off a spherical plasma pellet. 
The plasma density is taken to be overdense and very steep. This causes the cut off radius, ro, to be 
within a fraction of a wavelength from the spherical boundary. The problem is studied in the 
asymptotic limit (awic)- 00 with 0 < 1 - ro = 0 (claw). Here a is the radius of the sphere, w is 
the frequency of the incident radiation, and c is the velocity of light in free space. We develop an 
asymptotic technique which reduces Maxwell's equations to three ordinary differential equations 
within the plasma. Our method is a blend of geometrical optics and boundary layer techniques. 
Straightforward geometrical optics is used to describe the scattered field. 

PACS numbers: 52.40.Db, 52.25.Ps 

I. INTRODUCTION 

The conversion of electromagnetic energy into kinetic 
energy is a major factor in the laser fusion concept. 1 As a first 
step to understanding this process, one linearizes the perti­
nent equations, neglects ionic motion, and assumes a cold 
plasma. The ensuing equations give rise to a linear scattering 
problem. This problem has been extensively studied when 
the plasma is planar.2

,3 Recently, the case of a spherical plas­
ma target has received considerable attention. 1,4,5 The inter­
est in this geometrical configuration arises from the fact that 
the plasma pellet, used in the fusion process, is initially 
spherical in shape. 

The scattering of a plane electromagnetic wave off a 
perfectly conducting sphere coated with an inhomogeneous 
dielectric was studied by Alexopoulos.5 The metal sphere 
was used to model the cut-off surface. In this paper the au­
thor performs a modal analysis using a specific index of re­
fraction (rla)m (where r is the radial variable and a is the 
radius of the sphere). He computes the asymptotic approxi­
mation to the backscattered field in the limit awl c-00 (here 
w is the frequency of the incident plane wave and c is the 
speed oflight in free space). His analysis is made amenable 
by his particular choice of refractive index which, for m > 0, 
is a reasonable model for a plasma medium. 

Thomson, Max, and Erkkila4 have studied certain as­
pects of the scattering problem for an overdense cold spheri­
cal pellet. They allowed the index of refraction to vanish on 
the surface r = ro < 1 (both the variable rand ro are now 
scaled with respect to a). Thus, their model is more realistic 
than the one studied by Alexopoulos. It also gives rise to 
interesting cutoff and resonant phenomenon. However, they 
assumed that 1 - ro,>claw. This restriction allowed them to 
asymptotically approximate the radial eigenfunctions (as 
waic_ 00) which occur in the full wave expansion of the 
Debye potentials. From these approximate potentials they 
deduce the scattered field, the field within the plasma, and 
the energy absorbed by the pellet. Their results become inva­
lid when 1 - ro = o (claw). 

In this paper we assume that the profile is steep enough 
to give 1 - ro = 0 (claw). Moreover, we fix wand seek an 
asymptotic approximation of the electric field as awl c-00 . 

In this work we modify a technique reported elsewhere6 

which exploits the smallness of 1 - ro and the largeness of 
awlc. This method reduces the vector partial differential 
equation, describing the electric field within the plasma, into 
three uncoupled ordinary differential equations. It is basical­
ly a 1;>lend of geometrical optics 7 and boundary layer tech­
niques. 8 Outside the plasma pellet the scattered wave is ap­
proximated by using straight geometrical optics. 

We shall now give a brief outline of this paper and a 
summary ofthe main results. The statement of the scattering 
problem and the hypotheses regarding the plasma are given 
in Sec. 2. The asymptotic technique is presented in Sec. 3. 
The case of a lossless plasma is studied in Sec. 4. There it is 
analytically shown that the amplitude of the vector cross 
section equals one-half. This far field result is identical to the 
cross section of a metal sphere which is irradiated by a scalar 
plane wave. Section 5 is concerned with the effect of damp­
ing on the electric field. Of the three ordinary differential 
equations which describe the electric field within the plasma, 
only one can be solved in terms of tabulated functions. The 
other two equations must be solved numerically. However, 
the determination of the vector cross section's amplitude re­
quires the numerical solution of only one. This information 
is used to define a "scattered" energy density, p, which is 
computed numerically. The function p is found to possess a 
minimum at an angle which depends upon certain physical 
parameters. In the case of slab geometry, Freidberg, Mitch­
ell, Morse, and Rudinski9 report that the absorption coeffi­
cient has a minimum for a certain angle of incidence. This is 
the resonant absorption phenomenon. Their angle and ours 
is found to differ by only two degrees. Finally, p is used to 
obtain a crude approximation of the energy absorbed by the 
plasma. 

2. FORMULATION 

A high frequency plane electromagnetic wave impinges 
upon a spherically confined "cold" plasma of radius a and 
scatters from it. The time harmonic electric field 
E exp( - iwt) satisfies lO 

VXVXE = k 2nE, (2.1) 
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where k = k 'a and the index of refraction n is given by 

n = (1 - is)no + is, S > O. (2.2) 

In (2.2) the parameter S is the damping coefficient and no is 
given by 

(2.3) 

where w is the frequency of the incident plane wave, e is the 
radial variable, and N(ar) is the charge density. Implicit in 
(2.3) are the assumptions that w is large enough to neglect 
ionic motion and the density is dependent only upon r. 

We now assume that the plasma is overdense, is con­
fined to the region O";;r";; 1, and is very steep. These assump­
tions lead us to make the following hypotheses about no(r): 

and 

(HI) no(r) = 1, r~ 1, 

(H2) no(ro) = 0, 0 < 1 - ro = 0 (11k), 

(H3) nb(ro) = mk, m = 0 (1), 

(H4) n~)(ro) = o(k 1). 

These conditions are met when an infrared laser initially 
irradiates an overdense plasma target. 1 

To complete the mathematical statement of this prob­
lem, we must impose further conditions. First, we demand 
that E and its first partial derivatives are continuous every­
where. Secondly, the scattered field must satisfy the radi­
ation condition. Finally, we choose the z axis to be parallel to 
the incident wave vector k' and the y axis to be parallel to the 
incident electric field. 

We shall now suppose that k> 1 which corresponds to 
the physical situation mentioned above. Thus we seek an 
asymptotic approximation of E as k-+ 00. At first this seems 
to be a natural setting for the method of geometrical optics. 
However, the cutoff radius is a fraction of a wavelength away 
from the boundary of the plasma (H2). Thus, geometrical 
optics cannot be used directly to determine an asymptotic 
approximation of u within the plasma. 

3. THE ASYMPTOTIC METHOD 

The largeness of k and the smallness of 1 - r 0 will now 
be exploited to change (2.1) into a system of ordinary differ­
ential equations. The field within the plasma is assumed to be 
of the form 

E(r, e, l/J; k) 
= eikcose [sinl/Ju(r, e)p 

+ sinl/Jv(,r,e)e + cos¢Jw(r, e)¢ + 0 (11k) 1 (3.1) 

as k-+ 00 where the boundary layer variable ris defined byB 

r = km(r - ro). (3.2) 

The variables r, e, and l/J are the spherical coordinates of a 
point in the plasma and P, e, and ¢ are unit vectors. 

The index of refraction within the plasma is expressed 
in terms of r as 

n(r) = b (r) = (1 - is)r + is + 0(1) (3.3) 

as k-+oo. This follows from (H2}-(H4), (2.2), and from ex­
panding no in a Taylor series about r = roo 

Upon inserting (3.1)-(3.3) into (2.1) it is found that u, v, 
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and w satisfy 

sinev' = ir(b - sin2e)u, 
v" + yZbv = - iysineu', 
L",w = w" + yZ(b - sin2e)w = 0, 

(3.4) 
(3.5) 
(3.6) 

where r = 11m and the prime denotes differentiation with 
respect tor. Equations (3.4) and (3.5) are easily decoupled to 
give 

b 'u' [ (b ')2] L,U = utI + -b- + yZ(b - sin2e) - b u = 0, 

(3.7) 
b'sin2ev' 

LeV = v" - b (b _ sin2e) + yZ(b - sin
2
e)v = O. 

Outside the plasma target (r> 1) the electric field 

is assumed to be of the form 

E = eikzy + eikr/,o(X,y,z) [A(x,y,z) + O(lIk)] 

(3.8) 

(3.9) 

as k-+oo. The first term is the incident plane wave and the 
second is the scattered field. Upon inserting (3.9) into (2.1) 
and equating the coefficients of like powers of k to zero, it is 
found that ¢ and A to zero, satisfy 

V¢·V¢ = 1 (eiconal equation), (3.10) 

2VA·V¢ + AV2¢ = 0 (vector transport equation). (3.11) 

Thus, the scattered electric field will be approximated by the 
method of geometrical optics. 7 

Now to compute E, boundary conditions must be speci­
fied for (3.6)-(3.8) and initial data must be given for (3.10)­
(3.11). For a fixed r < ro it follows from (3.2) that r-+ - 00 as 
k-+ 00. Thus, the limits of u, v, and w must be specified as 
r-+ - 00. By applying the WKB method lito (3.6)-(3.8) it is 
found that each equation has one solution which grows ex­
ponentially and another which decays exponentially in this 
limit. The modest assumption that the field remains bound­
ed in the plasma implies 

lim (u, v, w) = (0, 0, 0). (3.12) 
r--. ac 

From (3.1), (3.9), and the assumptions that E and its 
first partial derivatives are continuous at r = 1, it follows 
that 

¢o(e) = ¢(sine cosl/J, sine sinl/J, cose) = cose, 

sinl/Ju( 1, e) = sinl/J sine + A, (1, e, l/J ), 

sinl/Jv(l, e) = sinl/J cose + Ae(l, e, l/J), 

cos¢Jw(1,e)=cosl/J +A",(l,e,l/J), 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

sinl/Ju'(l, e) = iysine cose sinl/J + ir¢,A,(l, e, l/J ), 
(3.17) 

sinl/Jv'(l, e) = ircos2esinl/J + ir¢,Ae(l, e, l/J), (3.18) 

cosl/Jw'(1, e) = ircose cos¢J + ir¢,A", (1, e, l/J), (3.19) 

where A" Ae, and A", are the components of A in spherical 
coordinates. In deriving (3. 17)-(3. 19) a term of order 0 (11k) 
was neglected and r was set equal to one at the plasma 
boundary. The later approximation follows from (2.2), (H 1), 
and (3.2). It introduces an error of order 0 (11k); we have 
consistently neglected terms of this order. 

From (3.10) and (3.13), it follows that 
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"'r(1, 0, ,p) = ~~ (I, 0, ,p) = IcosO I. (3.20) 

When this result is inserted into (3. 17}-(3. 19), we find from 
(3. 14}-(3. 19) that 

(::g: :~)- irlcosO /:~~: :~)= ir.d (:~::), 
w'(I, 0) \;(1,0) I 

(3.21) 

where.d = cosO - IcosO I. Thus, to find the electric field 
within the plasma we must solve (3.6}-(3.8) subject to the 
boundary conditions (3.12) and (3.21). 

Once u, v, and ware computed it follows from (3.14)-
(3.16) that 

Ar(I, O,,p) = sin,p [u(1, 0) - sinO], 
Ao(l, O,,p) = sin,p [v(1, 0) - cosO]. (3.22) 
A~(l, O,,p) = cos,p [w(I, 0) -1 ]. 

This information and (3.13) are the initial data needed to 
solve (3.1O}-(3.11). The eiconal and vector transport equa­
tion are easily solved by making the following observation: 
The initial phase given in (3.13) is the same phase that would 
occur if a scalar plane wave impinged upon a "metal" sphere 
(the total scalar wave vanishes there) of unit radius. Thus the 
reflected rays and phase of the present problem are identical 
to those of the irradiated metal sphere. Since each Cartesian 
component of A satisfies the transport equation and the ray 
pattern determines the expansion rati06 we find that 

A = - AoAs(x, y, z), (3.23) 

where As is the amplitude for the "metal" sphere problem 
and Ao is the value of A on r = I given by (3.22). The rays, "', 
and As are computed in Appendix A for completeness. 

The far field result is given by 
ikR 

E_eikzy + S(8,,p) e
R 

(3.24) 

as R-oo where S(8,,p) is defined by 

S(8,,p) = 0.5 exp [ - 2iksin ~] Ao ( ; + ~ ,,p ). 

(3.25) 

The variables R, 8, and,p are the spherical coordinates of the 
far field point. This result becomes inaccurate as 8 ap­
proaches zero; the observation point then lies in the shadow 
region which is devoid of scattered rays. 

4. THE LOSSLESS PLASMA 

In this section we shall study the differential equations 
(3.6}-(3.8) and boundary conditions (3.12) and (3.21) when 
D = o. If these equations could be solved exactly, then (3.1) 
would give the electric field within the plasma. Moreover, 
Eqs. (3.22), (3.24), and (3.25) would determine E in the far 

field. unfo{~unatelY' only (3.6) can be slolved exactly to give 

10 <.1T/2, 
w = -2izroCOSO A,.( _ f:-), (4.1) 

~ 1T/2 < 0 < 31T/2, 

where 5 = r'3 (r - sin20), 51 = r'3 cos20, 

Ai ( - 5) is the Airy function, 
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and 

Zo = r,3A;( - 51) - ircosO Ai( - 51)' 
From ~3.22) and (4.1) it follows that 

(4.2) 

{ 
- cos,p, 

A~(l, O,,p) = (ZoIZ~)cos,p, 
101 <'1T/2, (4.3) 
1T/2 < 0 < 31T/2. 

Now to the best of our knowledge neither u nor v can be 
expressed in terms of tabulated functions. They must be 
computed numerically from (3.7}-(3.8). However certain 
qualitative information can be gleaned from the differential 
equations and boundary conditions. 

Let u(r, 0) satisfy (3.7) with (3.12) and (3.21). Then 
u*(r, 0) satisfies 

Lru* = 0, lim u* = 0, 
r--+ - oc 

du* 
- (1,0) + irlcosO lu*(1, 0) = - ir.dsinO. 
dr 

Integrating the difference 

r[u*Lru - u Lru*] = 0 

by parts from - 00 to I gives 

r(u*u' - uu*')II_ 00 = o. 

(4.4) 

(4.5) 

(4.6) 

Since u approaches zero exponentially as r- - 00, it follows 
from (3.21), (4.4), and (4.6) that 

IcosO IIul 2 + .dsinO(u + u*) = O. (4.7) 

When 10 I <'1T/2,.d = 0 and (3.21) with (4.7) give u(l,O) 
= u'(l, 0) = O. 

This result implies u(r, 0) = 0 for 0 in this range. When 0 lies 
in the interval [1T/2, 31T/2],.d = 2 cosO and (4.7) gives 

lu(I, 0) - sinO 12 = sin20. (4.8) 

A similar argument works for v and gives vCr, 0) = 0 
when 10 I <.1T/2 and 

Iv(l, 0) - cosO 12 = cos20 (4.9) 

when 0 lies in [1T/2, 31T/2]. It is apparent from (3.22), (4.8), 
and (4.9) that 

IAT(l, O,,p W = sin2,p sin20, IAo(I, O,,p W = sin2,p cos20, 
(4.10) 

IA~(l,O,,pW=COS2,p. (4.11) 

These results hold for all 0 and,p and imply that IAol = 1. 
From (3.25) we deduce 

IS(8, ,p)1 = 0.5. (4.12) 

Thus the magnitude of the vector cross section is the same as 
the amplitude of the scalar cross section for the "metal" 
sphere problem. (This agrees with the result of Alexopoulos5 

when the thickness of the dielectric coating approaches 
zero.) 

Any additional information about AT' Ao, and A~ ne­
cessitates a numerical integration of the differential equa­
tions (3.6}-(3.8). We do not pursue this here. 

5 THE EFFECT OF DAMPING: ENERGY ABSORPTION 

We begin this section by computing the amplitude of 
the vector cross section, S. This quantity will be used later to 
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FIG. I. The scattered energy density, p(e), for <5 = 0.1 with r = 1 and 2. 

approximate the energy absorbed by the plasma. From 
(3.22) and (3.25) it follows that 

IS(e, ¢ W = ~sin2¢ [I u(l , e 12 + 1T12) - cos(e 12W 
+ Iv(l, e /2 + 1T/2) + sinCe /2)12] 

+ lcos
2
¢ Iw(1, e /2 + 1T/2) -w. (5.1) 

By using (3.4) and (3.21) this result simplifies to 

Is(e, ¢ W = !sin2¢ sec2(e 12) 

X lu(l,e 12 + 1T12) - cos(e 12W 

+ lcos2¢ IW(I, e 12 + 1T12) -w (5.2) 

when e #-1T. When e equals 1T, Eq. (3.4) gives u = ° while 
(3.6), (3.8), (3.12), and (3.21) yield v = - w. Thus (5.1) 
becomes 

IS(1T, ¢ W = llw(l, 1T)-W (5.3) 

in the backscattered direction. 
The scattered energy density, p( e), is defined to be the 

integral of ISI 2
, with respect to ¢, from ° to 21T.1t is given by 

p(e) = (1T/4)sec2(e 12)lu(1, e 12 + 1T12) - cos(e 12W 

+ (1T/4)lw(1, e 12 + 1T12) _112 (5.4) 

when e #- 1T and 

p(1T) = (1T12) I w(l , 1T)-W (5.5) 

when e = 1T. 
To determine the functional dependence of p on e ne­

cessitates the computation of u and w. The later function can 
be obtained directly from (3.6), (3.12), and (3.21).lt is given 
by 

{

O, 

w(r,e)= -2i~cose A;(-5), 
Ie I <1T12, 

(5.6) 
1T12< e< 31T12, 

where 

and 

212 

5 = [r/(l - iD )]2/3[(1 - iD)1 + iD - sin2e], 

z(e) = yt3(l - ic5)1/3A;( - 51) - ircoseA;( - 51)' 
(5.7) 
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Thus, the second term in (5.4) is given by 

!!.-IW(l,!!.- + e) _11 2 
= !!.-\ Z(1T12 - eI2)\2. 

4 2 2 4 Z (1T12 + e 12) 
(5.8) 

Unfortunately, the function u(r, e) cannot be deter­
mined in terms of tabulated functions. Equations (3.7), 
(3.12), and (3.21) must be solved numerically to deduce 
u(l,e 12 + 1T/2). The problem is simplified somewhat by 
substituting 

u(r, e) = q('f, e )/b Cr, D) (5.9) 

into these equations. It is evident that q must satisfy 

q" - (b ' Ib )q' + (yb - sin2e)q = 0, (5.10) 

lim q=O, (5.11) 
r--+ - 00 

q'(I,e) + (1 - iD + irlcose /)q(l,e) = ir..dsine.(5.12) 

Equation (5.10) with b = (1 - iD)" has been the object of 
considerable interest (see Ref. 6 for a modest bibliography). 

We have numerically solved (5.10) using the finite dif­
ference method. 12 To perform the calculations, a step size of 
0.1 was used and the boundary condition (5.11) was replaced 
by q( - 10, e) = O. To test the sensitivity of the results to this 
approximate boundary condition, we replaced - 10 by 
- 15, kept the step size fixed, and reran the program. The 

numerical values were found to change insignificantly. 
We obtain from this calculation and (5.9) the value of 

u( 1, e). The functional dependence of p on e is obtained by 
introducing this information and (5.8) into (5.4). This depen­
dence is shown in Fig. 1 for 15 = 0.1 (r = 1, 2) and in Fig. 2for 
15 = 0.05 (r = 1, 2). The line p = 1T12 is plotted in both fig­
ures; this is the value ofp when damping is neglected [see Eq. 
(4.12)]. 

It is interesting to note thatp possesses a minimum at an 
angle which depends upon rand D. This angle corresponds 
to a small portion of the sphere where a maximum amount of 
energy is absorbed. In the case of a plasma slab, Freidberg et 
al.9 report that their absorption coefficient possesses a maxi­
mum at a particular angle of incidence. This coefficient is 
defined to be proportional to 

1.7 

1.5 

1.3 

F 

.9 

.7 

20 
f0t 

6=.05 

100 140 /'BO 

FIG. 2. The scattered energy density,p(e), for <5 = 0.05 with r = I and 2. 
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TABLE I. The absorbed energy for /) = 0.1, 0.2 and r = 1,2. 

:x: .05 0.1 

1 .96 1.13 
2 1.08 1.36 

A(O) = lim [sin 0 IE (0,15 )1], 
~ 

where 0 is the angle of incidence and E (0, 15 ) is the compo­
nent of the electric field along the slab's normal, evaluated at 
the cutoff. It is remarkable that our angle of minimum p 
differs from their angle of maximum absorption by only two 
degrees when r = 1,15 = 0.05. This error is due to numerical 
inaccuracies and the fact that 15 #0. Unfortunately, here is 
where the direct comparison of A(O) andp(O) ends. Our 
problem is inherently three dimensional whereas theirs is 
two. The function A (0) represents the absorption coefficient 
only in the latter case. However, we did compute A (0) using 
u 1 r = 0 in place of E (0,15 ). Upon inserting the proper propor­
tionality constant we found that our numerical results 
agreed with theirs to within 5% when r = I and 15 = 0.05. 

The function p( 0) will now be used to obtain a crude 
approximation of the energy absorbed by the plasma pellet. 
In Appendix B we have derived the result 

T= - IT SinOP(O)dO-(lIk)Imf" Aoy (rr/2,l/J)dl/J. 

(5.13) 

where Tis the energy absorbed andAoy is the y component of 
Ao. The second term in this equation comes from a station­
ary phase analysis 11 of an integral involving the scattered 
field. The main contribution to this integral comes from a 
small neighborhood about e = O. Unfortunately, this corre­
sponds to the shadow region where our results are inaccu­
rate. Thus, we do not have a handle on Aoy (rr/2, l/J) when 
8#0. 

If no damping were present, then T would be zero. 
Equation (4.12), the definition of p. and (5.13) would then 
give 

I Sa" - 1m Aoy (rr/2, l/J) dl/J = - rr. 
k a 

(5.14) 

A crude approximation to T is obtained by inserting this 
result into (5.13). It gives 

T-rr- Sa" sinOp(O) dO. (5.15) 

The results of this approximation are given in Table I. These 
results make good qualitative sense. For a fixed r, Tis seen to 
increase as 15 becomes larger. 

To explain the dependence of Ton r, recall that r equals 
11m where m is defined in (H3). As m increases, the density 
gradient becomes steeper and reflects more of the incident 
radiation. Thus as m increases (r decreases), less energy is 
absorbed by the plasma for a fixed 15. This feature is also born 
out in Table I. 
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APPENDIX A 

Consider a scalar plane wave impinging upon a metal 
sphere and scattering from it. The geometrical optics ap­
proximation to the scattered wave is given by 

u(x,y,z,k) = [As (x,y,z) + 0 (11k) ]eikrXx,y,Z) (AI) 

where the amplitude satisfies 

2VAs'V¢ +As V2¢ = 0, (A2) 

and the phase ¢ satisfies (3.10). Since the total field vanishes 
on the unit sphere, 

As(sinOcos¢J, sinOsinl/J, cosO) = -I 

and 

¢(sinO cos¢J, sinO sinl/J, cosO) = cosO. 

The argument of As (and ¢) is the intersection point of an 
incident ray with the sphere. From (3.10) and the initial data 
it follows that the scattered rays satisfy the law of reflection. 
Thus they are given 

X = sinO cos¢J - u cos¢J sin20. 

Y = sinO sinl/J - u sinl/J sin20, 

Z = cosO - u cos20, 

(A3) 

where u is the arclength. These rays form a two-parameter 
family of straight lines. 

Equations (3.10) and (A2) are readily solved to give 

¢=u+cosO, 

As = _ (J (0,0,l/J) )112, 
J(u,O,l/J ) 

(A4) 

(AS) 

where J(u, 0, l/J) is the Jacobian of the ray map (u, 0, l/J) 
_(x,y,z) given by (A 13). It is easily found to be 

J = (2u - cosO )(sinO - u sin20). (A6) 

Now in the far field u> 1. From (A3)-(A5) we deduce that 

u-:::::=.R + cosO, J~2R 2sin20, ¢-:::::=.R +2cosO,(A7) 

A-:::::=.1I2R, lP-:::::=.l/J, O=O-rr, 

where R, lP, and 0 are the spherical coordinates of the far 
field point. When (A7) is inserted into (AI) we obtain 

(AS) 

Now each Cartesian component of the scattered field 
vector A satisfies (A2). Let A x be the x component of A and 
let Aox be the value of A x on r = 1. The A x is given by 
- uAox for r> 1. This proves (3.23). 

APPENDIXB 

It follows from Maxwell's equations,13 the incident 
wave form, and the hypotheses on n(r) that 

- R 2Re f" Sa" (EXH*).R' sinO dO dl/J = kt5 

X f i
p 

f (1 - no)IE12 du, (BI) 

where E is the total e~ctric field, H* is the conjugate of the 
total magnetic field, R is a unit vector in the direction of the 
far field point, and Vp is the region occupied by the pellet. 
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The right-hand side of (B 1) is the energy absorbed by the 
plasma which will be denoted by T. 

From the far field result (3.24) and the relation 

VXE=~U ~~ 

it follows that 

U* = - eikzi + (R X Ao)eikR 1 R as R ---+ 00 • (B3) 

When (3.24) and (B3) are inserted into the left-hand side of 
(B I) we find that 

i" R 
T= - p(O)sinOdO+-

o 2 

X Ref" i" K(O,,p )eikR.p dOd,p, (B4) 

where 

'" = 1 - cosO -l/R sin(O 12), 

K = sin 01 (1 + cosO)Aoy(1T/2 + 0 12),,p) 

- sine sin,pAoz (1T 12 + 0 12,,p ) ]. 

The functions Aoy and Aoz are the y and z components of Ao 
respectively. Since R---+ 00, the method of stationary 11 phase 
can be applied to the second integral in (B4). The energy 
absorbed in then approximated by 
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iff 1 i2
" T= - p(O)sinOdO- -1m Aoy(1T/2,,p)d,p. 

o k 0 

(BS) 

This is just a statement of the optical theorem. 13 
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It is shown that in the gravitational collapse of a charged fluid sphere only one of the two 
Reissner-Nordstrom curvature singularities is present, under the assumption that the charge 
density evaluated at the surface of the sphere and the total charge on the sphere do not have 
opposite sign. Arguments are presented to show that this assumption is physically reasonable. 
Ignoring possible naked singularities formed within the collapsing matter, this implies that the 
only Cauchy horizon in the interior of a charged black hole is the future inner event horizon 
(r = r _, t = + (0), which is known to be both classically and quantum mechanically unstable. 

P ACS numbers: 95.30.Sf 

I. INTRODUCTION 

Determining the validity of the cosmic censorship hy­
pothesis is widely regarded as one of the most important 
problems in classical general relativity today. The cosmic 
censorship hypothesis 1 basically says that any naked singu­
larity which is created by the evolution of "regular" initial 
conditions will always be hidden behind an absolute event 
horizon. Such a naked singularity is visible (or "naked") only 
to observers who fall through the absolute event horizon into 
the black hole containing the singularity. The local (or 
"strong") version of the cosmic censorship hypothesis2 sim­
ply states that naked singularities are never produced. A sin­
gularity is considered naked only if there exists some observ­
er for whom the singularity lies initially to his future, and, 
some subsequent proper time later, the singularity lies to his 
past. This definition is local in that it makes no reference to a 
special set of observers at asymptotic infinity. Note also that 
the big bang is not naked according to this definition. 

If the local cosmic censorship hypothesis is true, then 
the geometry of a black hole interior may be completely de­
termined by solving the Cauchy problem for the space-time. 
Ignoring perturbations occuring at late times, this amounts 
to determining the time-dependent metric and matter fields 
in the gravitational collapse which forms the black hole. 

Conversely, by studying classical gravitational col­
lapse, we can to some extent study the validity of the local 
cosmic censorship hypothesis. Several different approaches 
can be taken. First, one might study the formation of curva­
ture singularities within the collapsing matter and determine 
whether they are locally naked. This is likely to be a very 
difficult problem, as the nature of the singularities is likely to 
depend on the specific details of the collapse, and may not be 
amenable to a general analysis. In Sec. II. I review the pro­
gress made on this problem to date. Second, one might study 
the possible trajectories the surface of the collapsing body 
can follow, in order to determine which regions of the interi­
or are likely to be vacuum. In particular, if the geometry is 
spherically symmetric, we can determine which portions of 
the Reissner-Nordstrom interior are relevant to realistic 

''Work supported in part by the National Science Foundation contracts 
PHY78-09658 and PHY79-16482. 

gravitational collapse. In Sec. III of this paper, I prove that 
in the collapse of a charged spherical star the left hand r = 0 
curvature singularity in Fig. 1 will never be exposed (unless 
nature contains an additional attractive force which diverges 
faster than r- 3

). Thus, ignoring possible naked singularities 
formed, within the matter, only the right hand Reissner­
Nordstrom singularity is naked, and only the future inner 
horizon (labeled ,.f+) is a Cauchy horizon. 

It is now well established that the future inner event 
horizon (,.f+) is both classically3.4,5,6 and quantum mechani­
cally7,8,9 unstable. Thus, it appears that the only possible 

FIG. I. Penrose diagram of the Reissner-Nordstriim space-time with 
Q2 <M2. The region denoted I represents our exterior universe. Note the 
existence of mUltiple asymptotically fiat exteriors, such as regions II, III, 
and IV. The Penrose diagram repeats endlessly off the top and bottom of the 
page. The dashed curve indicates a typical timelike geodesic. 
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o 

" ... 

(a) 

collapse to 
left hand singularity 

(c) 

collapse to 
right hand singularity 

(b) 

bounce to 
left hand future 
exterior region 

(d) 

bounce to 
right hand future 
exterior region 

FIG. 2. Possible topologies for charged spherical collapse. The shaded re­
gion represents the collapsing matter, and is bounded on the left by r = 0 
(origin of coordinates). The heavy lines labeled r = 0 are the Reissner­
Nordstrom curvature singularities. 

naked singularities formed in spherical collapse are singular­
ities formed within the collapsing matter. The instability of 
.If + , combined with the result obtained in this paper, guaran­
tees that the timelike, locally naked character of the singu­
larities in the analytically extended Reissner-Nordstr6m 
metric will not be important in any physically realistic 
situation. 

II. REVIEW OF SPHERICAL COLLAPSE RESULTS 

The general gravitational collapse problem is incredibly 
difficult. There is no reason to assume any a priori symmetry 
for the collapsing body. Thus the metric and matter fields 
may depend on all four space-time coordinates. Even with 
today's computer power the problem appears intractable. If 
we assume axisymmetry (a physically reasonable assump­
tion-stars seem likely to be almost axisymmetric, even 
when highly time-dependent--e.g., a supernova) the situa­
tion does not improve much. Axisymmetric collapse calcula­
tions should be within the range of today's numerical tech­
niques, but have not yet been completed. Only when we 
specialize to spherical symmetry does the gravitational col­
lapse problem become relatively easy. To a large extent this 
is because spherical collapse is not complicated by the pres­
ence of gravitational radiation. 

216 J. Math. Phys., Vol. 22, No.1, January 1981 

The first detailed study of the gravitational collapse of a 
spherically symmetric perfect fluid was the work of May and 
White. 10 They found that the singularities formed were al­
ways within an event horizon (supporting the cosmic censor­
ship hypothesis, which had not yet been formally proposed). 
The singularity was formed at r = 0, and is necessarily spa­
celike since it is formed inside r = 2M ( /.t) (M defined in terms 
of the proper mass /.t, of all spherical shells interior to that 
value of r), where grr < 0, making r = const a spacelike 
surface. 

The collapse of charged spherical dust (pressure = 0) 
has been thoroughly studied. The collapse of charged spheri­
cal shells of dust has been treated by De La Cruz and Isra­
el, II by Kuchar,12 By Chase, 13 and by Boulware. 14 The an­
laysis of De La Cruz and Israel is the most general (they 
match two Reissner-Nordstr6m geometries on the shell: 
most other authors only consider the case of matching Min­
kowski space to Reissner-Nordstr6m on the shell). Unfortu­
nately, as Boulware points out, De La Cruz and Israel usual­
ly worked with the square of the equations of motion for the 
shell. Because of this, they fail to distinguish between posi­
tive and negative proper mass shells. Boulware points out 
that the negative proper mass shell can collapse to a naked 
singularity, violating cosmic censorship (and the weak ener­
gy condition). The collapse of charged balls of dust has been 
considered by Novikov l5 and Bardeen. 16 

The hydrodynamic equations for spherically symmet­
ric charged fluid collapse were set up by Bekenstein, 17 but he 
did not go on to numerically integrate them. 

More recently, Mashhoon and Partovi lS have studied a 
class of exact solutions of Einstein's equations which repre­
sent the collapse of a charged perfect fluid ball of matter. 
They discovered several interesting generic features of the 
singularities formed in collapse. First, if a singUlarity is 
formed, it is either a spacelike or null hypersurface, never 
timelike. Second, any singularity which forms does so be­
tween the inner and outer event horizons (r _ < 'singularity 

<, +). These conclusions could lead one to believe that no 
locally naked singularities are produced within the matter in 
spherical charged fluid collapse, but the case cannot yet be 
regarded as closed. The singularity in the Mashhoon-Par­
tovi solutions is a pressure singularity ( p = + (0). Exactly 
how the singUlarity (p = (0) approaches the surface of the 
collapsing ball (defined to be p = 0) is unclear. In the un­
charged case it was clear that the surface of the collapsing 
matter must run into the Schwarzschild singularity at r = O. 
Here, however, the space-time exterior to the collapsing 
matter must be a portion of the Reissner-Nordstr6m space­
time (by the electrovacuum generalization of BirkhotI's 
theorem), and thus the surface of the collapsing matter need 
not run into a singularity of the exterior geometry. 

In the face of this uncertainty and lack of knowledge 
concerning the nature of the singularities formed with the 
matter during charged spherical collapse, it behooves us to 
determine which portions of the analytically extended 
Reissner-Nordstr6m interior are relevant to physically real­
istic collapse. 
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III. ON THE TOPOLOGY OF CHARGED FLUID 
SPHERICAL COLLAPSE 

In this section I study the possible paths the surface of a 
spherically symmetric charged star might follow during its 
gravitational collapse. Within one physically reasonable as­
sumption, I prove that the possible trajectories fall into two 
categories, neither of which ever exposes the left-hand cur­
vature singularity in the Reissner-Nordstrom-Penrose dia­
gram (Fig. I). Thus, ignoring possible locally naked singular­
ities formed within the collapsing matter, only the inner 
horizon labeled h+ in Fig. 1 is a Cauchy horizon. The other 
segment of the inner horizon, h-, is an event horizon, but 
not a Cauchy horizon in this case. 

We consider the gravitational collapse of a spherically 
symmetric star with nonzero net electromagnetic charge. 
Since the space-time exterior to the star is spherically sym­
metric and its stress-energy tensor is that of a pure electro­
magnetic field, it must be a portion of the Reissner-Nord­
strom solution, by the generalization of Birkhoff's theorem. 

There are four conceivable Penrose diagrams of the col­
lapse, illustrated in Fig. 2. Figure 2 (a) illustrates coUapse 
into the left-hand Reissner-Nordstrom singularity. The in­
ner event horizon h- is no longer a Cauchy horizon. The 
dashed null line (marked ~) and the other inner event hori­
zon (h+) are now the Cauchy horizons. Possibility (b) is for 
the star to bounce into the left-hand future exterior region. 
Figure 2 (c) represents collapse into the right-hand Reissner­
Nordstrom singularity, and (d) represents a bounce into the 
right-hand future exterior region. Note that the paths (b) and 
(d) are open-ended: the star, re-expanded into an exterior 
region, could expand to infinity, recollapse to form another 
black hole, etc. In possibilities (b), (c), and (d), the Cauchy 
horizon is the inner event horizon h+. 

I will now prove that no realistic star can collapse into 
the left-hand singularity, along path (a). The different paths 
which the surface of the collapsing star may follow can be 
characterized by the number and type of their turning points. 
A turningpoint is defined to be any point along the trajectory 
of the surface where a component at the four-velocity of the 
surface is zero (U U = dxu/dr = 0), while at the same point 
the corresponding coordinate acceleration is nonzero 
(d 2X a / dil =1= 0). The second criterion excludes points of in­
flection from our definition, and thus insures that ~ (the 
coordinates of the world-tube defining the surface of the star) 
reaches a maximum or minimum value at the turning point. 
Path (a) contains no turning points. The radial component of 
the four-velocity, dr/dr, is negative all the way down to 
r = O. Path (c) is distinguished from path (a) by its one turn­
ing point. In order for the surface to reach the right-hand 
singularity, there must be a point where dt /dr = 0 on the 
path (c). This is because near the right-hand singularity (for 
all r < r _) any future directed particle will have dt / dr < O. In 
contrast, any future directed particle near the left-hand sin­
gularity (for all r < r _) must have dt / dr > O. Because the 
Reissner-Nordstrom manifold is time-orientable, the t-turn­
ing point on path (c) must lie between r + and r _, where the t 
coordinate is spacelike. 

Since the space-time is spherically symmetric, the only 
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nonzero component of the four-velocity of the fluid are 
ut = dt /dr and ur = dr/dr. Ifa typical fluid element within 
the star has charge q and proper mass m, then the equations 
of motion for that element are 

a" = Du"/Dr = u";"uv = (q/m)F""u" + f"/m, (1) 

where F"" is the Maxwell electromagnetic field tensor, and 
f" represents all additional forces generated within the fluid 
(e.g., a pressure gradient). 

Care must be taken in evaluating Eq. (1) at the surface of 
the star, as the surface is a surface of discontinuity where the 
interior coordinate system joins onto the static external 
Reissner-Nordstrom coordinates. Since j" represents 
forces generated within the matter, its components must be 
evaluated in the interior coordinate system. If we contract 
Eq. (1) with the normal vector to the surface of the star, n", 
we obtain 

u";"u"n" = (q/m)F" yu"n" + j "n,,/m. (2) 

The left-hand side ofEq. (2) is simply K uu ' a component of 
the extrinsic curvature tensor, as may be seen by using the 
elementary identity 

(3) 

along with the definition of the extrinsic curvature tensor 
(specialized to theKuu component) 

Kuu = - u"u"n,,;y (4) 

Since I will assume that there is no delta functional shell of 
matter at the surface, Kuu will be continuous across the sur­
face, and the left-hand side ofEq. (3) may be evaluated in 
either coordinate system. 

The electromagnetic term in Eq. (3), F"y uVn" , represents 
the electric field perpendicular to the surface. Since I assume 
there is no delta-functional surface charge layer, the field is 
continuous and this term may also be evaluated in either 
coordinate system. 

As noted previously, the vectorf" must be evaluated in 
the interior coordinate system. The radial coordinate, r, is 
specified geometrically, and must agree at the surface, so 
r in = rout and drin/dr = drout/dr. Inside the star there is no 
exceptionally preferred time coordinate (in the sense that the 
exterior Killing time coordinate is preferred), however, the 
interior time coordinate may be chosen such that at the sur­
face (dt,dr) = 0 and the interior and exterior coordinates 
match, tin = tout. We can now evaluatef "n" by noting that 

j"u =0= - ~~r+ ~~fr, (5) 
" r2 dr .1 dr 

which implies 

f"n" = ~ (:~)-Ifr, (6) 

where.1 = r2 - 2Mr + Q2. 

Ifwe now put the Reissner-Nordstrom values for the 
connection and Maxwell tensor into Eq. (3) (as was justified 
above), we can reduce it to an ordinary differential equation 
for the radius of the surface as a function of proper time: 

d 2r _ M + ~ + qQ.1 ~ + f r • 

dil = r2 ~ mr4 dr m 
(7) 
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Note that the most obvious forcej 1", namely the pressure 
gradient in a perfect fluid star (/1" = - P;I")' will always be 
positive at the surface of the star. The star's surface is, for a 
perfect fluid, defined to be the radius at which P = O. Since 
any reasonable fluid has P > 0 (inside the star), nl"p.1" < 0 at 
the surface. This implies thatjl"nl" will always be positive. 
Since (r I ~ )(dt Idr)-' will always be positive,J' will always 
be positive in Eq. (7). The important point is that any stan­
dard pressure-gradient sort of force contained inj 'will nec­
essarily be positive as r"""O. 

We next note that the charge density evaluated at the 
surface of the collapsing star would, in any physically rea­
sonable collapse, have the same sign as the net charge on the 
star (Q ). Since the matter is in motion, u'i= 0, and also quite 
likely acting as a conductor to some extent, it seems likely 
that the electrostatic repulsion of the excess charge on the 
star should drive the excess charge to the surface. Even if the 
charge Q were concentrated at the core of the star, surface 
particles would not have an opposite charge (q'; such that 
q' Q < 0), as the q' charge would be electrostatically attracted 
toward the center during collapse, leaving the surface parti­
cles with charge q such that qQ>O. 

Of course the validity of these simple arguments hinges 
crucially on the assumption of spherical symmetry. It is 
spherical symmetry that makes the magnetohydrodynamics 
trivial. There can be no magnetic fields or rotational currents 
within this assumption. The only electromagnetic field pre­
sent is the simple Q (r)/r Coulomb field. On this basis, we 
will now assume that qQ>O. 

Let us then suppose that the stellar surface is approach­
ing the left-hand singularity, apparently following path (a). 
As r......o, Eq. (7) becomes 

d 2r Q2 qQ3 dt j' 
----+- + -- + -. (8) 
dr r mr4 dr m 

Recall that near the left-hand singularity, dt Idr is necessar­
ily positive. Since we assumed qQ>O, the first two terms are 
necessarily positive. 

If we consider the motion of a charged test particle 
(/' = 0), we see that the coordinate acceleration diverges at 
least as fast as r- 3 as r"""O. This immediately implies that no 
charged test particle (with qQ>O) can even reach the left­
hand singularity, as it is infinitely repulsive as r"""O. 

Now, ifj' is nonzero, it is obvious that it must, in order 
to collapse the star into the left-hand singularity [path (a)], be 
negative (attractive) and diverge as r......o faster than Q 21r. 
There is no known macroscopic force in nature with this 
behavior, so we would conclude that no physically reason-
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able collapse will have a Penrose diagram like Fig. 2(a). As I 
noted earlier, the most obvious forcej', a pressure gradient, 
is repulsive [positive sign in Eq. (8)] rather than attractive. 

Collapse to the right-hand singularity [along path (c)] is 
possible, because dt I dr is negative near the singularity, and 
the second term in Eq. (8) can overcome the other two to 
make d 2r I dr < 0 all the way down to r = O. 

The result may now be summarized: 
Given a collapsing charged spherical body of matter 

whose exterior is described by the Reissrier-Nordstrom met­
ric. If: 

( 1 ) the product of the charge on a surface particle, q, and 
the total charge, Q, is non-negative (qQ>O); and 

(2) there is no additional (i.e., not electromagnetic or 
gravitational) attractive force within the matter which di­
verges at least as fast as r- 3 as r......o; then collapse to the left­
hand Reissner-Nordstrom singularity [Fig. 2(a)] is 
impossible. 

Thus, if no locally naked singularities are produced 
within collapsing charged spherical matter, then the only 
Cauchy horizon in the black hole interior is the future inner 
event horizon, ;;+, which is both classically and quantum 
mechanically unstable. 
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p.1654: should read 
4 4 

Yv = L7Jv,..x,.. instead of L7Jv,.. 
I I 

p. 1661: The first line of the last integral equation 

Erratum: A concept of spin 112 approximation in the quantum theory of lattice 
Bose systems [J. Math. Phys. 21, 2670 (1980)] 
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